Integration of Laser Scanning, Digital Photogrammetry and BIM Technology: A Review and Case Studies
Abstract
:1. Introduction
1.1. Point Cloud Definition
1.2. Point Cloud Extraction Methods
1.2.1. Laser Scanning (LIDAR)
1.2.2. Digital Photogrammetry
1.3. BIM Modeling Based on Point Clouds
1.4. BIM Definition
2. Literature Review
2.1. State of the Art
2.2. The Objectives
3. Materials and Methods: Workflow—From Point Clouds to Building Information Model
4. Results—Case Studies
Historical/Heritage Building Information Modeling (HBIM)
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mengiste, E.; Prieto, S.A.; De Soto, B.G. Comparison of TLS and photogrammetric 3D data acquisition techniques: Considerations for developing countries. In ISARC, Proceedings of the International Symposium on Automation and Robotics in Construction, Bogotá, Colombia, 12–15 July 2022; IAARC Publications: Pittsburgh, PA, USA, 2022; Volume 39, pp. 491–494. [Google Scholar]
- Grilli, E.; Menna, F.; Remondino, F. A review of point clouds segmentation and classification algorithms. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W3, 339–344. [Google Scholar] [CrossRef]
- Morgenstern, H.; Raupach, M. Quantified point clouds and enriched BIM-Models for digitized maintenance planning. MATEC Web Conf. 2022, 364, 05001. [Google Scholar] [CrossRef]
- Geoportal. Available online: https://mapy.geoportal.gov.pl/imap/Imgp_2.html (accessed on 18 May 2024).
- Kadhim, N.; Mhmood, A.D.; Adb-Ulabbas, A.H. The creation of 3D building models using laser-scanning datafor BIM modeling. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1105, 012101. [Google Scholar] [CrossRef]
- Lichti, D.D.; Gordon, S.J.; Stewart, M.P.; Franke, J.; Tsakiri, M. Comparison of digital photogrammetry and laser scanning. In Proceedings of the International Society for Photogrammetry and Remote Sensing, Hyderabad, India, 7–9 December 2002; pp. 39–44. [Google Scholar]
- Dardanelli, G.; Maltese, A.; Pipitone, C.; Pisciotta, A.; Lo Brutto, M. NRTK, PPP or static, that is the question. Testing different positioning solutions for GNSS survey. Remote Sens. 2021, 13, 1406. [Google Scholar] [CrossRef]
- Suchocki, C.; Damięcka-Suchocka, M.; Katzer, J.; Janicka, J.; Rapiński, J.; Stałowska, P. Remote detection of moisture and bio-deterioration of building walls by time-of-flight and phase-shift terrestrial laser scanners. Remote Sens. 2020, 12, 1708. [Google Scholar] [CrossRef]
- Masciotta, M.G.; Sanchez-Aparicio, L.J.; Oliveira, D.V.; Gonzalez-Aguilera, D. Integration of laser scanning technologies and 360º photography for the digital documentation and management of cultural heritage buildings. Int. J. Archit. Herit. 2023, 17, 56–75. [Google Scholar] [CrossRef]
- Pilgrim, L.; Sabzali, M. Investigation of Correlation between Self-Calibration Parameters of Terrestrial Laser Scanner (TLS). Asian J. Geoinform. 2023, 23, 2311016-1–2311016-16. [Google Scholar]
- Schmidt, J.; Volland, V.; Iwaszczuk, D.; Eichhorn, A. Detection of hidden edges and corners in slam-based indoor point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-1/W, 443–449. [Google Scholar] [CrossRef]
- TPI. Available online: https://tpi.com.pl/produkt/faro-focus-premium (accessed on 18 May 2024).
- NavVis. Available online: https://www.navvis.com/vlx (accessed on 18 May 2024).
