Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,232)

Search Parameters:
Keywords = glaciers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 6268 KiB  
Article
The Destabilizing Effect of Glacial Unloading on a Large Volcanic Slope Instability in Southeast Iceland
by Daniel Ben-Yehoshua, Sigurður Erlingsson, Þorsteinn Sæmundsson, Reginald L. Hermanns, Eyjólfur Magnússon, Robert A. Askew and Jóhann Helgason
Viewed by 448
Abstract
Since the turn of the 20th century, glacial thinning has been exposing volcanic mountain slopes around Iceland’s outlet glaciers. In the early 2000s, several slope instabilities appeared around the Svínafellsjökull outlet glacier in Southeast Iceland. The largest of these is located on a [...] Read more.
Since the turn of the 20th century, glacial thinning has been exposing volcanic mountain slopes around Iceland’s outlet glaciers. In the early 2000s, several slope instabilities appeared around the Svínafellsjökull outlet glacier in Southeast Iceland. The largest of these is located on a slope called Svarthamrar and is defined by a more than 2 km-long fracture system that separates the northernmost part of the mountain, south of Svínafellsjökull. Here we present updated glacier bed topography, a stratigraphical and structural assessment of the Svarthamrar slope, and quantify the destabilizing effect of glacial unloading from 1890 to deglaciated. Our results show that the slope was predisposed to instability by structural discontinuities and a strongly overdeepened glacial trough. Glacial unloading likely controlled the slope destabilization, potentially exacerbated by temporarily steeper hydraulic gradients due to rapid glacier thinning in the late 1990s and 2000s. The load of older landslide deposits on the glacier acts stabilizing on the slope. We propose that future glacial thinning will reduce the slope stability further, making it more susceptible to external triggers, and resulting in reactivation of the deformation and potential failure. Similar trends of destabilization can be expected for many slopes in Iceland and elsewhere. Full article
(This article belongs to the Special Issue Landslide Research: State of the Art and Innovations)
Show Figures

Figure 1

44 pages, 7018 KiB  
Review
Rethinking the Lake History of Taylor Valley, Antarctica During the Ross Sea I Glaciation
by Michael S. Stone, Peter T. Doran and Krista F. Myers
Viewed by 395
Abstract
The Ross Sea I glaciation, marked by the northward advance of the Ross Ice Sheet (RIS) in the Ross Sea, east Antarctica, corresponds with the last major expansion of the West Antarctic Ice Sheet during the last glacial period. During its advance, the [...] Read more.
The Ross Sea I glaciation, marked by the northward advance of the Ross Ice Sheet (RIS) in the Ross Sea, east Antarctica, corresponds with the last major expansion of the West Antarctic Ice Sheet during the last glacial period. During its advance, the RIS was grounded along the southern Victoria Land coast, completely blocking the mouths of several of the McMurdo Dry Valleys (MDVs). Several authors have proposed that very large paleolakes, proglacial to the RIS, existed in many of the MDVs. Studies of these large paleolakes have been key in the interpretation of the regional landscape, climate, hydrology, and glacier and ice sheet movements. By far the most studied of these large paleolakes is Glacial Lake Washburn (GLW) in Taylor Valley. Here, we present a comprehensive review of literature related to GLW, focusing on the waters supplying the paleolake, signatures of the paleolake itself, and signatures of past glacial movements that controlled the spatial extent of GLW. We find that while a valley-wide proglacial lake likely did exist in Taylor Valley during the early stages of the Ross Sea I glaciation, during later stages two isolated lakes occupied the eastern and western sections of the valley, confined by an expansion of local alpine glaciers. Lake levels above ~140 m asl were confined to western Taylor Valley, and major lake level changes were likely driven by RIS movements, with climate variables playing a more minor role. These results may have major implications for our understanding of the MDVs and the RIS during the Ross Sea I glaciation. Full article
(This article belongs to the Section Cryosphere)
Show Figures

