Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,296)

Search Parameters:
Keywords = drift measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5820 KiB  
Article
Microstructural Analysis and Radiological Characterization of Alkali-Activated Materials Based on Aluminosilicate Waste and Metakaolin
by Nataša Mladenović Nikolić, Aleksandar Kandić, Jelena Potočnik, Nemanja Latas, Marija Ivanović, Snežana Nenadović and Ljiljana Kljajević
Viewed by 203
Abstract
The formation of an aluminosilicate gel structure made of alkali-activated materials (AAMs) was conducted through an alkali-activation reaction of the solid precursors (fly ash, metakaolin, and wood ash). Fly and wood ash are by-products of the burning process of coal and wood, respectively. [...] Read more.
The formation of an aluminosilicate gel structure made of alkali-activated materials (AAMs) was conducted through an alkali-activation reaction of the solid precursors (fly ash, metakaolin, and wood ash). Fly and wood ash are by-products of the burning process of coal and wood, respectively. Alkali-activated materials of aluminosilicate origin, made from the different ashes, fly and wood, are very attractive research targets and can be applied in various technological fields due to their thermal stability, resistance to thermal shock, high porosity, high sustainability, and finally, low energy loss during production. In this paper, we evaluate physico-chemical properties, microstructure, and radiological environmental impacts when wastes that contain elevated levels of naturally occurring radionuclides (NORs) such as fly ash and wood ash are made into “green cements” such as AAMs. The determination of radionuclide content was performed by means of gamma-ray spectrometry. Results showed that the AAMs have a lower value in the activity concentration of radionuclides than raw materials. The external absorbed gamma dose rate was 74.7–107.3 nGy/h, and the external radiation hazard index values were in range of 0.445–0.628 Bq/kg. The results of the activity concentration measurements for alkali-activated materials indicate the potential of their safe application in building construction. In terms of the structural characterizations, the obtained alkali-activated materials were examined using XRD, DRIFT, FESEM, and TEM analyses. Full article
(This article belongs to the Section Gel Analysis and Characterization)
17 pages, 5952 KiB  
Article
Evaluation of Spray Drift from an Electric Boom Sprayer: Impact of Boom Height and Nozzle Type
by Xiaoyong Pan, Shuo Yang, Yuanyuan Gao, Zhichong Wang, Changyuan Zhai and Wei Qiu
Viewed by 274
Abstract
In the Huang-Huai-Hai region of China, the instability of electric boom sprayers has prompted many farmers to raise the boom height to improve clearance. However, the drift risks associated with these conditions remain poorly assessed. This study investigated two key factors influencing drift: [...] Read more.
In the Huang-Huai-Hai region of China, the instability of electric boom sprayers has prompted many farmers to raise the boom height to improve clearance. However, the drift risks associated with these conditions remain poorly assessed. This study investigated two key factors influencing drift: boom height and nozzle type. The standard LI CHENG VP11003 nozzle was compared to the Teejet XR11003 nozzle, and droplet size and velocity were measured at various boom heights. The results showed that, at the same boom height, the LI CHENG nozzle produced droplets with an average D[V, 0.5] 14.6 µm larger (8.13%), an average velocity 0.53 m/s lower (29.26%), and a relative span (RS) value 0.05 higher (4.52%) compared to the Teejet nozzle. Drift tests were performed under field conditions using a spray drift test bench. The results showed that the total drift amount per unit area (TDA) for the LI CHENG nozzle showed minimal variation at boom heights of 0.4–0.6 m (Stage 1), 0.7–0.9 m (Stage 2), and 1.0–1.2 m (Stage 3). The drift potential of the LI CHENG VP11003 nozzle increased by 136.62% in Stage 2 and 282.69% in Stage 3, relative to Stage 1. Similarly, the Teejet XR11003 nozzle showed increases of 30.52% and 165.51% in Stages 2 and 3, respectively. The results showed that the LICHENG nozzle, which is the standard equipment on the sprayer, can only be used to moderately increase the boom height to improve the sprayer’s clearance within the range of the first stage. When the boom height exceeds this range, the drift risk becomes too high. This study provides meaningful insights into enhancing drift control and developing application strategies for growers. Full article
Show Figures

