Cold-Adapted Fungi: Goldmine of Biomolecules Applicable in Industry
Abstract
:1. Introduction
2. Diversity and Ecological Role of Cold-Adapted Fungi
3. Physiological Adaptations of Cold-Adapted Fungi
4. Biotechnological Application of Psychrophilic Fungi in Food and Agriculture
4.1. Cold-Active Enzymes
4.2. Ice-Binding Proteins
4.3. Polyunsaturated Fatty Acids (PUFAs)
4.4. Pigments
4.5. Osmolytes
4.6. Extracellular Polymeric Substances (EPSs)
4.7. Biosurfactants
4.8. Other Bioactive Compounds
5. Future Prospectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodrigues, D. Coping with Our Cold Planet. Am. Soc. Microbiol. 2008, 74, 1677–1686. [Google Scholar] [CrossRef] [PubMed]
- Margesin, R.; Miteva, V. Diversity and Ecology of Psychrophilic Microorganisms. Res. Microbiol. 2011, 162, 346–361. [Google Scholar] [CrossRef] [PubMed]
- Feller, G. Cryosphere and Psychrophiles: Insights into a Cold Origin of Life? Life 2017, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Parvizpour, S.; Hussin, N.; Shamsir, M.S.; Razmara, J. Psychrophilic Enzymes: Structural Adaptation, Pharmaceutical and Industrial Applications. Appl. Microbiol. Biotechnol. 2021, 105, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Zucconi, L.; Canini, F.; Temporiti, M.E.; Tosi, S. Extracellular Enzymes and Bioactive Compounds from Antarctic Terrestrial Fungi for Bioprospecting. Int. J. Environ. Res. Public Health 2020, 17, 6459. [Google Scholar] [CrossRef] [PubMed]
- Morita, R.Y. Psychrophilic Bacteria. Bacteriol. Rev. 1975, 39, 144–167. [Google Scholar] [CrossRef]
- Wang, M.; Tian, J.; Xiang, M.; Liu, X. Living Strategy of Cold-Adapted Fungi with the Reference to Several Representative Species. Mycology 2017, 8, 178–188. [Google Scholar] [CrossRef]
- Turchetti, B.; Buzzini, P.; Goretti, M.; Branda, E.; Diolaiuti, G.; D’Agata, C.; Smiraglia, C.; Vaughan-Martini, A. Psychrophilic Yeasts in Glacial Environments of Alpine Glaciers. FEMS Microbiol. Ecol. 2008, 63, 73–83. [Google Scholar] [CrossRef]
- Hawksworth, D.L. The Fungal Dimension of Biodiversity: Magnitude, Significance, and Conservation. Mycol. Res. 1991, 95, 641–655. [Google Scholar] [CrossRef]
- Coleine, C.; Stajich, J.E.; Selbmann, L. Fungi Are Key Players in Extreme Ecosystems. Trends Ecol. Evol. 2022, 37, 517–528. [Google Scholar] [CrossRef]
- Durán, P.; Barra, P.J.; Jorquera, M.A.; Viscardi, S.; Fernandez, C.; Paz, C.; Mora, M.D.L.L.; Bol, R. Occurrence of Soil Fungi in Antarctic Pristine Environments. Front. Bioeng. Biotechnol. 2019, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Selbmann, L.; Egidi, E.; Isola, D.; Onofri, S.; Zucconi, L.; de Hoog, G.S.; Chinaglia, S.; Testa, L.; Tosi, S.; Balestrazzi, A.; et al. Biodiversity, Evolution and Adaptation of Fungi in Extreme Environments. Plant Biosyst. 2013, 147, 237–246. [Google Scholar] [CrossRef]
- Hassan, N.; Rafiq, M.; Hayat, M.; Shah, A.A.; Hasan, F. Psychrophilic and Psychrotrophic Fungi: A Comprehensive Review. Rev. Environ. Sci. Biotechnol. 2016, 15, 147–172. [Google Scholar] [CrossRef]
- Varrella, S.; Barone, G.; Tangherlini, M.; Rastelli, E.; Dell’anno, A.; Corinaldesi, C. Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi. J. Fungi 2021, 7, 391. [Google Scholar] [CrossRef]
- Gonçalves, V.N.; Lirio, J.M.; Coria, S.H.; Lopes, F.A.C.; Convey, P.; de Oliveira, F.S.; Carvalho-Silva, M.; Câmara, P.E.A.S.; Rosa, L.H. Soil Fungal Diversity and Ecology Assessed Using DNA Metabarcoding along a Deglaciated Chronosequence at Clearwater Mesa, James Ross Island, Antarctic Peninsula. Biology 2023, 12, 275. [Google Scholar] [CrossRef]
- Ruisi, S.; Barreca, D.; Selbmann, L.; Zucconi, L.; Onofri, S. Fungi in Antarctica. Rev. Environ. Sci. Biotechnol. 2007, 6, 127–141. [Google Scholar] [CrossRef]
- Rosa, L.H.; Zani, C.L.; Cantrell, C.L.; Duke, S.O.; Van Dijck, P.; Desideri, A.; Rosa, C.A. Fungi in Antarctica: Diversity, Ecology, Effects of Climate Change, and Bioprospection for Bioactive Compounds. In Fungi of Antarctica; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 1–17. [Google Scholar]
- Gonçalves, V.N.; de Souza, L.M.D.; Lirio, J.M.; Coria, S.H.; Lopes, F.A.C.; Convey, P.; Carvalho-Silva, M.; de Oliveira, F.S.; Câmara, P.E.A.S.; Rosa, L.H. Diversity and Ecology of Fungal Assemblages Present in Lake Sediments at Clearwater Mesa, James Ross Island, Antarctica, Assessed Using Metabarcoding of Environmental DNA. Fungal Biol. 2022, 126, 640–647. [Google Scholar] [CrossRef]
- de Menezes, G.C.A.; Câmara, P.E.A.S.; Pinto, O.H.B.; Carvalho-Silva, M.; Oliveira, F.S.; Souza, C.D.; Reynaud Schaefer, C.E.G.; Convey, P.; Rosa, C.A.; Rosa, L.H. Fungal Diversity Present on Rocks from a Polar Desert in Continental Antarctica Assessed Using DNA Metabarcoding. Extremophiles 2021, 25, 193–202. [Google Scholar] [CrossRef]
- de Souza, L.M.D.; Lirio, J.M.; Coria, S.H.; Lopes, F.A.C.; Convey, P.; Carvalho-Silva, M.; de Oliveira, F.S.; Rosa, C.A.; Câmara, P.E.A.S.; Rosa, L.H. Diversity, Distribution and Ecology of Fungal Communities Present in Antarctic Lake Sediments Uncovered by DNA Metabarcoding. Sci. Rep. 2022, 12, 8407. [Google Scholar] [CrossRef]
- Rosa, L.H.; da Silva, T.H.; Ogaki, M.B.; Pinto, O.H.B.; Stech, M.; Convey, P.; Carvalho-Silva, M.; Rosa, C.A.; Câmara, P.E.A.S. DNA Metabarcoding Uncovers Fungal Diversity in Soils of Protected and Non-Protected Areas on Deception Island, Antarctica. Sci. Rep. 2020, 10, 21986. [Google Scholar] [CrossRef]
- Stchigel, A.M.; Cano, J.; Mac Cormack, W.; Guarro, J. Antarctomyces psychrotrophicus gen. et sp. nov., a New Ascomycete from Antarctica. Mycol. Res. 2001, 105, 377–382. [Google Scholar] [CrossRef]
- de Menezes, G.C.A.; Godinho, V.M.; Porto, B.A.; Gonçalves, V.N.; Rosa, L.H. Antarctomyces pellizariae Sp. Nov., a New, Endemic, Blue, Snow Resident Psychrophilic Ascomycete Fungus from Antarctica. Extremophiles 2017, 21, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, P.; Vásquez, G.; Gil-Durán, C.; Oliva, V.; Díaz, A.; Henríquez, M.; Álvarez, E.; Laich, F.; Chávez, R.; Vaca, I. Description of the First Four Species of the Genus Pseudogymnoascus from Antarctica. Front. Microbiol. 2021, 12, 713189. [Google Scholar] [CrossRef] [PubMed]
- Godinho, V.M.; Gonçalves, V.N.; Santiago, I.F.; Figueredo, H.M.; Vitoreli, G.A.; Schaefer, C.E.G.R.; Barbosa, E.C.; Oliveira, J.G.; Alves, T.M.A.; Zani, C.L.; et al. Diversity and Bioprospection of Fungal Community Present in Oligotrophic Soil of Continental Antarctica. Extremophiles 2015, 19, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Mercantini, R.; Marsella, R.; Cervellati, M.C. Keratinophilic Fungi Isolated from Antarctic Soil; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989; Volume 106. [Google Scholar]
- Santiago, I.F.; Alves, T.M.A.; Rabello, A.; Junior, P.A.S.; Romanha, A.J.; Zani, C.L.; Rosa, C.A.; Rosa, L.H. Leishmanicidal and Antitumoral Activities of Endophytic Fungi Associated with the Antarctic Angiosperms Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Extremophiles 2012, 16, 95–103. [Google Scholar] [CrossRef]