Figure 1

19 pages, 12502 KiB  
Article
Quantifying Spatiotemporal Changes in Supraglacial Debris Cover in Eastern Pamir from 1994 to 2024 Based on the Google Earth Engine
by Hehe Liu, Zhen Zhang, Shiyin Liu, Fuming Xie, Jing Ding, Guolong Li and Haoran Su
Remote Sens. 2025, 17(1), 144; https://doi.org/10.3390/rs17010144 - 3 Jan 2025
Viewed by 385
Abstract
Supraglacial debris cover considerably influences sub-debris ablation patterns and the surface morphology of glaciers by modulating the land–atmosphere energy exchange. Understanding its spatial distribution and temporal variations is crucial for analyzing melting processes and managing downstream disaster mitigation efforts. In recent years, the [...] Read more.
Supraglacial debris cover considerably influences sub-debris ablation patterns and the surface morphology of glaciers by modulating the land–atmosphere energy exchange. Understanding its spatial distribution and temporal variations is crucial for analyzing melting processes and managing downstream disaster mitigation efforts. In recent years, the overall slightly positive mass balance or stable state of eastern Pamir glaciers has been referred to as the “Pamir-Karakoram anomaly”. It is important to note that spatial heterogeneity in glacier change has drawn widespread research attention. However, research on the spatiotemporal changes in the debris cover in this region is completely nonexistent, which has led to an inadequate understanding of debris-covered glacier variations. To address this research gap, this study employed Landsat remote sensing images within the Google Earth Engine platform, leveraging the Random Forest algorithm to classify the supraglacial debris cover. The classification algorithm integrates spectral features from Landsat images and derived indices (NDVI, NDSI, NDWI, and BAND RATIO), supplemented by auxiliary factors such as slope and aspect. By extracting the supraglacial debris cover from 1994 to 2024, this study systematically analyzed the spatiotemporal variations and investigated the underlying drivers of debris cover changes from the perspective of mass conservation. By 2024, the area of supraglacial debris in eastern Pamir reached 258.08 ± 20.65 km2, accounting for 18.5 ± 1.55% of the total glacier area. It was observed that the Kungey Mountain region demonstrated the largest debris cover rate. Between 1994 and 2024, while the total glacier area decreased by −2.57 ± 0.70%, the debris-covered areas expanded upward at a rate of +1.64 ± 0.10% yr−1. The expansion of debris cover is driven by several factors in the context of global warming. The rising temperature resulted in permafrost degradation, slope destabilization, and intensified weathering on supply slopes, thereby augmenting the debris supply. Additionally, the steep supply slope in the study area facilitates the rapid deposition of collapsed debris onto glacier surfaces, with frequent avalanche events accelerating the mobilization of rock fragments. Full article
(This article belongs to the Special Issue Earth Observation of Glacier and Snow Cover Mapping in Cold Regions)
Show Figures

Graphical abstract

17 pages, 1427 KiB  
Article
Tropical Glaciation and Glacio-Epochs: Their Tectonic Origin in Paleogeography
by Hsien-Wang Ou
Viewed by 409
Abstract
Precambrian tropical glaciation is an enigma of Earth’s climate. Overlooking fundamental difference of land/sea icelines, it was equated with a global frozen ocean, which is at odds with the sedimentary evidence of an active hydrological cycle, and its genesis via the runaway ice–albedo [...] Read more.
Precambrian tropical glaciation is an enigma of Earth’s climate. Overlooking fundamental difference of land/sea icelines, it was equated with a global frozen ocean, which is at odds with the sedimentary evidence of an active hydrological cycle, and its genesis via the runaway ice–albedo feedback conflicts with the mostly ice-free Proterozoic when its trigger threshold was well exceeded by the dimmer sun. In view of these shortfalls, I put forth two key hypotheses of the tropical glaciation: first, if seeded by mountain glaciers, the land ice would advance on sea level to be halted by above-freezing summer temperature, which thus abuts an open cozonal ocean; second, a tropical supercontinent would block the brighter tropical sun to cause the required cooling. To test these hypotheses, I formulate a minimal tropical/polar box model to examine the temperature response to a varying tropical land area and show that tropical glaciation is indeed plausible when the landmass is concentrated in the tropics despite uncertain model parameters. In addition, given the chronology of paleogeography, the model may explain the observed deep time climate to provide a unified account of the faint young Sun paradox, Precambrian tropical glaciations, and Phanerozoic glacio-epochs, reinforcing, therefore, the uniformitarian principle. Full article
Show Figures