Figure 1

18 pages, 11743 KiB  
Article
The Design and Validation of an Open-Palm Data Glove for Precision Finger and Wrist Tracking
by Olivia Hosie, Mats Isaksson, John McCormick, Oren Tirosh and Chrys Hensman
Sensors 2025, 25(2), 367; https://doi.org/10.3390/s25020367 - 9 Jan 2025
Viewed by 334
Abstract
Wearable motion capture gloves enable the precise analysis of hand and finger movements for a variety of uses, including robotic surgery, rehabilitation, and most commonly, virtual augmentation. However, many motion capture gloves restrict natural hand movement with a closed-palm design, including fabric over [...] Read more.
Wearable motion capture gloves enable the precise analysis of hand and finger movements for a variety of uses, including robotic surgery, rehabilitation, and most commonly, virtual augmentation. However, many motion capture gloves restrict natural hand movement with a closed-palm design, including fabric over the palm and fingers. In order to alleviate slippage, improve comfort, reduce sizing issues, and eliminate movement restrictions, this paper presents a new low-cost data glove with an innovative open-palm and finger-free design. The new design improves usability and overall functionality by addressing the limitations of traditional closed-palm designs. It is especially beneficial in capturing movements in fields such as physical therapy and robotic surgery. The new glove incorporates resistive flex sensors (RFSs) at each finger and an inertial measurement unit (IMU) at the wrist joint to measure wrist flexion, extension, ulnar and radial deviation, and rotation. Initially the sensors were tested individually for drift, synchronisation delays, and linearity. The results show a drift of 6.60°/h in the IMU and no drift in the RFSs. There was a 0.06 s delay in the data captured by the IMU compared to the RFSs. The glove’s performance was tested with a collaborate robot testing setup. In static conditions, it was found that the IMU had a worst case error across three trials of 7.01° and a mean absolute error (MAE) averaged over three trials of 4.85°, while RFSs had a worst case error of 3.77° and a MAE of 1.25° averaged over all five RFSs used. There was no clear correlation between measurement error and speed. Overall, the new glove design proved to accurately measure joint angles. Full article
Show Figures

Figure 1

29 pages, 4271 KiB  
Article
Maximum Mixture Correntropy Criterion-Based Variational Bayesian Adaptive Kalman Filter for INS/UWB/GNSS-RTK Integrated Positioning
by Sen Wang, Peipei Dai, Tianhe Xu, Wenfeng Nie, Yangzi Cong, Jianping Xing and Fan Gao
Remote Sens. 2025, 17(2), 207; https://doi.org/10.3390/rs17020207 - 8 Jan 2025
Viewed by 258
Abstract
The safe operation of unmanned ground vehicles (UGVs) demands fundamental and essential requirements for continuous and reliable positioning performance. Traditional coupled navigation systems, combining the global navigation satellite system (GNSS) with an inertial navigation system (INS), provide continuous, drift-free position estimation. However, challenges [...] Read more.
The safe operation of unmanned ground vehicles (UGVs) demands fundamental and essential requirements for continuous and reliable positioning performance. Traditional coupled navigation systems, combining the global navigation satellite system (GNSS) with an inertial navigation system (INS), provide continuous, drift-free position estimation. However, challenges like GNSS signal interference and blockage in complex scenarios can significantly degrade system performance. Moreover, ultra-wideband (UWB) technology, known for its high precision, is increasingly used as a complementary system to the GNSS. To tackle these challenges, this paper proposes a novel tightly coupled INS/UWB/GNSS-RTK integrated positioning system framework, leveraging a variational Bayesian adaptive Kalman filter based on the maximum mixture correntropy criterion. This framework is introduced to provide a high-precision and robust navigation solution. By incorporating the maximum mixture correntropy criterion, the system effectively mitigates interference from anomalous measurements. Simultaneously, variational Bayesian estimation is employed to adaptively adjust noise statistical characteristics, thereby enhancing the robustness and accuracy of the integrated system’s state estimation. Furthermore, sensor measurements are tightly integrated with the inertial measurement unit (IMU), facilitating precise positioning even in the presence of interference from multiple signal sources. A series of real-world and simulation experiments were carried out on a UGV to assess the proposed approach’s performance. Experimental results demonstrate that the approach provides superior accuracy and stability in integrated system state estimation, significantly mitigating position drift error caused by uncertainty-induced disturbances. In the presence of non-Gaussian noise disturbances introduced by anomalous measurements, the proposed approach effectively implements error control, demonstrating substantial advantages in positioning accuracy and robustness. Full article
(This article belongs to the Topic Multi-Sensor Integrated Navigation Systems)
Show Figures