- Furbino, L.E.; Pellizzari, F.M.; Neto, P.C.; Rosa, C.A.; Rosa, L.H. Isolation of Fungi Associated with Macroalgae from Maritime Antarctica and Their Production of Agarolytic and Carrageenolytic Activities. Polar Biol. 2018, 41, 527–535. [Google Scholar] [CrossRef]
- Godinho, V.M.; Furbino, L.E.; Santiago, I.F.; Pellizzari, F.M.; Yokoya, N.S.; Pupo, D.; Alves, T.M.A.; Junior, P.A.S.; Romanha, A.J.; Zani, C.L.; et al. Diversity and Bioprospecting of Fungal Communities Associated with Endemic and Cold-Adapted Macroalgae in Antarctica. ISME J. 2013, 7, 1434–1451. [Google Scholar] [CrossRef]
- Santiago, I.F.; Soares, M.A.; Rosa, C.A.; Rosa, L.H. Lichensphere: A Protected Natural Microhabitat of the Non-Lichenised Fungal Communities Living in Extreme Environments of Antarctica. Extremophiles 2015, 19, 1087–1097. [Google Scholar] [CrossRef]
- Henríquez, M.; Vergara, K.; Norambuena, J.; Beiza, A.; Maza, F.; Ubilla, P.; Araya, I.; Chávez, R.; San-Martín, A.; Darias, J.; et al. Diversity of Cultivable Fungi Associated with Antarctic Marine Sponges and Screening for Their Antimicrobial, Antitumoral and Antioxidant Potential. World J. Microbiol. Biotechnol. 2014, 30, 65–76. [Google Scholar] [CrossRef]
- Gonçalves, V.N.; Vaz, A.B.M.; Rosa, C.A.; Rosa, L.H. Diversity and Distribution of Fungal Communities in Lakes of Antarctica. FEMS Microbiol. Ecol. 2012, 82, 459–471. [Google Scholar] [CrossRef]
- Ogaki, M.B.; Teixeira, D.R.; Vieira, R.; Lírio, J.M.; Felizardo, J.P.S.; Abuchacra, R.C.; Cardoso, R.P.; Zani, C.L.; Alves, T.M.A.; Junior, P.A.S.; et al. Diversity and Bioprospecting of Cultivable Fungal Assemblages in Sediments of Lakes in the Antarctic Peninsula. Fungal Biol. 2020, 124, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Ogaki, M.B.; Pinto, O.H.B.; Vieira, R.; Neto, A.A.; Convey, P.; Carvalho-Silva, M.; Rosa, C.A.; Câmara, P.E.; Rosa, L.H. Fungi Present in Antarctic Deep-Sea Sediments Assessed Using DNA Metabarcoding. Environ. Microbiol. 2021, 82, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.H.; da Costa Coelho, L.; Pinto, O.H.B.; Carvalho-Silva, M.; Convey, P.; Rosa, C.A.; Câmara, P.E.A.S. Ecological Succession of Fungal and Bacterial Communities in Antarctic Mosses Affected by a Fairy Ring Disease. Extremophiles 2021, 25, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.H.; de Menezes, G.C.A.; Pinto, O.H.B.; Convey, P.; Carvalho-Silva, M.; Simões, J.C.; Rosa, C.A.; Câmara, P.E.A.S. Fungal Diversity in Seasonal Snow of Martel Inlet, King George Island, South Shetland Islands, Assessed Using DNA Metabarcoding. Polar Biol. 2022, 45, 627–636. [Google Scholar] [CrossRef]
- de Souza, L.M.D.; Ogaki, M.B.; Teixeira, E.A.A.; de Menezes, G.C.A.; Convey, P.; Rosa, C.A.; Rosa, L.H. Communities of Culturable Freshwater Fungi Present in Antarctic Lakes and Detection of Their Low-Temperature-Active Enzymes. Braz. J. Microbiol. 2022, 54, 1923–1933. [Google Scholar] [CrossRef]
- Rosa, L.H.; Ogaki, M.B.; Lirio, J.M.; Vieira, R.; Coria, S.H.; Pinto, O.H.B.; Carvalho-Silva, M.; Convey, P.; Rosa, C.A.; Câmara, P.E.A.S. Fungal Diversity in a Sediment Core from Climate Change Impacted Boeckella Lake, Hope Bay, North-Eastern Antarctic Peninsula Assessed Using Metabarcoding. Extremophiles 2022, 26, 16. [Google Scholar] [CrossRef]
- Santiago, I.F.; Rosa, C.A.; Rosa, L.H. Endophytic Symbiont Yeasts Associated with the Antarctic Angiosperms Deschampsia Antarctica and Colobanthus quitensis. Polar Biol. 2017, 40, 177–183. [Google Scholar] [CrossRef]
- Vishniac, H.S. Yeast Biodiversity in the Antarctic. In Biodiversity and Ecophysiology of Yeasts; Springer: Berlin/Heidelberg, Germany, 2006; pp. 419–440. [Google Scholar]
- de Sousa, J.R.P.; Gonçalves, V.N.; de Holanda, R.A.; Santos, D.A.; Bueloni, C.F.L.G.; Costa, A.O.; Petry, M.V.; Rosa, C.A.; Rosa, L.H. Pathogenic Potential of Environmental Resident Fungi from Ornithogenic Soils of Antarctica. Fungal Biol. 2017, 121, 991–1000. [Google Scholar] [CrossRef]
- Vaz, A.B.M.; Rosa, L.H.; Vieira, M.L.A.; De Garcia, V.; Brandão, L.R.; Teixeira, L.C.R.S.; Moliné, M.; Libkind, D.; Van Broock, M.; Rosa, C.A. The Diversity, Extracellular Enzymatic Activities and Photoprotective Compounds of Yeasts Isolated in Antarctica. Braz. J. Microbiol. 2011, 42, 937–947. [Google Scholar] [CrossRef]
- Yarzábal, L.A. Antarctic Psychrophilic Microorganisms and Biotechnology: History, Current Trends, Applications, and Challenges. In Microbial Models: From Environmental to Industrial Sustainability; Springer: Singapore, 2016; pp. 83–118. [Google Scholar] [CrossRef]
- De Maayer, P.; Anderson, D.; Cary, C.; Cowan, D.A. Some like It Cold: Understanding the Survival Strategies of Psychrophiles. EMBO Rep. 2014, 15, 508–517. [Google Scholar] [CrossRef]
- Sysoev, M.; Grötzinger, S.W.; Renn, D.; Eppinger, J.; Rueping, M.; Karan, R. Bioprospecting of Novel Extremozymes from Prokaryotes—The Advent of Culture-Independent Methods. Front. Microbiol. 2021, 12, 630013. [Google Scholar] [CrossRef] [PubMed]
- Tebo, B.M.; Davis, R.E.; Anitori, R.P.; Connell, L.B.; Schiffman, P.; Staudigel, H. Microbial Communities in Dark Oligotrophic Volcanic Ice Cave Ecosystems of Mt. Erebus, Antarctica. Front. Microbiol. 2015, 6, 179. [Google Scholar] [CrossRef] [PubMed]
- Coleine, C.; Pombubpa, N.; Zucconi, L.; Onofri, S.; Turchetti, B.; Buzzini, P.; Stajich, J.E.; Selbmann, L. Uncovered Microbial Diversity in Antarctic Cryptoendolithic Communities Sampling Three Representative Locations of the Victoria Land. Microorganisms 2020, 8, 942. [Google Scholar] [CrossRef] [PubMed]
- Varin, T.; Lovejoy, C.; Jungblut, A.D.; Vincent, W.F.; Corbeil, J. Metagenomic Analysis of Stress Genes in Microbial Mat Communities from Antarctica and the High Arctic. Appl. Environ. Microbiol. 2012, 78, 549–559. [Google Scholar] [CrossRef]
- Collins, T.; Margesin, R. Psychrophilic Lifestyles: Mechanisms of Adaptation and Biotechnological Tools. Appl. Microbiol. Biotechnol. 2019, 103, 2857–2871. [Google Scholar] [CrossRef]
- Bhatia, R.K.; Ullah, S.; Hoque, M.Z.; Ahmad, I.; Yang, Y.H.; Bhatt, A.K.; Bhatia, S.K. Psychrophiles: A Source of Cold-Adapted Enzymes for Energy Efficient Biotechnological Industrial Processes. J. Environ. Chem. Eng. 2021, 9, 104607. [Google Scholar] [CrossRef]
- Duarte, A.W.F.; dos Santos, J.A.; Vianna, M.V.; Vieira, J.M.F.; Mallagutti, V.H.; Inforsato, F.J.; Wentzel, L.C.P.; Lario, L.D.; Rodrigues, A.; Pagnocca, F.C.; et al. Cold-Adapted Enzymes Produced by Fungi from Terrestrial and Marine Antarctic Environments. Crit. Rev. Biotechnol. 2018, 38, 600–619. [Google Scholar] [CrossRef]
- Sarmiento, F.; Peralta, R.; Blamey, J.M. Cold and Hot Extremozymes: Industrial Relevance and Current Trends. Front. Bioeng. Biotechnol. 2015, 3, 148. [Google Scholar] [CrossRef]