Figure 1

21 pages, 16438 KiB  
Article
Characterizing Changes in Geometry and Flow Speeds of Land- and Lake-Terminating Glaciers at the Headwaters of Yarlung Zangbo River, Western Himalayas
by Min Zhou, Yuzhe Wang, Tong Zhang, Weijun Sun and Yetang Wang
Remote Sens. 2025, 17(1), 40; https://doi.org/10.3390/rs17010040 - 26 Dec 2024
Viewed by 413
Abstract
The glaciers of the Himalayas are essential for water resources in South Asia and the Qinghai–Tibet Plateau, but they are undergoing accelerated mass loss, posing risks to water security and increasing glacial hazards. This study examines long-term changes in the geometry and flow [...] Read more.
The glaciers of the Himalayas are essential for water resources in South Asia and the Qinghai–Tibet Plateau, but they are undergoing accelerated mass loss, posing risks to water security and increasing glacial hazards. This study examines long-term changes in the geometry and flow speeds of both land- and lake-terminating glaciers at the headwaters of the Yarlung Zangbo River, using field measurements, remote sensing, and numerical ice flow modeling. We observed significant heterogeneity in glacier behaviors across the region, with notable differences between glacier terminus types and even among neighboring glaciers of the same type. Between 1974 and 2020, glacier thinning and mass loss rates doubled in the early 21st century (0.57±0.05 m w.e. a−1) compared to 1974–2000 (0.24±0.11 m w.e. a−1). While lake-terminating glaciers generally experienced more rapid retreat and mass loss, the land-terminating N241 Glacier displayed comparable mass loss rates. Lake-terminating glaciers retreated by over 1000 m between 1990 and 2019, while land-terminating glaciers retreated by less than 750 m. The ITS_LIVE velocity dataset showed higher and more variable flow speeds in lake-terminating glaciers. Numerical modeling from 2000 to 2017 revealed divergent changes in flow regimes, with lake-terminating glaciers generally experiencing acceleration, while land-terminating glaciers showed either a slowing down or stable flow behavior. Our findings underscore the significant role of lake-terminating glaciers in contributing to ice mass loss, emphasizing the need for advanced glacier models that incorporate dynamic processes such as frontal calving and longitudinal coupling. Full article
Show Figures

Graphical abstract

18 pages, 10675 KiB  
Article
Combining Physical Hydrological Model with Explainable Machine Learning Methods to Enhance Water Balance Assessment in Glacial River Basins
by Ruibiao Yang, Jinglu Wu, Guojing Gan, Ru Guo and Hongliang Zhang
Water 2024, 16(24), 3699; https://doi.org/10.3390/w16243699 - 22 Dec 2024
Viewed by 381
Abstract
The implementation of accurate water balance assessment in glacier basins is essential for the management and sustainable development of water resources in the basins. In this study, a hybrid modeling framework was constructed to enhance runoff prediction and water balance assessment in glacier [...] Read more.
The implementation of accurate water balance assessment in glacier basins is essential for the management and sustainable development of water resources in the basins. In this study, a hybrid modeling framework was constructed to enhance runoff prediction and water balance assessment in glacier basins. An improved physical hydrological model (SEGSWAT+) was combined with a machine learning model (ML) to capture the relationship between runoff residuals and water balance components through the Shapley additive explanations (SHAP) method. Based on the enhancement of the runoff fitting results of the existing model, the runoff residuals are decomposed and used to correct the hydrological process component values, thus improving the accuracy of the water balance results. We evaluated the performance and correction results of the method using various ML methods. We analyzed the results for two consecutive periods from 1959 to 2022 for the glacial sub-basins of three tributaries of the Upper Ili River Basin in central Asia. The results show that the hybrid framework based on extreme gradient boosting (XGBoost) with an average NSE value of 0.93 has the best performance, and the bias based on the evapotranspiration component and soil water content change component is reduced by 3.2–5%, proving the effectiveness of the water balance correction. This study advances the interpretation of ML models for hydrologic assessment of areas with complex hydrodynamic characteristics. Full article
Show Figures