Figure 1

20 pages, 18304 KiB  
Article
Assessment of Radiometric Calibration Consistency of Thermal Emissive Bands Between Terra and Aqua Moderate-Resolution Imaging Spectroradiometers
by Tiejun Chang, Xiaoxiong Xiong, Carlos Perez Diaz, Aisheng Wu and Hanzhi Lin
Remote Sens. 2025, 17(2), 182; https://doi.org/10.3390/rs17020182 - 7 Jan 2025
Viewed by 295
Abstract
Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua spacecraft have been in orbit for over 24 and 22 years, respectively, providing continuous observations of the Earth’s surface. Among the instrument’s 36 bands, 16 of them are thermal emissive bands (TEBs) with [...] Read more.
Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua spacecraft have been in orbit for over 24 and 22 years, respectively, providing continuous observations of the Earth’s surface. Among the instrument’s 36 bands, 16 of them are thermal emissive bands (TEBs) with wavelengths that range from 3.75 to 14.24 μm. Routine post-launch calibrations are performed using the sensor’s onboard blackbody and space view port, the moon, and vicarious targets that include the ocean, Dome Concordia (Dome C) in Antarctica, and quasi-deep convective clouds (DCC). The calibration consistency between the satellite measurements from the two instruments is essential in generating a multi-year data record for the long-term monitoring of the Earth’s Level 1B (L1B) data. This paper presents the Terra and Aqua MODIS TEB comparison for the upcoming Collection 7 (C7) L1B products using measurements over Dome C and the ocean, as well as the double difference via simultaneous nadir overpasses with the Infrared Atmospheric Sounding Interferometer (IASI) sensor. The mission-long trending of the Terra and Aqua MODIS TEB is presented, and their cross-comparison is also presented and discussed. Results show that the calibration of the two MODIS sensors and their respective Earth measurements are generally consistent and within their design specifications. Due to the electronic crosstalk contamination, the PV LWIR bands show slightly larger drifts for both MODIS instruments across different Earth measurements. These drifts also have an impact on the Terra-to-Aqua calibration consistency. This thorough assessment serves as a robust record containing a summary of the MODIS calibration performance and the consistency between the two MODIS sensors over Earth view retrievals. Full article
Show Figures

Figure 1

20 pages, 1163 KiB  
Review
The Challenges and Opportunities for Performance Enhancement in Resonant Fiber Optic Gyroscopes
by Sumathi Mahudapathi, Sumukh Nandan R, Gowrishankar R and Balaji Srinivasan
Sensors 2025, 25(1), 223; https://doi.org/10.3390/s25010223 - 3 Jan 2025
Viewed by 396
Abstract
In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) [...] Read more.
In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate. However, the primary limitation of RFOG performance is the bias drift, which can be attributed to nonreciprocal effects such as Rayleigh backscattering, back-reflections, polarization instabilities, Kerr nonlinearity, and environmental fluctuations. In this paper, we review the challenges and opportunities of achieving performance enhancement in RFOGs. Full article
(This article belongs to the Special Issue Advances in Optical Fiber Sensors and Fiber Lasers)
Show Figures