- Pulicherla, K.K.; Ghosh, M.; Kumar, P.S.; Rao, K.R.S.S. Psychrozymes—The Next Generation Industrial Enzymes. J. Mar. Sci. Res. Dev. 2011, 1, 1000102. [Google Scholar] [CrossRef]
- Yusof, N.A.; Hashim, N.H.F.; Bharudin, I. Cold Adaptation Strategies and the Potential of Psychrophilic Enzymes from the Antarctic Yeast, Glaciozyma antarctica Pi12. J. Fungi 2021, 7, 528. [Google Scholar] [CrossRef]
- Troncoso, E.; Barahona, S.; Carrasco, M.; Villarreal, P.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Identification and Characterization of Yeasts Isolated from the South Shetland Islands and the Antarctic Peninsula. Polar Biol. 2017, 40, 649–658. [Google Scholar] [CrossRef]
- Song, C.; Liu, G.L.; Xu, J.L.; Chi, Z.M. Purification and Characterization of Extracellular β-Galactosidase from the Psychrotolerant Yeast Guehomyces Pullulans 17-1 Isolated from Sea Sediment in Antarctica. Process Biochem. 2010, 45, 954–960. [Google Scholar] [CrossRef]
- Parvizpour, S.; Razmara, J.; Ramli, A.N.M.; Md Illias, R.; Shamsir, M.S. Structural and Functional Analysis of a Novel Psychrophilic β-Mannanase from Glaciozyma antarctica PI12. J. Comput. Aided Mol. Des. 2014, 28, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Vaca, I.; Faúndez, C.; Maza, F.; Paillavil, B.; Hernández, V.; Acosta, F.; Levicán, G.; Martínez, C.; Chávez, R. Cultivable Psychrotolerant Yeasts Associated with Antarctic Marine Sponges. World J. Microbiol. Biotechnol. 2013, 29, 183–189. [Google Scholar] [CrossRef]
- Wang, N.; Zang, J.; Ming, K.; Liu, Y.; Wu, Z.; Ding, H. Production of Cold-Adapted Cellulase by Verticillium sp. isolated from Antarctic soils. Electron. J. Biotechnol. 2013, 16, 10. [Google Scholar] [CrossRef]
- Carrasco, M.; Villarreal, P.; Barahona, S.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Screening and Characterization of Amylase and Cellulase Activities in Psychrotolerant Yeasts. BMC Microbiol. 2016, 16, 21. [Google Scholar] [CrossRef]
- Fenice, M. The Psychrotolerant Antarctic Fungus Lecanicillium muscarium CCFEE 5003: A Powerful Producer of Cold-Tolerant Chitinolytic Enzymes. Molecules 2016, 21, 447. [Google Scholar] [CrossRef]
- Carrasco, M.; Rozas, J.M.; Barahona, S.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Diversity and Extracellular Enzymatic Activities of Yeasts Isolated from King George Island, the Sub-Antarctic Region. BMC Microbiol. 2012, 12, 251. [Google Scholar] [CrossRef]
- Mohammadi, S.; Parvizpour, S.; Razmara, J.; Abu Bakar, F.D.; Illias, R.M.; Mahadi, N.M.; Murad, A.M.A. Structure Prediction of a Novel Exo-β-1,3-Glucanase: Insights into the Cold Adaptation of Psychrophilic Yeast Glaciozyma antarctica PI12. Interdiscip. Sci. 2018, 10, 157–168. [Google Scholar] [CrossRef]
- Tiwari, R.; Nain, P.K.S.; Singh, S.; Adak, A.; Saritha, M.; Rana, S.; Sharma, A.; Nain, L. Cold Active Holocellulase Cocktail from Aspergillus Niger SH3: Process Optimization for Production and Biomass Hydrolysis. J. Taiwan Inst. Chem. Eng. 2015, 56, 57–66. [Google Scholar] [CrossRef]
- Teixeira, E.A.A.; de Souza, L.M.D.; Vieira, R.; Lirio, J.M.; Coria, S.H.; Convey, P.; Rosa, C.A.; Rosa, L.H. Enzymes and Biosurfactants of Industrial Interest Produced by Culturable Fungi Present in Sediments of Boeckella Lake, Hope Bay, North-East Antarctic Peninsula. Extremophiles 2024, 28, 30. [Google Scholar] [CrossRef] [PubMed]
- Taskin, M.; Ortucu, S.; Unver, Y.; Tasar, O.C.; Ozdemir, M.; Kaymak, H.C. Invertase Production and Molasses Decolourization by Cold-Adapted Filamentous Fungus Cladosporium herbarum ER-25 in Non-Sterile Molasses Medium. Process Saf. Environ. Prot. 2016, 103, 136–143. [Google Scholar] [CrossRef]
- Duarte, A.W.F.; Barato, M.B.; Nobre, F.S.; Polezel, D.A.; de Oliveira, T.B.; dos Santos, J.A.; Rodrigues, A.; Sette, L.D. Production of Cold-Adapted Enzymes by Filamentous Fungi from King George Island, Antarctica. Polar Biol. 2018, 41, 2511–2521. [Google Scholar] [CrossRef]
- Gil-Durán, C.; Ravanal, M.C.; Ubilla, P.; Vaca, I.; Chávez, R. Heterologous Expression, Purification and Characterization of a Highly Thermolabile Endoxylanase from the Antarctic Fungus Cladosporium sp. Fungal Biol. 2018, 122, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Poveda, G.; Gil-Durán, C.; Vaca, I.; Levicán, G.; Chávez, R. Cold-Active Pectinolytic Activity Produced by Filamentous Fungi Associated with Antarctic Marine Sponges. Biol. Res. 2018, 51, 1–6. [Google Scholar] [CrossRef]
- Monteiro, R.R.C.; Virgen-Ortiz, J.J.; Berenguer-Murcia, Á.; da Rocha, T.N.; dos Santos, J.C.S.; Alcántara, A.R.; Fernandez-Lafuente, R. Biotechnological Relevance of the Lipase A from Candida Antarctica. Catal. Today 2021, 362, 141–154. [Google Scholar] [CrossRef]
- Tsuji, M.; Yokota, Y.; Shimohara, K.; Kudoh, S.; Hoshino, T. An Application of Wastewater Treatment in a Cold Environment and Stable Lipase Production of Antarctic Basidiomycetous Yeast Mrakia blollopis. PLoS ONE 2013, 8, e59376. [Google Scholar] [CrossRef]
- Florczak, T.; Daroch, M.; Wilkinson, M.C.; Białkowska, A.; Bates, A.D.; Turkiewicz, M.; Iwanejko, L.A. Purification, Characterisation and Expression in Saccharomyces Cerevisiae of LipG7 an Enantioselective, Cold-Adapted Lipase from the Antarctic Filamentous Fungus Geomyces Sp. P7 with Unusual Thermostability Characteristics. Enzym. Microb. Technol. 2013, 53, 18–24. [Google Scholar] [CrossRef]
- Ashok, A.; Doriya, K.; Rao, J.V.; Qureshi, A.; Tiwari, A.K.; Kumar, D.S. Microbes Producing L-Asparaginase Free of Glutaminase and Urease Isolated from Extreme Locations of Antarctic Soil and Moss. Sci. Rep. 2019, 9, 1423. [Google Scholar] [CrossRef]
- Correa, H.T.; Vieira, W.F.; Pinheiro, T.M.A.; Cardoso, V.L.; Silveira, E.; Sette, L.D.; Pessoa, A.; Filho, U.C. L-Asparaginase and Biosurfactants Produced by Extremophile Yeasts from Antarctic Environments. Ind. Biotechnol. 2020, 16, 107–116. [Google Scholar] [CrossRef]
- Lario, L.D.; Chaud, L.; das Graças Almeida, M.; Converti, A.; Durães Sette, L.; Pessoa, A. Production, Purification, and Characterization of an Extracellular Acid Protease from the Marine Antarctic Yeast Rhodotorula mucilaginosa L7. Fungal Biol. 2015, 119, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Wentzel, L.C.P.; Inforsato, F.J.; Montoya, Q.V.; Rossin, B.G.; Nascimento, N.R.; Rodrigues, A.; Sette, L.D. Fungi from Admiralty Bay (King George Island, Antarctica) Soils and Marine Sediments. Microb. Ecol. 2019, 77, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Papagianni, M.; Sergelidis, D. Purification and Biochemical Characterization of a Novel Alkaline Protease Produced by Penicillium nalgiovense. Appl. Biochem. Biotechnol. 2014, 172, 3926–3938. [Google Scholar] [CrossRef] [PubMed]