Figure 1

30 pages, 2332 KiB  
Review
Cold-Adapted Fungi: Goldmine of Biomolecules Applicable in Industry
by Iga Jodłowska and Aneta Monika Białkowska
Appl. Sci. 2024, 14(24), 11950; https://doi.org/10.3390/app142411950 - 20 Dec 2024
Viewed by 429
Abstract
Fungi, which are widely distributed across the Earth, have successfully managed to colonize cold environments (e.g., polar regions, alpine ecosystems, and glaciers) despite the challenging conditions for life. They are capable of living in extremely harsh environments due to their ecological versatility and [...] Read more.
Fungi, which are widely distributed across the Earth, have successfully managed to colonize cold environments (e.g., polar regions, alpine ecosystems, and glaciers) despite the challenging conditions for life. They are capable of living in extremely harsh environments due to their ecological versatility and morphological plasticity. It is also believed that lower eukaryotes are the most adapted to life at low temperatures among microorganisms that thrive in cold environments. They play important ecological roles, contributing to nutrient recycling and organic matter mineralization. These highly specialized microorganisms have developed adaptation strategies to overcome the direct and indirect harmful influences of low temperatures. They have evolved a wide range of complex and cooperative adaptations at various cellular levels, including modifications to the cell envelope and enzymes, the production of cryoprotectants and chaperones, and the development of new metabolic functions. Adaptation to cold environments has made fungi an exciting source for the discovery of new cold-adapted enzymes (e.g., proteinases, lipases) and secondary metabolites (e.g., pigments, osmolytes, polyunsaturated fatty acids) for widespread use in biotechnology, food technology, agriculture, pharmaceutics, molecular biology, textile industry, and environmental bioremediation in cold climates. This review aims to provide a comprehensive overview of the adaptive strategies employed by psychrophilic yeasts and fungi, highlighting their ecological roles and biotechnological potential. Understanding these adaptive mechanisms not only sheds light on microbial life in extreme environments but also paves the way for innovative applications in the food industry and agriculture. Full article
(This article belongs to the Special Issue Role of Microbes in Agriculture and Food, 2nd Edition)
Show Figures