Figure 1

30 pages, 8253 KiB  
Article
Shoreline Change of Western Long Island, New York, from Satellite-Derived Shorelines
by Catherine N. Janda, Jonathan A. Warrick, Daniel Buscombe and Sharon Batiste
Viewed by 484
Abstract
Shoreline measurement techniques using satellite-derived imagery can provide decades of observations of shoreline change. Here we apply these techniques to the western south shore of Long Island, New York, which has three distinct beaches, Rockaway Peninsula, Long Beach, and Jones Beach Island, which [...] Read more.
Shoreline measurement techniques using satellite-derived imagery can provide decades of observations of shoreline change. Here we apply these techniques to the western south shore of Long Island, New York, which has three distinct beaches, Rockaway Peninsula, Long Beach, and Jones Beach Island, which are 18, 15, and 24 km in length, respectively. These beaches are recreation areas for millions of regional residents and include several groin fields, sediment dredging and nourishment operations, and a coastal wave climate that includes winter northeasterly storms and summer hurricanes. The shorelines along the western ends of these three beaches have been accreting at ~4 m/yr during the observation record (1984–2022) resulting from net westward longshore drift. The central 10–12 km of the beaches have lower shoreline change rates, and these rates are generally lowest within the groin fields (0.5–1.5 m/yr). Shoreline change observations also provide evidence for westward propagating accretion and erosion sediment waves that have durations of several years. Beach nourishment projects are shown to significantly influence rates of shoreline accretion, and this is commonly followed by significant shoreline retreat during the subsequent years. Full article
Show Figures

Figure 1

14 pages, 1529 KiB  
Article
Luminescence Lifetime-Based Water Conductivity Sensing Using a Cationic Dextran-Supported Ru(II) Polypyridyl Complex
by Ya Jie Knöbl, Lauren M. Johnston, José Quílez-Alburquerque and Guillermo Orellana
Sensors 2025, 25(1), 121; https://doi.org/10.3390/s25010121 - 28 Dec 2024
Viewed by 750
Abstract
Water conductivity sensing relies universally on electrical measurements, which are subject to corrosion of the electrodes and subsequent signal drift in prolonged in situ uses. Furthermore, they cannot provide contactless sensing or remote readout. To this end, a novel device for water conductivity [...] Read more.
Water conductivity sensing relies universally on electrical measurements, which are subject to corrosion of the electrodes and subsequent signal drift in prolonged in situ uses. Furthermore, they cannot provide contactless sensing or remote readout. To this end, a novel device for water conductivity monitoring has been developed by employing a microenvironment-sensitive ruthenium complex, [Ru(2,2′-bipyridine-4,4′-disulfonato)3]4−, embedded into a quaternary ammonium functionalized cross-linked polymer support. The degree of swelling of the latter, which leads to a change in the emission lifetime, depends on the water conductivity. The sensor displays a reversible response (2 min ≤ t90 ≤ 3 min) and has been shown to be stable for >65 h of continuous monitoring of 0.8–12.8 mS cm−1 KCl solutions. Changes to the cation do not affect the sensor response, while changes to the anion type induce small effects. Variations in the dissolved O2 or temperature require corrections of the response. The sensor can be interrogated alongside dissolved O2 and pH luminescent sensors based on the same family of indicator dyes to exploit the definite advantages of luminescence lifetime-based detection. Full article
Show Figures