- Białkowska, A.M.; Krysiak, J.; Florczak, T.; Szulczewska, K.M.; Wanarska, M.; Turkiewicz, M. The Psychrotrophic Yeast Sporobolomyces roseus LOCK 1119 as a Source of a Highly Active Aspartic Protease for the in Vitro Production of Antioxidant Peptides. Biotechnol. Appl. Biochem. 2018, 65, 726–738. [Google Scholar] [CrossRef]
- Yuivar, Y.; Alcaino, J.; Cifuentes, V.; Baeza, M. Characterization of Gelatinase Produced by Antarctic Mrakia sp. J. Basic Microbiol. 2019, 59, 846–852. [Google Scholar] [CrossRef]
- Loperena, L.; Soria, V.; Varela, H.; Lupo, S.; Bergalli, A.; Guigou, M.; Pellegrino, A.; Bernardo, A.; Calviño, A.; Rivas, F.; et al. Extracellular Enzymes Produced by Microorganisms Isolated from Maritime Antarctica. World J. Microbiol. Biotechnol. 2012, 28, 2249–2256. [Google Scholar] [CrossRef]
- Singh, S.M.; Tsuji, M.; Gawas-Sakhalker, P.; Loonen, M.J.J.E.; Hoshino, T. Bird Feather Fungi from Svalbard Arctic. Polar Biol. 2016, 39, 523–532. [Google Scholar] [CrossRef]
- Glodowsky, A.P.; Ruberto, L.A.; Martorell, M.M.; Mac Cormack, W.P.; Levin, G.J. Cold Active Transglutaminase from Antarctic Penicillium chrysogenum: Partial Purification, Characterization and Potential Application in Food Technology. Biocatal. Agric. Biotechnol. 2020, 29, 101807. [Google Scholar] [CrossRef]
- Tosi, S.; Kostadinova, N.; Krumova, E.; Pashova, S.; Dishliiska, V.; Spassova, B.; Vassilev, S.; Angelova, M. Antioxidant Enzyme Activity of Filamentous Fungi Isolated from Livingston Island, Maritime Antarctica. Polar Biol. 2010, 33, 1227–1237. [Google Scholar] [CrossRef]
- Abrashev, R.; Feller, G.; Kostadinova, N.; Krumova, E.; Alexieva, Z.; Gerginova, M.; Spasova, B.; Miteva-Staleva, J.; Vassilev, S.; Angelova, M. Production, Purification, and Characterization of a Novel Cold-Active Superoxide Dismutase from the Antarctic Strain Aspergillus glaucus 363. Fungal Biol. 2016, 120, 679–689. [Google Scholar] [CrossRef]
- Krumova, E.; Abrashev, R.; Dishliyska, V.; Stoyancheva, G.; Kostadinova, N.; Miteva-Staleva, J.; Spasova, B.; Angelova, M. Cold-Active Catalase from the Psychrotolerant Fungus Penicillium griseofulvum. J. Basic Microbiol. 2021, 61, 782–794. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewska, K.M.; Twarda-Clapa, A.; Białkowska, A.M. Novel Cold-Adapted Recombinant Laccase KbLcc1 from Kabatiella bupleuri G3 IBMiP as a Green Catalyst in Biotransformation. Int. J. Mol. Sci. 2021, 22, 9593. [Google Scholar] [CrossRef] [PubMed]
- Dhakar, K.; Pandey, A. Extracellular Laccase from a Newly Isolated Psychrotolerant Strain of Cladosporium tenuissimum (NFCCI 2608). Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2016, 86, 685–690. [Google Scholar] [CrossRef]
- Yuan, M.; Ning, C.; Yang, S.; Liang, Q.; Mou, H.; Liu, Z. A New Cold-Active Glucose Oxidase from Penicillium: High-Level Expression and Application in Fish Preservation. Front. Microbiol. 2020, 11, 606007. [Google Scholar] [CrossRef]
- Yuivar, Y.; Barahona, S.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Biochemical and Thermodynamical Characterization of Glucose Oxidase, Invertase, and Alkaline Phosphatase Secreted by Antarctic Yeasts. Front. Mol. Biosci. 2017, 4, 86. [Google Scholar] [CrossRef]
- Ge, J.; Jiang, X.; Liu, W.; Wang, Y.; Huang, H.; Bai, Y.; Su, X.; Yao, B.; Luo, H. Characterization, Stability Improvement, and Bread Baking Applications of a Novel Cold-Adapted Glucose Oxidase from Cladosporium neopsychrotolerans SL16. Food Chem. 2020, 310, 125970. [Google Scholar] [CrossRef]
- Jodłowska, I.; Twarda-Clapa, A.; Szymczak, K.; Białkowska, A.M. Green Oxidation of Amines by a Novel Cold-Adapted Monoamine Oxidase MAO P3 from Psychrophilic Fungi Pseudogymnoascus Sp. P3. Molecules 2021, 26, 6237. [Google Scholar] [CrossRef]
- Hashim, N.H.F.; Mahadi, N.M.; Illias, R.M.; Feroz, S.R.; Abu Bakar, F.D.; Murad, A.M.A. Biochemical and Structural Characterization of a Novel Cold-Active Esterase-like Protein from the Psychrophilic Yeast Glaciozyma antarctica. Extremophiles 2018, 22, 607–616. [Google Scholar] [CrossRef]
- Pavlova, K.; Gargova, S.; Hristozova, T.; Tankova, Z. Phytase from Antarctic Yeast Strain Cryptococcus laurentii AL27. Folia Microbiol. 2008, 53, 29–34. [Google Scholar] [CrossRef]
- Yu, P.; Wang, X.-T.; Liu, J.-W. Purification and Characterization of a Novel Cold-Adapted Phytase from Rhodotorula mucilaginosa Strain JMUY14 Isolated from Antarctic. J. Basic Microbiol. 2015, 55, 1029–1039. [Google Scholar] [CrossRef]
- Kasieczka-Burnecka, M.; Kuc, K.; Kalinowska, H.; Knap, M.; Turkiewicz, M. Purification and Characterization of Two Cold-Adapted Extracellular Tannin Acyl Hydrolases from an Antarctic Strain Verticillium Sp. P9. Appl. Microbiol. Biotechnol. 2007, 77, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Santiago, M.; Ramírez-Sarmiento, C.A.; Zamora, R.A.; Parra, L.P. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front. Microbiol. 2016, 7, 1408. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Yin, Y.; Zhang, L.; Alias, S.A.; Gao, B.; Wei, D. Development of a Novel Aspergillus Uracil Deficient Expression System and Its Application in Expressing a Cold-Adapted α-Amylase Gene from Antarctic Fungi Geomyces pannorum. Process Biochem. 2015, 50, 1581–1590. [Google Scholar] [CrossRef]
- Lopes, J.C.; Kinasz, C.T.; Luiz, A.M.C.; Kreusch, M.G.; Duarte, R.T.D. Frost Fighters: Unveiling the Potential of Microbial Antifreeze Proteins in Biotech Innovation. J. Appl. Microbiol. 2024, 135, lxae140. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, A.; Kaari, M.; Venugopal, G.; Manikkam, R.; Joseph, J.; Bhaskar, P.V. Anti Freeze Proteins (Afp): Properties, Sources and Applications—A Review. Int. J. Biol. Macromol. 2021, 189, 292–305. [Google Scholar] [CrossRef]
- Margesin, R. Psychrophilic Microorganisms in Alpine Soils. In Plants in Alpine Regions: Cell Physiology of Adaption and Survival Strategies; Springer: Vienna, Austria, 2012; Volume 9783709101360, pp. 187–198. ISBN 9783709101360. [Google Scholar]
- Snider, C.S.; Hsiang, T.; Zhao, G.; Griffith, M. Role of Ice Nucleation and Antifreeze Activities in Pathogenesis and Growth of Snow Molds. Phytopathology 2000, 90, 354–361. [Google Scholar] [CrossRef]
- Villarreal, P.; Carrasco, M.; Barahona, S.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Antarctic Yeasts: Analysis of Their Freeze-Thaw Tolerance and Production of Antifreeze Proteins, Fatty Acids and Ergosterol. BMC Microbiol. 2018, 18, 66. [Google Scholar] [CrossRef]
- Lee, J.K.; Park, K.S.; Park, S.; Park, H.; Song, Y.H.; Kang, S.-H.; Kim, H.J. An Extracellular Ice-Binding Glycoprotein from an Arctic Psychrophilic Yeast. Cryobiology 2010, 60, 222–228. [Google Scholar] [CrossRef]
- Hoshino, T.; Kiriaki, M.; Ohgiya, S.; Fujiwara, M.; Kondo, H.; Nishimiya, Y.; Yumoto, I.; Tsuda, S. Antifreeze Proteins from Snow Mold Fungi. Can. J. Bot. 2003, 81, 1175–1181. [Google Scholar] [CrossRef]