Figure 1

22 pages, 7136 KiB  
Article
Runoff Characteristics and Their Response to Meteorological Condition in the Yarlung Zangbo River Basin: Spatial Heterogeneity Due to the Glacier Coverage Difference
by Lei Zhu, Yun Deng, Ganggang Bai, Yi Tan, Youcai Tuo, Ruidong An, Xingmin Wang and Min Chen
Remote Sens. 2024, 16(24), 4646; https://doi.org/10.3390/rs16244646 - 11 Dec 2024
Viewed by 512
Abstract
The Yarlung Zangbo River (YZR) is a sizeable highland river on the Tibetan Plateau, and its runoff process is crucial for understanding regional water resource features and related ecological patterns. However, the runoff characteristics of the YZR Basin (YZRB) remain unclear, especially how [...] Read more.
The Yarlung Zangbo River (YZR) is a sizeable highland river on the Tibetan Plateau, and its runoff process is crucial for understanding regional water resource features and related ecological patterns. However, the runoff characteristics of the YZR Basin (YZRB) remain unclear, especially how it would react to climate change. This study comprehensively analyzed the runoff characteristics of the entire YZRB based on a validated distributed hydrological model (SWAT) coupled with a glacier module (SWAT-glac), identified the runoff components, and explored the climate–discharge relationship, with a particular focus on the relationships between glacier runoff and changes in precipitation and air temperature. The results indicate that the SWAT-glac model, with localized glacier parameters, accurately simulates the runoff processes due to regional differences in meteorological conditions and uneven glacier distribution. Summer runoff dominates the basin, contributing 46.2% to 57.9% of the total, while spring runoff is notably higher in the downstream sections than in other areas. Runoff components vary significantly across river sections; precipitation is the primary contributor to basin-wide runoff (23.4–59.5%), while glacier runoff contribution can reach up to 54.8% in downstream areas. The study found that underlying surface conditions, particularly glacier coverage, significantly influence runoff responses to meteorological changes. The correlation between runoff and precipitation is stronger at stations where rainfall predominates, whereas runoff shows greater sensitivity to air temperature in glacier-covered areas. These findings enhance the understanding of runoff processes in the YZRB and offer valuable insights for the sustainable management of water resources in similar basins under climate change. Full article
Show Figures

Graphical abstract

33 pages, 15088 KiB  
Article
A Multi-Criteria GIS-Based Approach for Risk Assessment of Slope Instability Driven by Glacier Melting in the Alpine Area
by Giulia Castellazzi and Mattia Previtali
Appl. Sci. 2024, 14(24), 11524; https://doi.org/10.3390/app142411524 - 11 Dec 2024
Viewed by 659
Abstract
Climate change is resulting in significant transformations in mountain areas all over the world, causing the melting of glacier ice, reduction in snow accumulation, and permafrost loss. Changes in the mountain cryosphere are not only modifying flora and fauna distributions but also affecting [...] Read more.
Climate change is resulting in significant transformations in mountain areas all over the world, causing the melting of glacier ice, reduction in snow accumulation, and permafrost loss. Changes in the mountain cryosphere are not only modifying flora and fauna distributions but also affecting the stability of slopes in those regions. For all these reasons, and because of the risks these phenomena pose to the population, the dentification of dangerous areas is a crucial step in the development of risk reduction strategies. While several methods and examples exist that cover the assessment and computation of single sub-components, there is still a lack of application of risk assessment due to glacier melting over large areas in which the final result can be directly employed in the design of risk mitigation policies at regional and municipal levels. This research is focused on landslides and gravitational movements on slopes resulting from rapid glacier melting phenomena in the Valle d’Aosta region in Italy, with the aim of providing a tool that can support spatial planning in response to climate change in Alpine environments. Through the conceptualization and development of a GIS-based and multi-criteria approach, risk is then estimated by defining hazard indices that consider different aspects, combining the experience acquired from studies carried out in various disciplinary fields, to obtain a framework at the regional level. This first assessment is then deepened for the Lys River Valley, where the mapping of hazardous areas was implemented, obtaining a classification of buildings according to their hazard score to estimate the potential damage and total risk relating to possible slope instability events due to ice melt at the local scale. Full article
Show Figures

Figure 1

13 pages, 9172 KiB  
Technical Note
Surge Mechanisms of Garmo Glacier: Integrating Multi-Source Data for Insights into Acceleration and Hydrological Control
by Kunpeng Wu, Jing Feng, Pingping Cheng, Tobias Bolch, Zongli Jiang, Shiyin Liu and Adnan Ahmad Tahir
Remote Sens. 2024, 16(24), 4619; https://doi.org/10.3390/rs16244619 - 10 Dec 2024
Viewed by 527
Abstract
Understanding the mechanisms of glacial surging is crucial, as surges can lead to severe hazards and significantly impact a glacier’s mass balance. We used various remote sensing data to investigate the surge of Garmo Glacier in the western Pamir. Our findings indicate that [...] Read more.
Understanding the mechanisms of glacial surging is crucial, as surges can lead to severe hazards and significantly impact a glacier’s mass balance. We used various remote sensing data to investigate the surge of Garmo Glacier in the western Pamir. Our findings indicate that the glacier surged between 27 April and 30 September 2022, with peak speeds reaching 8.3 ± 0.03 m d−1. During April 2020 and September 2022, the receiving zone thickened by 37.9 ± 0.55 m, while the reservoir zone decreased by 35.2 ± 0.55 m on average. The velocity decomposition suggests that this meltwater gradually warmed the glacier bed, accelerating the glacier during the pre-surge phase. During the surge, substantial drainage events coincided with sharp deceleration, ultimately halting the surge and suggesting hydrological control. Extreme climate events may not immediately trigger glacial surges; they can substantially impact glacial surging processes over an extended period. Full article
Show Figures