Graphical abstract

17 pages, 7790 KiB  
Article
Application of UAV-SfM Photogrammetry to Monitor Deformations of Coastal Defense Structures
by Santiago García-López, Mercedes Vélez-Nicolás, Verónica Ruiz-Ortiz, Pedro Zarandona-Palacio, Antonio Contreras-de-Villar, Francisco Contreras-de-Villar and Juan José Muñoz-Pérez
Remote Sens. 2025, 17(1), 71; https://doi.org/10.3390/rs17010071 - 28 Dec 2024
Viewed by 589
Abstract
Coastal defense has traditionally relied on hard infrastructures like breakwaters, dykes, and groins to protect harbors, settlements, and beaches from the impacts of longshore drift and storm waves. The prolonged exposure to wave erosion and dynamic loads of different nature can result in [...] Read more.
Coastal defense has traditionally relied on hard infrastructures like breakwaters, dykes, and groins to protect harbors, settlements, and beaches from the impacts of longshore drift and storm waves. The prolonged exposure to wave erosion and dynamic loads of different nature can result in damage, deformation, and eventual failure of these infrastructures, entailing severe economic and environmental losses. Periodic post-construction monitoring is crucial to identify shape changes, ensure the structure’s stability, and implement maintenance works as required. This paper evaluates the performance and quality of the restitution products obtained from the application of UAV photogrammetry to the longest breakwater in the province of Cádiz, southern Spain. The photogrammetric outputs, an orthomosaic and a Digital Surface Model (DSM), were validated with in situ RTK-GPS measurements, displaying excellent planimetric accuracy (RMSE 0.043 m and 0.023 m in X and Y, respectively) and adequate altimetric accuracy (0.100 m in Z). In addition, the average enveloping surface inferred from the DSM allowed quantification of the deformation of the breakwater and defining of the deformation mechanisms. UAV photogrammetry has proved to be a suitable and efficient technique to complement traditional monitoring surveys and to provide insights into the deformation mechanisms of coastal structures. Full article
(This article belongs to the Special Issue Coastal and Littoral Observation Using Remote Sensing)
Show Figures

Graphical abstract

16 pages, 2573 KiB  
Article
A Novel Temperature Drift Compensation Algorithm for Liquid-Level Measurement Systems
by Shanglong Li, Wanjia Gao and Wenyi Liu
Micromachines 2025, 16(1), 24; https://doi.org/10.3390/mi16010024 - 27 Dec 2024
Viewed by 333
Abstract
Aiming at the problem that ultrasonic detection is greatly affected by temperature drift, this paper investigates a novel temperature compensation algorithm. Ultrasonic impedance-based liquid-level measurement is a crucial non-contact, non-destructive technique. However, temperature drift can severely affect the accuracy of experimental measurements based [...] Read more.
Aiming at the problem that ultrasonic detection is greatly affected by temperature drift, this paper investigates a novel temperature compensation algorithm. Ultrasonic impedance-based liquid-level measurement is a crucial non-contact, non-destructive technique. However, temperature drift can severely affect the accuracy of experimental measurements based on this technology. Theoretical analysis and experimental research on temperature drift phenomena are conducted in this study, accompanied by the proposal of a new compensation algorithm. Leveraging an external fixed-point liquid-level detection system experimental platform, the impact of temperature drift on ultrasonic echo energy and actual liquid-level height is examined. Experimental results demonstrate that temperature drift affects the speed and attenuation of ultrasonic waves, leading to decreased accuracy in measuring liquid levels. The proposed temperature compensation method yields an average relative error of 3.427%. The error range spans from 0.03 cm to 0.336 cm. The average relative error reduces by 21.535% compared with before compensation, showcasing its applicability across multiple temperature conditions and its significance in enhancing the accuracy of ultrasonic-based measurements. Full article
Show Figures