- Xiao, N.; Suzuki, K.; Nishimiya, Y.; Kondo, H.; Miura, A.; Tsuda, S.; Hoshino, T. Comparison of Functional Properties of Two Fungal Antifreeze Proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J. 2010, 277, 394–403. [Google Scholar] [CrossRef]
- Batista, T.M.; Hilario, H.O.; de Brito, G.A.M.; Moreira, R.G.; Furtado, C.; de Menezes, G.C.A.; Rosa, C.A.; Rosa, L.H.; Franco, G.R. Whole-Genome Sequencing of the Endemic Antarctic Fungus Antarctomyces pellizariae Reveals an Ice-Binding Protein, a Scarce Set of Secondary Metabolites Gene Clusters and Provides Insights on Thelebolales Phylogeny. Genomics 2020, 112, 2915–2921. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pan, Y.; Liu, F.; He, Y.; Zhu, Q.; Liu, Z.; Zhan, X.; Tan, S. A Review of the Material Characteristics, Antifreeze Mechanisms, and Applications of Cryoprotectants (CPAs). J. Nanomater. 2021, 2021, 9990709. [Google Scholar] [CrossRef]
- Eskandari, A.; Leow, T.C.; Rahman, M.B.A.; Oslan, S.N. Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture. Biomolecules 2020, 10, 1649. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lee, J.H.; Hur, Y.B.; Lee, C.W.; Park, S.H.; Koo, B.W. Marine Antifreeze Proteins: Structure, Function, and Application to Cryopreservation as a Potential Cryoprotectant. Mar. Drugs 2017, 15, 27. [Google Scholar] [CrossRef]
- Łukasiak, J.; Olsen, K.; Georgiou, C.A.; Georgakopoulos, D.G. Bioluminescence and Ice-Nucleation Microbial Biosensors for l-Arabinose Content Analysis in Arabinoxylans. Eur. Food Res. Technol. 2013, 237, 291–298. [Google Scholar] [CrossRef]
- Bar Dolev, M.; Bernheim, R.; Guo, S.; Davies, P.L.; Braslavsky, I. Putting Life on Ice: Bacteria That Bind to Frozen Water. J. R. Soc. Interface 2016, 13, 20160210. [Google Scholar] [CrossRef]
- Uko, M.P.; Umana, S.I.; Iwatt, I.J.; Udoekong, N.S.; Mgbechidinma, C.L.; Adie, F.U.; Akan, O.D. Microbial Ice-Binding Structures: A Review of Their Applications. Int. J. Biol. Macromol. 2024, 275, 133670. [Google Scholar] [CrossRef]
- Sajjad, W.; Din, G.; Rafiq, M.; Iqbal, A.; Khan, S.; Zada, S.; Ali, B.; Kang, S. Pigment Production by Cold-Adapted Bacteria and Fungi: Colorful Tale of Cryosphere with Wide Range Applications. Extremophiles 2020, 24, 447–473. [Google Scholar] [CrossRef]
- Russell, N.J. Psychrophily and Resistance to Low Temperature. In Extremophiles; Encyclopedia of Life Support Systems (EOLSS): Paris, France, 2009; Volume 2, pp. 1–32. [Google Scholar]
- Alcaíno, J.; Cifuentes, V.; Baeza, M. Physiological Adaptations of Yeasts Living in Cold Environments and Their Potential Applications. World J. Microbiol. Biotechnol. 2015, 31, 1467–1473. [Google Scholar] [CrossRef]
- Villarreal, P.; Carrasco, M.; Barahona, S.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Tolerance to Ultraviolet Radiation of Psychrotolerant Yeasts and Analysis of Their Carotenoid, Mycosporine, and Ergosterol Content. Curr. Microbiol. 2016, 72, 94–101. [Google Scholar] [CrossRef]
- Cetin, I.; Alvino, G.; Cardellicchio, M. Long Chain Fatty Acids and Dietary Fats in Fetal Nutrition. J. Physiol. 2009, 587, 3441–3451. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, B.; Kapoor, D.; Gautam, S.; Singh, R.; Bhardwaj, S. Dietary Polyunsaturated Fatty Acids (PUFAs): Uses and Potential Health Benefits. Curr. Nutr. Rep. 2021, 10, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Mamani, L.D.G.; Magalhães, A.I.; Ruan, Z.; Carvalho, J.C.; Soccol, C.R. Industrial Production, Patent Landscape, and Market Trends of Arachidonic Acid-Rich Oil of Mortierella Alpina. Biotechnol. Res. Innov. 2019, 3, 103–119. [Google Scholar] [CrossRef]
- Adel, A.; El-Baz, A.; Shetaia, Y.; Sorour, N.M. Biosynthesis of Polyunsaturated Fatty Acids by Two Newly Cold-Adapted Egyptian Marine Yeast. 3 Biotech 2021, 11, 461. [Google Scholar] [CrossRef]
- Rossi, M.; Buzzini, P.; Cordisco, L.; Amaretti, A.; Sala, M.; Raimondi, S.; Ponzoni, C.; Pagnoni, U.M.; Matteuzzi, D. Growth, Lipid Accumulation, and Fatty Acid Composition in Obligate Psychrophilic, Facultative Psychrophilic, and Mesophilic Yeasts. FEMS Microbiol. Ecol. 2009, 69, 363–372. [Google Scholar] [CrossRef]
- Patel, A.; Karageorgou, D.; Rova, E.; Katapodis, P.; Rova, U.; Christakopoulos, P.; Matsakas, L. An Overview of Potential Oleaginous Microorganisms and Their Role in Biodiesel and Omega-3 Fatty Acid-Based Industries. Microorganisms 2020, 8, 434. [Google Scholar] [CrossRef]
- Nigam, P.S.; Luke, J.S. Food Additives: Production of Microbial Pigments and Their Antioxidant Properties. Curr. Opin. Food Sci. 2016, 7, 93–100. [Google Scholar] [CrossRef]
- Konuray, G.; Erginkaya, Z. Antimicrobial and Antioxidant Properties of Pigments Synthesized from Microorganisms Determination; Formatex Research Center: Norristown, PA, USA, 2015. [Google Scholar]
- Contreras, G.; Barahona, S.; Sepúlveda, D.; Baeza, M.; Cifuentes, V.; Alcaíno, J. Identification and Analysis of Metabolite Production with Biotechnological Potential in Xanthophyllomyces dendrorhous Isolates. World J. Microbiol. Biotechnol. 2015, 31, 517–526. [Google Scholar] [CrossRef]
- Pandey, N.; Jain, R.; Pandey, A.; Tamta, S. Optimisation and Characterisation of the Orange Pigment Produced by a Cold Adapted Strain of Penicillium Sp. (GBPI_P155) Isolated from Mountain Ecosystem. Mycology 2018, 9, 81–92. [Google Scholar] [CrossRef]
- Amaretti, A.; Simone, M.; Quartieri, A.; Masino, F.; Raimondi, S.; Leonardi, A.; Rossi, M. Isolation of Carotenoid-Producing Yeasts from an Alpine Glacier. Chem. Eng. Trans. 2014, 38, 217–222. [Google Scholar] [CrossRef]
- Barahona, S.; Yuivar, Y.; Socias, G.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Identification and Characterization of Yeasts Isolated from Sedimentary Rocks of Union Glacier at the Antarctica. Extremophiles 2016, 20, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Pacelli, C.; Cassaro, A.; Maturilli, A.; Timperio, A.M.; Gevi, F.; Cavalazzi, B.; Stefan, M.; Ghica, D.; Onofri, S. Multidisciplinary Characterization of Melanin Pigments from the Black Fungus Cryomyces antarcticus. Appl. Microbiol. Biotechnol. 2020, 104, 6385–6395. [Google Scholar] [CrossRef] [PubMed]
- Pacelli, C.; Bryan, R.A.; Onofri, S.; Selbmann, L.; Zucconi, L.; Shuryak, I.; Dadachova, E. Survival and Redox Activity of Friedmanniomyces Endolithicus, an Antarctic Endemic Black Meristematic Fungus, after Gamma Rays Exposure. Fungal Biol. 2018, 122, 1222–1227. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Silva, T.D.C.D.; Andrade, R.F.d.S.; Ootani, M.A.; Mendes, P.V.D.; Sá, R.A.d.Q.C.d.; da Silva, M.R.F.; Souza, K.S.; Correia, M.T.d.S.; da Silva, M.V.; de Oliveira, M.B.M.; et al. Biotechnological Potential of Carotenoids Produced by Extremophilic Microorganisms and Application Prospects for the Cosmetics Industry. Adv. Microbiol. 2020, 10, 397–410. [Google Scholar] [CrossRef]
- Global Carotenoid Market. Available online: https://www.marketsandmarkets.com/Market-Reports/carotenoid-market-158421566.html (accessed on 29 November 2024).