Graphical abstract

27 pages, 11398 KiB  
Article
Analyzing Land Use/Land Cover Dynamics in Mountain Tourism Areas: A Case Study of the Core and Buffer Zones of Sagarmatha and Khaptad National Parks, Nepal
by Ankita Gupta
Sustainability 2024, 16(23), 10670; https://doi.org/10.3390/su162310670 - 5 Dec 2024
Viewed by 615
Abstract
Monitoring land use/land cover (LULC) dynamics facilitates effective management and mitigation measures by providing timely and accurate information on the landscape. This study investigates LULC dynamics in Sagarmatha National Park (SNP), one of the most popular destinations for mountain tourism, and Khaptad National [...] Read more.
Monitoring land use/land cover (LULC) dynamics facilitates effective management and mitigation measures by providing timely and accurate information on the landscape. This study investigates LULC dynamics in Sagarmatha National Park (SNP), one of the most popular destinations for mountain tourism, and Khaptad National Park (KNP), which are emerging destinations, though popular among domestic tourists. A random forest classification algorithm was employed to generate LULC dynamics using Landsat data. High-resolution Planet Scope images and Google Earth images were used for accuracy assessment. Archived tourist and climatic data were analyzed to explore the impacts on LULC change. Cellular automata–artificial neural network (CA-ANN)-based LULC predictions were employed to predict future LULC. LULC dynamics of SNP revealed an increase in bare land, grassland, shrubland, glacial lakes, agriculture, and water bodies; however, snow/glacier and forest cover experienced substantial decreases of 140.25 km2 and 15.36 km2, respectively, from 1989 to 2021. In KNP, LULC dynamics showed an increasing trend in grassland, agriculture, water bodies, and bare land; however, forest and shrubland experienced a decrease of 18.63 km2 and 10.48 km2. The forest loss (19.33 km2) in the buffer zone of KNP was greater compared to the buffer zone of SNP (13.45 km2). The increment in built-up area was 0.80 km2 in SNP and 1.11 km2 in KNP, indicating escalating tourist activities and population growth. For SNP, the mean annual precipitation and temperature data from 1994 to 2023 showed decreasing and increasing patterns, respectively. However, the mean annual precipitation and temperature trends in KNP demonstrated an increasing pattern. Under the business-as-usual scenario, the estimated forest loss will be 1.61 km2 in SNP by 2032 and 23.8 km2 in KNP by 2030. A significant decline in snow/glaciers is projected for the core zone of SNP, with a loss of 22.84 km2 expected by 2032. This study provides a baseline information on LULC changes in SNP and KNP. Further, it showcases the necessity of diversified national park policies as per the requirement. Full article
Show Figures