- Pepe, M.; Alfio, V.S.; Costantino, D. UAV platforms and the SfM-MVS approach in the 3D surveys and modelling: A review in the cultural heritage field. Appl. Sci. 2022, 12, 12886. [Google Scholar] [CrossRef]
- Zawada, K.; Rybak-Niedziółka, K.; Donderewicz, M.; Starzyk, A. Digitization of AEC Industries Based on BIM and 4.0 Technologies. Buildings 2024, 14, 1350. [Google Scholar] [CrossRef]
- Borkowski, A.S. BIM model from a point cloud. Build. Sci. 2020, 1, 42–44. [Google Scholar] [CrossRef]
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors; John Wiley & Sons: Hoboken, NJ, USA, 2011; 626p. [Google Scholar]
- Borkowski, A.S. A Literature Review of BIM Definitions: Narrow and Broad Views. Technologies 2023, 11, 176. [Google Scholar] [CrossRef]
- Tomana, A. BIM Innovative Technology in Construction. Basics, Standards, Tools; PWB MEDIA Zdziebłowski Spółka Jawna: Kraków, Poland, 2016; pp. 59–60. ISBN 978-83-944969-0-6. (In Polish) [Google Scholar]
- Kochański, Ł.; Borkowski, A.S. Automating the conceptual design of residental areas using visual and generative programming. J. Eng. Des. 2024, 35, 195–216. [Google Scholar] [CrossRef]
- Borkowski, A.S. Low-Cost Internet of Things Solution for Building Information Modeling Level 3B—Monitoring, Analysis and Management. J. Sens. Actuator Netw. 2024, 13, 19. [Google Scholar] [CrossRef]
- Kasznia, D.; Magiera, J.; Wierzowiecki, P. BIM in Practice; PWN Scientific Publishers SA: Warsaw, Poland, 2017; pp. 13–14. ISBN 978-83-01-21052-6. (In Polish) [Google Scholar]
- Adamus, Ł. Building Information Modeling (BIM): Theoretical foundations. Pr. Inst. Tech. Bud. 2012, 41, 13–26. (In Polish) [Google Scholar]
- Liu, J.; Willkens, D.; Gentry, R. A Conceptual Framework for Integrating Terrestrial Laser Scanning (TLS) into the Historic American Buildings Survey (HABS). Architecture 2023, 3, 505–527. [Google Scholar] [CrossRef]
- Jordan-Palomar, I.; Tzortzopoulos, P.; García-Valldecabres, J.; Pellicer, E. Protocol to manage heritage-building interventions using heritage building information modelling (HBIM). Sustainability 2018, 10, 908. [Google Scholar] [CrossRef]
- Alshawabkeh, Y.; Baik, A.; Miky, Y. Integration of laser scanner and photogrammetry for heritage BIM enhancement. ISPRS Int. J. Geo-Inf. 2021, 10, 316. [Google Scholar] [CrossRef]
- Liu, J.; Azhar, S.; Willkens, D.; Li, B. Static terrestrial laser scanning (TLS) for heritage building information modeling (HBIM): A systematic review. Virtual Worlds 2023, 2, 90–114. [Google Scholar] [CrossRef]
- Wu, C.; Yuan, Y.; Tang, Y.; Tian, B. Application of terrestrial laser scanning (TLS) in the architecture, engineering and construction (AEC) industry. Sensors 2021, 22, 265. [Google Scholar] [CrossRef]
- Available online: https://cloudcompare-org.danielgm.net/release/ (accessed on 10 May 2024).
- Pocobelli, D.P.; Boehm, J.; Bryan, P.; Still, J.; Grau-Bové, J. BIM for heritage science: A review. Herit. Sci. 2018, 6, 30. [Google Scholar] [CrossRef]
- Autodesk. Available online: https://help.autodesk.com/view/NAV/2022/ENU/?guid=GUID-7F1C93E2-66A8-4884-85E1-15B180E0C46F (accessed on 8 June 2024).