- Montes-Rodríguez, I.M.; Cadilla, C.L.; González-Méndez, R.; Lopéz-Garriga, J.; Ropelewski, A. De Novo Assembly of Lucina Pectinata Genome Using Ion Torrent Reads. In Proceedings of the ACM International Conference Proceeding Series; Association for Computing Machinery, New Orleans, LA, USA, 9–13 July 2017; Volume Part F128771. [Google Scholar]
- Cavalcante, S.B.; dos Santos Biscaino, C.; Kreusch, M.G.; da Silva, A.F.; Duarte, R.T.D.; Robl, D. The Hidden Rainbow: The Extensive Biotechnological Potential of Antarctic Fungi Pigments. Braz. J. Microbiol. 2023, 54, 1675–1687. [Google Scholar] [CrossRef]
- Yang, X.; Tang, C.; Zhao, Q.; Jia, Y.; Qin, Y.; Zhang, J. Melanin: A Promising Source of Functional Food Ingredient. J. Funct. Foods 2023, 105, 105574. [Google Scholar] [CrossRef]
- Chrapusta, E.; Kaminski, A.; Duchnik, K.; Bober, B.; Adamski, M.; Bialczyk, J. Mycosporine-Like Amino Acids: Potential Health and Beauty Ingredients. Mar. Drugs 2017, 15, 326. [Google Scholar] [CrossRef]
- Cowan, D. Cryptic Microbial Communities in Antarctic Deserts. Proc. Natl. Acad. Sci. USA 2009, 106, 19749–19750. [Google Scholar] [CrossRef]
- Gocheva, Y.G.; Tosi, S.; Krumova, E.T.; Slokoska, L.S.; Miteva, J.G.; Vassilev, S.V.; Angelova, M.B. Temperature Downshift Induces Antioxidant Response in Fungi Isolated from Antarctica. Extremophiles 2009, 13, 273–281. [Google Scholar] [CrossRef]
- Perfumo, A.; Banat, I.M.; Marchant, R. Going Green and Cold: Biosurfactants from Low-Temperature Environments to Biotechnology Applications. Trends Biotechnol. 2018, 36, 277–289. [Google Scholar] [CrossRef]
- Sazanova, K.V.; Senik, S.V.; Kirtsideli, I.Y.; Shavarda, A.L. Metabolomic Profiling and Lipid Composition of Arctic and Antarctic Strains of Micromycetes Geomyces pannorum and Thelebolus microsporus Grown at Different Temperatures. Microbiology 2019, 88, 282–291. [Google Scholar] [CrossRef]
- Tereshina, V.M.; Memorskaya, A.S. Adaptation of Flammulina Velutipes to Hypothermia in Natural Environments: The Role of Lipids and Carbohydrates. Microbiology 2005, 74, 279–283. [Google Scholar] [CrossRef]
- Son, H.; Lee, J.; Lee, Y.-W. Mannitol Induces the Conversion of Conidia to Chlamydospore-like Structures That Confer Enhanced Tolerance to Heat, Drought, and UV in Gibberella zeae. Microbiol. Res. 2012, 167, 608–615. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, W.; Wu, H.; Guang, C.; Mu, W. Mannitol: Physiological Functionalities, Determination Methods, Biotechnological Production, and Applications. Appl. Microbiol. Biotechnol. 2020, 104, 6941–6951. [Google Scholar] [CrossRef]
- Razzaq, A.; Wani, S.H.; Saleem, F.; Yu, M.; Zhou, M.; Shabala, S. Rewilding Crops for Climate Resilience: Economic Analysis and De Novo Domestication Strategies. J. Exp. Bot. 2021, 72, 6123–6139. [Google Scholar] [CrossRef]
- Hussain Wani, S.; Brajendra Singh, N.; Haribhushan, A.; Iqbal Mir, J. Compatible Solute Engineering in Plants for Abiotic Stress Tolerance—Role of Glycine Betaine. Curr. Genom. 2013, 14, 157–165. [Google Scholar] [CrossRef]
- Shukla, S.K.; Khan, A.; Rao, T.S. Biofilm Extracellular Polymeric Substances-Based Bioremediation of Radionuclides. In Microbial and Natural Macromolecules; Academic Press: Cambridge, MA, USA, 2021; pp. 751–773. [Google Scholar] [CrossRef]
- Kuncheva, M.; Panchev, I.; Pavlova, K.; Russinova-Videva, S.; Georgieva, K.; Dimitrova, S. Functional Characteristics of an Exopolysaccharide from Antarctic Yeast Strain Cryptococcus laurentii AL62. Biotechnol. Biotechnol. Equip. 2013, 27, 4098–4102. [Google Scholar] [CrossRef]
- Selbmann, L.; Onofri, S.; Fenice, M.; Federici, F.; Petruccioli, M. Production and Structural Characterization of the Exopolysaccharide of the Antarctic Fungus Phoma herbarum CCFEE 5080. Res. Microbiol. 2002, 153, 585–592. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.K.; Chatterjee, S.; Gauri, S.S.; Das, S.S.; Mishra, A.; Patra, M.; Ghosh, A.K.; Das, A.K.; Singh, S.M.; Dey, S. Isolation and Characterization of Extracellular Polysaccharide Thelebolan Produced by a Newly Isolated Psychrophilic Antarctic Fungus Thelebolus. Carbohydr. Polym. 2014, 104, 204–212. [Google Scholar] [CrossRef]
- Hamidi, M.; Gholipour, A.R.; Delattre, C.; Sesdighi, F.; Mirzaei Seveiri, R.; Pasdaran, A.; Kheirandish, S.; Pierre, G.; Safarzadeh Kozani, P.; Safarzadeh Kozani, P.; et al. Production, Characterization and Biological Activities of Exopolysaccharides from a New Cold-Adapted Yeast: Rhodotorula mucilaginosa Sp. GUMS16. Int. J. Biol. Macromol. 2020, 151, 268–277. [Google Scholar] [CrossRef]
- Casillo, A.; Parrilli, E.; Sannino, F.; Mitchell, D.E.; Gibson, M.I.; Marino, G.; Lanzetta, R.; Parrilli, M.; Cosconati, S.; Novellino, E.; et al. Structure-activity relationship of the exopolysaccharide froma psychrophilic bacterium: A strategy for cryoprotection. Carbohydr. Polym. 2017, 156, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Ewert, M.; Deming, J.W. Selective Retention in Saline Ice of Extracellular Polysaccharides Produced by the Cold-Adapted Marine Bacterium Colwellia psychrerythraea Strain 34H. Ann. Glaciol. 2011, 52, 111–117. [Google Scholar] [CrossRef]
- Krembs, C.; Eicken, H.; Deming, J. Exopolymer Alteration of Physical Properties of Sea Ice and Implications for Ice Habitability and Biogeochemistry in a Warmer Arctic. Proc. Natl. Acad. Sci. USA 2011, 108, 3653–3658. [Google Scholar] [CrossRef] [PubMed]
- López-Ortega, M.A.; Chavarría-Hernández, N.; del Rocío López-Cuellar, M.; Rodríguez-Hernández, A.I. A Review of Extracellular Polysaccharides from Extreme Niches: An Emerging Natural Source for the Biotechnology. From the adverse to diverse! Int. J. Biol. Macromol. 2021, 177, 559–577. [Google Scholar] [CrossRef]
- Kitamoto, D.; Yanagishita, H.; Endo, A.; Nakaiwa, M.; Nakane, T.; Akiya, T. Remarkable Antiagglomeration Effect of a Yeast Biosurfactant, Diacylmannosylerythritol, on Ice-Water Slurry for Cold Thermal Storage. Biotechnol. Prog. 2001, 17, 362–365. [Google Scholar] [CrossRef]
- Markande, A.R.; Patel, D.; Varjani, S. A Review on Biosurfactants: Properties, Applications and Current Developments. Bioresour. Technol. 2021, 330, 124963. [Google Scholar] [CrossRef]
- da Silva, M.K.; Barreto, D.L.C.; Vieira, R.; Neto, A.A.; de Oliveira, F.S.; Convey, P.; Rosa, C.A.; Duarte, A.W.F.; Rosa, L.H. Diversity and Enzymatic, Biosurfactant and Phytotoxic Activities of Culturable Ascomycota Fungi Present in Marine Sediments Obtained near the South Shetland Islands, Maritime Antarctica. Extremophiles 2024, 28, 20. [Google Scholar] [CrossRef]
- Yogabaanu, U.; Weber, J.-F.F.; Convey, P.; Rizman-Idid, M.; Alias, S.A. Antimicrobial Properties and the Influence of Temperature on Secondary Metabolite Production in Cold Environment Soil Fungi. Polar Sci. 2017, 14, 60–67. [Google Scholar] [CrossRef]