Figure 1

17 pages, 14801 KiB  
Article
The Status of Glaciers in the Western United States Based on Sentinel-2A Images
by Bernard Abubakari and Shrinidhi Ambinakudige
Remote Sens. 2024, 16(23), 4501; https://doi.org/10.3390/rs16234501 - 30 Nov 2024
Viewed by 591
Abstract
In this study, we utilized Random Forest machine learning classification to assess the current state of glaciers in the western United States using Sentinel-2A satellite imagery. By analyzing Sentinel-2A imagery from September 2020 and comparing it to the RGI inventory, the study determined [...] Read more.
In this study, we utilized Random Forest machine learning classification to assess the current state of glaciers in the western United States using Sentinel-2A satellite imagery. By analyzing Sentinel-2A imagery from September 2020 and comparing it to the RGI inventory, the study determined the current conditions of the glaciers. Our findings unveiled a significant reduction in both glacier area and volume in the western United States since the mid-20th century. Currently, the region hosts 2878 glaciers and perennial snowfield spanning eight states, covering a total area of 428.32 ± 7.8 km2 with a corresponding volume of 9.00 ± 0.9 km3. During the study period, a loss of 244.31 km2 in glacier area was observed, representing a 36.32% decrease when contrasted with the RGI boundaries. The volume lost during this period amounted to 4.96 km3, roughly equivalent to 4.7 gigatons of water. Among the states, Washington experienced the most significant glacier area reduction, with a loss of 133.16 km2. Notably, glaciers in the North Cascade Range of Washington, such as those in Mt. Baker and Mt. Shuksan, now cover, on average, only 85% of their original glacier boundaries with ice and snow at the conclusion of the 2020 hydrological year. Major glaciers, including the White River Glacier, West Nooksack Glacier, and White Chuck Glacier, have lost more than 50 percent of their original area. Full article
Show Figures

Figure 1

17 pages, 7864 KiB  
Article
Three-Dimensional Monitoring of Zelongnong Glacier, China, with the PO-MSBAS Technique
by Xinyi Zhai, Chaoying Zhao, Bin Li, Wenpei Wang and Xiaojie Liu
Remote Sens. 2024, 16(23), 4462; https://doi.org/10.3390/rs16234462 - 28 Nov 2024
Viewed by 394
Abstract
High-precision monitoring of glacier motion provides crucial information for a thorough understanding of the dynamic characteristics and development patterns of glaciers, which serves as a scientific basis for the prevention and management of glacier-related disasters. Zelongnong Glacier, located in Tibet, China, has experienced [...] Read more.
High-precision monitoring of glacier motion provides crucial information for a thorough understanding of the dynamic characteristics and development patterns of glaciers, which serves as a scientific basis for the prevention and management of glacier-related disasters. Zelongnong Glacier, located in Tibet, China, has experienced glacier surges, collapse, and hazard chains four times in the last 70 years. On 10 September 2020, a major glacier hazard chain occurred in this region. To reveal the influencing factors of the glacier motion, we monitor the Zelongnong Glacier motions with 65 scenes of TerraSAR/PAZ images from 2022 to 2023, where the Pixel Offset Multidimensional Small Baseline Subset (PO-MSBAS) method is employed for three-dimensional time series inversion. As the registration window size directly affects the matching success rate, deformation accuracy, and signal-to-noise ratio (SNR) during the offset tracking processing, we adopt a variable window-weighted cross-correlation strategy. The strategy balances the advantages of different window sizes, effectively reducing noise while preserving certain details in the offset results. The standard deviation in stable areas is also significantly lower than that obtained using smaller window sizes in conventional methods. The results reveal that the velocity of the southern glacier tributary was larger than the one in the northern tributary. Specifically, the maximum velocity in the northern tributary reached 45.07 m/year in the horizontal direction and −7.45 m/year in the vertical direction, whereas in the southern tributary, the maximum velocity was 50.15 m/year horizontally and 50.66 m/year vertically. The southern tributary underwent two bends before merging with the mainstream, leading to a more complex motion pattern. Lastly, correlation reveals that the Zelongnong Glacier was affected by the combined influence of temperature and precipitation with a common period of around 90 days. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Graphical abstract