Figure 1

45 pages, 11496 KiB  
Article
Assessment of Seismic Vulnerability for a Hospital Building Using Field Data and Various Numerical Analyses Considering Bidirectional Ground Motion Effects
by Alireza Kharazian, Arianna Guardiola-Villora, Juan José Galiana-Merino, Sergio Molina, Gonzalo Ortuño-Sáez, Juan Luís Soler-Llorens, José Antonio Huesca-Tortosa, Igor Gómez and David Montiel-López
Appl. Sci. 2025, 15(1), 53; https://doi.org/10.3390/app15010053 - 25 Dec 2024
Viewed by 416
Abstract
For the assessment of seismic effects on RC buildings, the real structural condition has to be modelled as accurately as possible. Medical facilities and hospitals have to resist seismic actions and remain operational after seismic events. For this reason, a detailed seismic vulnerability [...] Read more.
For the assessment of seismic effects on RC buildings, the real structural condition has to be modelled as accurately as possible. Medical facilities and hospitals have to resist seismic actions and remain operational after seismic events. For this reason, a detailed seismic vulnerability assessment of a hospital building located in Orihuela, Spain, is presented in this paper using a combination of field monitoring data and numerical analysis. Ambient noise measurements from field monitoring using Raspberry Shake-based sensors are used to capture dynamic characteristics that describe the building behaviour. Data from these sensors were used to update and refine the finite element model of the structure for a detailed analysis of the building’s seismic performance. The different analytical procedures included both elastic and inelastic modelling, as well as static and dynamic assessments, to provide an exhaustive evaluation of the building’s behaviour under seismic loads. In the numerical model, the effect of masonry infill walls is considered, taking into account detailed material properties and structural configurations. Furthermore, the study carefully selects ground motion records representing two limit states—Damage Limitation (DL) and Severe Damage (SD)—to conduct an extensive seismic analysis. In each limit state applied to the structure, there are 14 bidirectional ground motions with components alternately directed along the two principal directions of the building. This analysis evaluated the structural response, focusing on torsional effects, inter-storey drift ratios, and the seismic performance of individual components. The results were compared to other analysis types, considering both overall and localised behaviour, to determine the reliability of different approaches. The findings support the idea that field monitoring data should be combined with advanced modelling techniques to achieve a more accurate evaluation of the building’s seismic vulnerability, considering bidirectional effects. Full article
Show Figures

Figure 1

26 pages, 6088 KiB  
Article
A Genetic Algorithm Based ESC Model to Handle the Unknown Initial Conditions of State of Charge for Lithium Ion Battery Cell
by Kristijan Korez, Dušan Fister and Riko Šafarič
Viewed by 386
Abstract
Classic enhanced self-correcting battery equivalent models require proper model parameters and initial conditions such as the initial state of charge for its unbiased functioning. Obtaining parameters is often conducted by optimization using evolutionary algorithms. Obtaining the initial state of charge is often conducted [...] Read more.
Classic enhanced self-correcting battery equivalent models require proper model parameters and initial conditions such as the initial state of charge for its unbiased functioning. Obtaining parameters is often conducted by optimization using evolutionary algorithms. Obtaining the initial state of charge is often conducted by measurements, which can be burdensome in practice. Incorrect initial conditions can introduce bias, leading to long-term drift and inaccurate state of charge readings. To address this, we propose two simple and efficient equivalent model frameworks that are optimized by a genetic algorithm and are able to determine the initial conditions autonomously. The first framework applies the feedback loop mechanism that gradually with time corrects the externally given initial condition that is originally a biased arbitrary value within a certain domain. The second framework applies the genetic algorithm to search for an unbiased estimate of the initial condition. Long-term experiments have demonstrated that these frameworks do not deviate from controlled benchmarks with known initial conditions. Additionally, our experiments have shown that all implemented models significantly outperformed the well-known ampere-hour coulomb counter integration method, which is prone to drift over time and the extended Kalman filter, that acted with bias. Full article
Show Figures

Figure 1

17 pages, 11667 KiB  
Article
Silicon Drift Detectors for the Measurement and Reconstruction of Beta Spectra
by Andrea Nava, Leonardo Bernardini, Matteo Biassoni, Tommaso Bradanini, Marco Carminati, Giovanni De Gregorio, Carlo Fiorini, Giulio Gagliardi, Peter Lechner, Riccardo Mancino and Chiara Brofferio
Sensors 2024, 24(24), 8202; https://doi.org/10.3390/s24248202 - 22 Dec 2024
Viewed by 541
Abstract
The ASPECT-BET project, or An sdd-SPECTrometer for BETa decay studies, aims to develop a novel technique for the precise measurement of forbidden beta spectra in the 10 keV–1 MeV range. This technique employs a Silicon Drift Detector (SDD) as the main spectrometer with [...] Read more.
The ASPECT-BET project, or An sdd-SPECTrometer for BETa decay studies, aims to develop a novel technique for the precise measurement of forbidden beta spectra in the 10 keV–1 MeV range. This technique employs a Silicon Drift Detector (SDD) as the main spectrometer with the option of a veto system to reject events exhibiting only partial energy deposition in the SDD. A precise understanding of the spectrometer’s response to electrons is crucial for accurately reconstructing the theoretical shape of the beta spectrum. To compute this response, GEANT4 simulations optimized for low-energy electron interactions are used and validated with a custom-made electron gun. In this article we present the performance of these simulations in reconstructing the electron spectra measured with SDDs of a 109Cd monochromatic source, both in vacuum and in air. The allowed beta spectrum of a 14C source was also measured and analyzed, proving that this system is suitable for the application in ASPECT-BET. Full article
Show Figures