- Ordóñez-Enireb, E.; Cucalón, R.V.; Cárdenas, D.; Ordóñez, N.; Coello, S.; Elizalde, P.; Cárdenas, W.B. Antarctic Fungi with Antibiotic Potential Isolated from Fort William Point, Antarctica. Sci. Rep. 2022, 12, 21477. [Google Scholar] [CrossRef]
- Nikitin, D.A.; Sadykova, V.S.; Kuvarina, A.E.; Dakh, A.G.; Biryukov, M.V. Enzymatic and Antimicrobial Activities in Polar Strains of Microscopic Soil Fungi. Dokl. Biol. Sci. 2022, 507, 380–393. [Google Scholar] [CrossRef]
- Ferreira, E.M.S.; Resende, D.A.; Vero, S.; Pimenta, R.S. The Use of Psychrophilic Antarctic Yeast in the Biological Control of Post-Harvest Diseases of Fruits Stored at Low Temperatures. In Fungi of Antarctica; Springer International Publishing: Cham, Switzerland, 2019; pp. 243–263. [Google Scholar]
- Droby, S.; Wisniewski, M.; Teixidó, N.; Spadaro, D.; Jijakli, M.H. The Science, Development, and Commercialization of Postharvest Biocontrol Products. Postharvest Biol. Technol. 2016, 122, 22–29. [Google Scholar] [CrossRef]
- Spadaro, D.; Droby, S. Development of Biocontrol Products for Postharvest Diseases of Fruit: The Importance of Elucidating the Mechanisms of Action of Yeast Antagonists. Trends Food Sci. Technol. 2016, 47, 39–49. [Google Scholar] [CrossRef]
- Ferreira, E.M.S.; Garmendia, G.; Gonçalves, V.N.; da Silva, J.F.M.; Rosa, L.H.; Vero, S.; Pimenta, R.S. Selection of Antarctic Yeasts as Gray Mold Biocontrol Agents in Strawberry. Extremophiles 2023, 27, 16. [Google Scholar] [CrossRef] [PubMed]
- Vero, S.; Garmendia, G.; González, M.B.; Bentancur, O.; Wisniewski, M. Evaluation of Yeasts Obtained from Antarctic Soil Samples as Biocontrol Agents for the Management of Postharvest Diseases of Apple (Malus × Domestica). FEMS Yeast Res. 2013, 13, 189–199. [Google Scholar] [CrossRef]
- Arrarte, E.; Garmendia, G.; Rossini, C.; Wisniewski, M.; Vero, S. Volatile Organic Compounds Produced by Antarctic Strains of Candida Sake Play a Role in the Control of Postharvest Pathogens of Apples. Biol. Control 2017, 109, 14–20. [Google Scholar] [CrossRef]
- Lutz, M.C.; Lopes, C.A.; Sosa, M.C.; Sangorrín, M.P. A New Improved Strategy for the Selection of Cold-Adapted Antagonist Yeasts to Control Postharvest Pear Diseases. Biocontrol Sci. Technol. 2012, 22, 1465–1483. [Google Scholar] [CrossRef]
- Vero, S.; Garmendia, G.; Garat, M.F.; de Aurrecoechea, I.; Wisniewski, M. Cystofilobasidium infirmominiatum as a Biocontrol Agent of Postharvest Diseases on Apples and Citrus. Acta Hortic. 2011, 905, 169–180. [Google Scholar] [CrossRef]
- Yadav, N.; Yadav, N.; Sachan, G.; Saxena, K. Biodiversity of Psychrotrophic Microbes and Their Biotechnological Applications. J. Appl. Biol. Biotechnol. 2019, 7, 99–108. [Google Scholar] [CrossRef]
- Soto, J.; Sanhueza, T.; Ortiz, J.; Luz Mora, M.D.L.; Garcia-Romera, I.; Arriagada, C. Plant Growth-Promotion and Abiotic Stress Tolerance of Dark Septate Endophyte Fungi Isolated from Roots of Native Andean Ericaceae Plants Colonizing Volcanic Deposits in Southern Chile. J. Soil Sci. Plant Nutr. 2024, 24, 5144–5153. [Google Scholar] [CrossRef]
- Shi, Y.; Ji, M.; Dong, J.; Shi, D.; Wang, Y.; Liu, L.; Feng, S.; Liu, L. New Bioactive Secondary Metabolites from Fungi: 2023. Mycology 2024, 15, 283–321. [Google Scholar] [CrossRef]
- Simpson, T.J. Fungal Polyketide Biosynthesis—A Personal Perspective. Nat. Prod. Rep. 2014, 31, 1247–1252. [Google Scholar] [CrossRef]
- Garcia-Lopez, E.; Alcazar, P.; Cid, C. Identification of Biomolecules Involved in the Adaptation to the Environment of Cold-Loving Microorganisms and Metabolic Pathways for Their Production. Biomolecules 2021, 11, 1155. [Google Scholar] [CrossRef]
Type of Metabolism | Enzyme | Fungal Species | Potential Application |
---|---|---|---|
Carbohydrate metabolism | amylases | Glaciozyma antarctica [54] Goffeauzyma sp. [55] Mrakia gelida [55] Hyphozyma sp. [55] | The retardation of the aging process of bread; the prevention of turbidity in juices; the biosynthesis of cyclodextrins |
agarase | Pseudogymnoascus verrucosus [28] Penicillium chrysogenum [37] | Degradation of agar and agarose; production of agar oligosaccharides | |
β-galactosidase | Tausonia pullulans 17-1 [56] | Production of lactose-free foods; biosynthesis of health-promoting oligosaccharides | |
β-mannase | Glaciozyma antarctica PI12 [57] | Reducing the density of food substances to prevent processing problems; bioconversion of lignocellulosic materials | |
cellulase | Metschnikowia australis [58] Verticillium sp. [59] Leuconeurospora sp. [58] Mrakia blollopsis [60] Mrakia psychrophila [60] | Cellulose-ethanol fermentation; animal feed additive; production of aroma and flavoring substances; removal of cellulosic contaminants from agricultural wastes | |
chitinase | Lecanicillium muscarium [61] Glaciozyma antarctica [54] Dioszegia fristingensis [62] Sporidiobolus salmonicolor [62] | Control of food biocontamination at low temperatures; decomposition of chitin to chitosan; decomposition of chitin-rich agro-food industry waste; acts as a biopesticide | |
endoglucanase | Glaciozyma antarctica [63], Aspergillus niger [64] | Additive to feed to increase its bioavailability | |
inulinase | Leucosporidium fragarium [37] Pseudogymnoascus verrucosus [37] Leucosporidium sp. [65] Phenoliferia sp. [65] | Production of fructose syrup and the probiotic substance inulinooligosaccharides | |
invertase | Holteromaniella wattica [37] Mrakia blollopis [37] Cladosporium herbarum [66] Cryptococcus sp. [55] Leucosporidium sp. [55] Cystobasidium sp. [55] Sporobolomyces roseus [55] Naganishia sp. [65] Mrakia blollopsis [65] | The production of fructose syrup and alcoholic beverages | |
carrageenase | Pseudogymnoascus sp. [28] Penicillium sp. [28] Pseudogymnoascus verrucosus [37] Leucosporidium sp. [65] Phenoliferia sp. [65] | Production of gelling, thickening, and emulsifying agents; use as antioxidants; production of bioethanol | |
Xylanase | Penicillium sp. [67] Cladosporium sp. [68] Dioszegia fristingensis [62] | Baking industry, improving the stability and strength of dough and the volume and texture of bread; fruit and vegetable processing (e.g., juice production); xylitol production; preventing nutritional degradation | |
pectinase | Geomyces sp. [69] Pseudogymnoascus sp. [69] Mrakia blollopis [37] Cryptococcus sp. [55] Mrakia gelida [55] Naganishia sp. [65] Leucosporidium sp. [65] | Removal of bitterness and clarification of fruit juices, fermentation products, coffee and tea | |