- Quattrini, R.; Pierdicca, R.; Morbidoni, C. Knowledge-based data enrichment for HBIM: Exploring high-quality models using the semantic-web. J. Cult. Herit. 2017, 28, 129–139. [Google Scholar] [CrossRef]
- Eadie, R.; Clifford, S.; Stoyanov, V. Building information modeling (BIM) automated creation of gothic arch windows from point clouds. In Proceedings of the XXII International Scientific Conference on Construction and Architecture VSU’2022, Sofia, Bulgaria, 6–8 October 2022; p. 2. [Google Scholar]
- Sánchez-Aparicio, L.J.; Del Pozo, S.; Ramos, L.F.; Arce, A.; Fernandes, F.M. Heritage site preservation with combined radiometric and geometric analysis of TLS data. Autom. Constr. 2018, 85, 24–39. [Google Scholar] [CrossRef]
- Wei, O.C.; Chin, C.S.; Majid, Z.; Setan, H. 3D documentation and preservation of historical monument using terrestrial laser scanning. Geoinf. Sci. J. 2010, 10, 73–90. [Google Scholar]
- Moyano, J.; Carreño, E.; Nieto-Julián, J.E.; Gil-Arizón, I.; Bruno, S. Systematic approach to generate Historical Building Information Modelling (HBIM) in architectural restoration project. Autom. Constr. 2022, 143, 104551. [Google Scholar] [CrossRef]
- Roca, P. Restoration of historic buildings: Conservation principles and structural assessment. Int. J. Mater. Struct. Integr. 2011, 5, 151–167. [Google Scholar] [CrossRef]
- Pezeshki, Z.; Ivari SA, S. Applications of BIM: A brief review and future outline. Arch. Comput. Methods Eng. 2018, 25, 273–312. [Google Scholar] [CrossRef]
- Saricaoglu, T.; Saygi, G. Data-driven conservation actions of heritage places curated with HBIM. Virtual Archaeol. Rev. 2022, 13, 17–32. [Google Scholar] [CrossRef]
- Bosch, A.; Volker, L.; Koutamanis, A. BIM in the operations stage: Bottlenecks and implications for owners. Built Environ. Proj. Asset Manag. 2015, 5, 331–343. [Google Scholar] [CrossRef]
- Christenson, M. Problematizing the model-building duality: Examining the New Sacristy at S. Lorenzo, Florence, Italy. Front. Archit. Res. 2023, 12, 651–663. [Google Scholar] [CrossRef]
- Borkowski, A.S. Evolution of BIM: Epistemology, genesis and division into periods. J. Inf. Technol. Constr. (ITcon) 2023, 28, 646–661. [Google Scholar] [CrossRef]
PC File Format | Data Storage Type | Example of BIM Modeling Software | Potential Representation |
---|---|---|---|
RCP, RCS | ASCII | Autodesk Revit | Surface normals, texture, color, transparency, data confidence value and coordinates |
E57 | ASCII and Binary | GraphisoftArchicad, Tekla Structures | Normals, scalar density and 3D geometry, texture and color |
XYZ | ASCII | GraphisoftArchicad, Tekla Structures | 3D geometry, texture, color, no unit standardizations |
LAS | Binary | Tekla | The ground in addition to surface structures |
Parameter | TLS Faro Focus Premium (Figure 3) | MLS NavVis VLX (Figure 4) |
---|---|---|
Range | 70–350 m | 100 m |
3D scanning capacity | 800–1500 m/h2 | 1500–3000 m/h2 |
Distance measurement error | ±1 mm | ±6 mm |
Resolution | up to 266 Mpix RGB | up to 34 Mpix RGB |
Information | Description |
---|---|
Geometrical data | Dimensions, cubic area, etc. |
Architectural style | Specific building components and construction techniques |
Materials | Characteristics: materials represented in the views with different hatch, in labels |
Façade degradation | Hatches in the elevation views represent specific degradations |
Façade interventions | Hatches in the elevation views represent interventions, with symbols, tables and detailed planned actions |
Damage survey (if required) | If there is any structural damage in the building, a damage survey is required to plan structural interventions |
Environmental parameters and their future effects | Possible simulation to inform the maintenance of the building and to help make decisions; the prediction and interpretation of risks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borkowski, A.S.; Kubrat, A. Integration of Laser Scanning, Digital Photogrammetry and BIM Technology: A Review and Case Studies. Eng 2024, 5, 2395-2409. https://doi.org/10.3390/eng5040125
Borkowski AS, Kubrat A. Integration of Laser Scanning, Digital Photogrammetry and BIM Technology: A Review and Case Studies. Eng. 2024; 5(4):2395-2409. https://doi.org/10.3390/eng5040125
Chicago/Turabian StyleBorkowski, Andrzej Szymon, and Alicja Kubrat. 2024. "Integration of Laser Scanning, Digital Photogrammetry and BIM Technology: A Review and Case Studies" Eng 5, no. 4: 2395-2409. https://doi.org/10.3390/eng5040125
APA StyleBorkowski, A. S., & Kubrat, A. (2024). Integration of Laser Scanning, Digital Photogrammetry and BIM Technology: A Review and Case Studies. Eng, 5(4), 2395-2409. https://doi.org/10.3390/eng5040125