Figure 1

13 pages, 2064 KiB  
Article
A Robust Method for Validating Orientation Sensors Using a Robot Arm as a High-Precision Reference
by József Kuti, Tamás Piricz and Péter Galambos
Sensors 2024, 24(24), 8179; https://doi.org/10.3390/s24248179 - 21 Dec 2024
Viewed by 436
Abstract
This paper presents a robust and efficient method for validating the accuracy of orientation sensors commonly used in practical applications, leveraging measurements from a commercial robotic manipulator as a high-precision reference. The key concept lies in determining the rotational transformations between the robot’s [...] Read more.
This paper presents a robust and efficient method for validating the accuracy of orientation sensors commonly used in practical applications, leveraging measurements from a commercial robotic manipulator as a high-precision reference. The key concept lies in determining the rotational transformations between the robot’s base frame and the sensor’s reference, as well as between the TCP (Tool Center Point) frame and the sensor frame, without requiring precise alignment. Key advantages of the proposed method include its independence from the exact measurement of rotations between the reference instrumentation and the sensor, systematic testing capabilities, and the ability to produce repeatable excitation patterns under controlled conditions. This approach enables automated, high-precision, and comparative evaluation of various orientation sensing devices in a reproducible manner. Moreover, it facilitates efficient calibration and analysis of sensor errors, such as drift, noise, and response delays under various motion conditions. The method’s effectiveness is demonstrated through experimental validation of an Inertial Navigation System module and the SLAM-IMU fusion capabilities of the HTC VIVE VR headset, highlighting its versatility and reliability in addressing the challenges associated with orientation sensor validation. Full article
Show Figures

Figure 1

24 pages, 31029 KiB  
Article
InCrowd-VI: A Realistic Visual–Inertial Dataset for Evaluating Simultaneous Localization and Mapping in Indoor Pedestrian-Rich Spaces for Human Navigation
by Marziyeh Bamdad, Hans-Peter Hutter and Alireza Darvishy
Sensors 2024, 24(24), 8164; https://doi.org/10.3390/s24248164 - 21 Dec 2024
Viewed by 455
Abstract
Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic datasets. To address this, we introduce InCrowd-VI, a novel visual–inertial dataset specifically [...] Read more.
Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic datasets. To address this, we introduce InCrowd-VI, a novel visual–inertial dataset specifically designed for human navigation in indoor pedestrian-rich environments. Recorded using Meta Aria Project glasses, it captures realistic scenarios without environmental control. InCrowd-VI features 58 sequences totaling a 5 km trajectory length and 1.5 h of recording time, including RGB, stereo images, and IMU measurements. The dataset captures important challenges such as pedestrian occlusions, varying crowd densities, complex layouts, and lighting changes. Ground-truth trajectories, accurate to approximately 2 cm, are provided in the dataset, originating from the Meta Aria project machine perception SLAM service. In addition, a semi-dense 3D point cloud of scenes is provided for each sequence. The evaluation of state-of-the-art visual odometry (VO) and SLAM algorithms on InCrowd-VI revealed severe performance limitations in these realistic scenarios. Under challenging conditions, systems exceeded the required localization accuracy of 0.5 m and the 1% drift threshold, with classical methods showing drift up to 5–10%. While deep learning-based approaches maintained high pose estimation coverage (>90%), they failed to achieve real-time processing speeds necessary for walking pace navigation. These results demonstrate the need and value of a new dataset to advance SLAM research for visually impaired navigation in complex indoor environments. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

Back to TopTop