Lipid metabolism | lipase | Moesziomyces antarcticus (formerly Candida antarctica) [70] Mrakia blollopis [71] Pseudogymnoascus sp. (formerly Geomyces) [72] Antarctomyces psychrotrophicus [65] Linnemannia sp. [65] Penicillum polonicum [65] Penicillium sp. [65] Pseudeurotium sp. [65] Thelebolales sp. [65] Leucosporidium creatinivorum [65] Naganishia sp. [65] Phenoliferia sp. [65] | Improving food texture; producing fatty acids; improving digestibility and nutritional properties of poorly digestible animal feeds; |
Protein metabolism | L-asparaginase | Cosmospora sp. [73] Geomyces sp. [67] Leucosporidium scotti [74] | Reduction in acrylamide formation during baking |
protease | Rhodotorula mucilaginosa [75] Pseudogymnoascus sp. [76] Penicillium nalgiovense [77] Sporobolomyces roseus [78] | Preparation of nutritious protein hydrolysates, food preparations for newborns, and food supplements; the processing of fruit into juices and soft drinks; production of bakery products, beer, and cheese; processing of food products (e.g., softening of meat at low temperatures) | |
gelatinase | Arthroderma sp. [37] Mrakia sp. [79] Pseudogymnoascus pannorum [80] Mrakia gelida [55] Kriegeria sp. [55] | Improvement of food quality and stability | |
keratinase | Pyrenochaetopsis sp. [81] Thelebolus sp. [81] Penicillium sp. [81] | Degradation of keratin-rich waste from the agro-food industry | |
transglutaminase | Penicillium chrysogenum [82] | Improvement of firmness, viscosity, elasticity, and water retention capacity of food products, processing of meat, fish, dairy, and baking products | |
Antioxidant metabolism | superoxide dismutase | Penicillium aurantiogriseum [83] Aspergillus glaucus [84] Pseudogymnoascus pannorum [83] | Food supplements in the nutritional sector; additives in the field of food preservation |
catalase | Pseudogymnoascus pannorum [83] Rhizopus sp. [83] Penicillium griseofulvum [85] | Food preservative; removal of hydrogen peroxide residues in milk during cheese production; biosensor in the food industry | |
laccase | Cadophora malorum [67] Aureobasidium bupleuri (formerly Kabatiella bupleuri) [86] Cladosporium tenuissimum [87] | Stabilization of wine; improvement of food quality; removal of phenolic compounds in juices, wine, and ready-to-drink products; removal of harmful dyes and antibiotics | |
glucose oxidase | Penicillium sp. [88] Goffeazyma gastrica [89] Cladosporium neopsychrotolerans [90] | Bread production; removal of residual glucose and oxygen from packaged foods; production of gluconic acid and its derivatives; removal of oxygen from bottled beer and wine; inhibition of pathogen growth in foods | |
monoamine oxidase | Pseudogymnoascus sp. [91] | Production of flavoring and aroma substances | |
Other hydrolytic enzymes | alkaline phosphatase | Mrakia frigida [55] Vishniacozyma victoriae [55] Mrakia gelida [55] Leucosporidium sp. [55] Kriegeria sp. [55] | Indicator of correct pasteurization; biosensors |
esterase | Antarctomyces psychrotrophicus [37] Holteromaniella wattica [37] Glaciozyma antarctica [92] Cystobasidium laryngis [55] Cryptococcus victoriae [55] Mrakia psychrophila [62] Dioszegia sp. [62] D. fristingensis [62] | Enhancement of flavor and fragrance in fruit juice; de-esterification of dietary fiber; production of short-chain flavor ester | |
phytase | Papiliotrema laurentii (formerly Cryptococcus laurentii) [93] Rhodotorula mucilaginosa [94] | Assisted absorption of phosphate groups in animal feed; production of functional foods | |
tannase | Pseudogymnoascus sp. (formerly Verticillium sp.) [95] | Commercial production of gallic acid: used in instant tea production; removal of haze and unflavored phenolic compounds from beer and wine; minimization of haze formation and bitterness in fruit juices; improving the quality of animal feed. |
Strain | Total PUFAs | Linoleic Acid (LA) | α-Linolenic Acid (ALA) | Eicosanoic Acid (EPA) | Ref. |
---|---|---|---|---|---|
Loddermomyces elongisporus | 20.0 | 20.0 | nd | nd | [120] |
Rhodotorula mucilaginosa | 26.8 | 26.8 | nd | nd | [120] |
Leucosporidium creatinivorum | 30.2 | 18.6 | 10.8 | 0.8 | [102] |
Candida parapsilosis | 16.8 | 13.5 | 1.9 | 1.4 | [102] |
Vishniacozyma victoriae | 33.1 | 30.1 | 2.2 | 0.8 | [102] |
Dioszegia fristingensis | 28.1 | 21.8 | 6.3 | nd | [102] |
Wickerhamomyces anomalus | 36.7 | 33.1 | 3.1 | 0.5 | [102] |
Goffeauzyma gastrica | 36.4 | 34.9 | nd | 1.5 | [102] |
Mrakia gelida | 12.6 | 12.6 | nd | nd | [102] |
Mrakia blollopsis | 26.3 | 24.5 | 0.7 | 1.2 | [102] |
Rhodotorula mucilaginosa | 20.6 | 17.8 | 2.2 | 1.7 | [102] |
Cystobasidium laryngis | 12.1 | 11.5 | nd | 2.1 | [102] |
Sporidiobolus salmonicolor | 14.4 | 14.4 | nd | nd | [102] |
Pigment | Source | Additional Activities |
---|---|---|
Carotenoids | ||
astaxanthin, phoenicoxanthin, β-carotene | Xanthophyllomyces dendrorhous [125] | Photoprotective role |
tangeraxanthin, 4-ketonostoxanthin | Penicillium sp. GBPI_P155 [126] | Cryoprotection |
torulene | Dioszegia sp. [127] | UV-C radiation tolerance, antimicrobial |
torulene, lycopene | Rhodotorula laryngis [125] | UV-C radiation tolerance |
torulene, γ-carotene, lycopene | Rhodotorula mucilaginosa [125] | |
2-γ-carotene | Cryptococcus gastricus [116] | |
2,3 dihydroxy-γ-carotene, β-carotene, 4-ketotorulene, torulene | Sporobolomyces salmonicolor [128] Collophora sp. [128] | UV protection |
β-carotene, 4-ketotorulene, β-cryptoxanthin, spirilloxanthin | Sporobolomyces metaroseus [127] | |
Mycosporines | ||
Rhodotorula laryngis [116] Dioszegia sp. [116] Mrakia sp. [116] Leucosporidium creatinivora [116] Leuconeurospora sp. [116] Cryptococcus sp. [116] Torrubiella sp. [116] | UV-radiation protection Antioxidant | |
Melanins | ||
1,8-dihydroxynaphthalene, L-3,4-dihydroxyphenylalanine | Cryomyces antarcticus [129] Friedmanniomyces endolithicus [130] Cryomyces minterii [129] | Protection against UV, Antioxidant, Antimicrobial |
Unidentified | ||
Blue pigment | Antarctomyces pellizariae [23] | Cryoprotection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jodłowska, I.; Białkowska, A.M. Cold-Adapted Fungi: Goldmine of Biomolecules Applicable in Industry. Appl. Sci. 2024, 14, 11950. https://doi.org/10.3390/app142411950
Jodłowska I, Białkowska AM. Cold-Adapted Fungi: Goldmine of Biomolecules Applicable in Industry. Applied Sciences. 2024; 14(24):11950. https://doi.org/10.3390/app142411950
Chicago/Turabian StyleJodłowska, Iga, and Aneta Monika Białkowska. 2024. "Cold-Adapted Fungi: Goldmine of Biomolecules Applicable in Industry" Applied Sciences 14, no. 24: 11950. https://doi.org/10.3390/app142411950
APA StyleJodłowska, I., & Białkowska, A. M. (2024). Cold-Adapted Fungi: Goldmine of Biomolecules Applicable in Industry. Applied Sciences, 14(24), 11950. https://doi.org/10.3390/app142411950