20 pages, 10145 KiB  
Article
Monitoring and Disaster Assessment of Glacier Lake Outburst in High Mountains Asian Using Multi-Satellites and HEC-RAS: A Case of Kyagar in 2018
by Long Jiang, Zhiqiang Lin, Zhenbo Zhou, Hongxin Luo, Jiafeng Zheng, Dongsheng Su and Minhong Song
Remote Sens. 2024, 16(23), 4447; https://doi.org/10.3390/rs16234447 - 27 Nov 2024
Viewed by 570
Abstract
The glaciers in the High Mountain Asia (HMA) region are highly vulnerable to global warming, posing significant threats to downstream populations and infrastructure through glacier lake outburst floods (GLOFs). The monitoring and early warnings of these events are challenging due to sparse observations [...] Read more.
The glaciers in the High Mountain Asia (HMA) region are highly vulnerable to global warming, posing significant threats to downstream populations and infrastructure through glacier lake outburst floods (GLOFs). The monitoring and early warnings of these events are challenging due to sparse observations in these remote regions. To explore reproducing the evolution of GLOFs with sparse observations in situ, this study focuses on the outburst event and corresponding GLOFs in August 2018 caused by the Kyagar Glacier lake, a typical glacier lake of the HMA in the Karakoram, which is known for its frequent outburst events, using a combination of multi-satellite remote sensing data (Sentinel-1 and Sentinel-2) and the HEC-RAS hydrodynamic model. The water depth of the glacier lake and downstream was extracted from satellite data adapted by the Floodwater Depth Elevation Tool (FwDET) as a baseline to compare them with simulations. The elevation-water volume curve was obtained by extrapolation and was applied to calculate the water surface elevation (WSE). The inundation of the downstream of the lake outburst was obtained through flood modeling by incorporating a load elevation-water volume curve and the Digital Elevation Model (DEM) into the hydrodynamic model HEC-RAS. The results showed that the Kyagar glacial lake outburst was rapid and destructive, accompanied by strong currents at the end of each downstream storage ladder. A series of meteorological evaluation indicators showed that HEC-RAS reproduced the medium and low streamflow rates well. This study demonstrated the value of integrating remote sensing and hydrodynamic modeling into GLOF assessments in data-scarce regions, providing insights for disaster risk management and mitigation. Full article
(This article belongs to the Topic Advances in Hydrological Remote Sensing)
Show Figures

Figure 1

13 pages, 1672 KiB  
Article
A Protocol for the Characterization of Diatom Communities in Mountain Glaciers
by Susana Chamorro, María Borrego-Ramos, Carlos Silva, Dayana Estrada, Sara López, José Salazar, Jennifer Moyón, Eloy Becares and Saúl Blanco
Water 2024, 16(23), 3417; https://doi.org/10.3390/w16233417 - 27 Nov 2024
Viewed by 643
Abstract
This research presents a significant contribution to the methodologies and protocols for studying diatom communities in cryoconite holes on glaciers. Cryoconite holes are unique microenvironments found on glacial surfaces that support intricate microbial ecosystems, with diatoms playing a pivotal role in these communities. [...] Read more.
This research presents a significant contribution to the methodologies and protocols for studying diatom communities in cryoconite holes on glaciers. Cryoconite holes are unique microenvironments found on glacial surfaces that support intricate microbial ecosystems, with diatoms playing a pivotal role in these communities. The refined methodologies developed in this study include optimizing sampling techniques to ensure that collections are both representative and diverse, which is crucial for accurate ecological assessments. Additionally, advanced digestion processes have been implemented to effectively isolate and purify diatom samples while minimizing contaminants, thereby improving sample integrity. Improved microscopic mounting techniques enhance visual clarity, facilitating more precise identifications of diatoms under the microscope. Furthermore, integrating DNA-based taxonomy broadens the taxonomic scope, providing valuable molecular insights into the diversity and evolutionary relationships of diatoms. Collectively, these protocols aim to enhance the reliability, depth, and multidimensional understanding of diatom ecology in cryoconite holes and broader glacial ecosystems, ultimately contributing to the field of glaciology and microbial ecology. Full article
Show Figures

Figure 1

Back to TopTop