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Abstract: Classic enhanced self-correcting battery equivalent models require proper model
parameters and initial conditions such as the initial state of charge for its unbiased func-
tioning. Obtaining parameters is often conducted by optimization using evolutionary
algorithms. Obtaining the initial state of charge is often conducted by measurements,
which can be burdensome in practice. Incorrect initial conditions can introduce bias, lead-
ing to long-term drift and inaccurate state of charge readings. To address this, we propose
two simple and efficient equivalent model frameworks that are optimized by a genetic
algorithm and are able to determine the initial conditions autonomously. The first frame-
work applies the feedback loop mechanism that gradually with time corrects the externally
given initial condition that is originally a biased arbitrary value within a certain domain.
The second framework applies the genetic algorithm to search for an unbiased estimate of
the initial condition. Long-term experiments have demonstrated that these frameworks
do not deviate from controlled benchmarks with known initial conditions. Additionally,
our experiments have shown that all implemented models significantly outperformed the
well-known ampere-hour coulomb counter integration method, which is prone to drift
over time and the extended Kalman filter, that acted with bias.

Keywords: enhanced self-correcting model; state of charge estimation; lithium-ion cell
parameter identification

1. Introduction
The development of batteries, especially their prolonged lifetime, increased capacity

and high current charge/discharge abilities has accelerated the use of battery applications
in many electronic and mechatronic devices. In the last decades, battery applications
have been applied to areas of telecommunication devices, electric drives for electric and
hybrid cars, as well as space probes. Battery management systems (BMS) [1–4] have
played a crucial role in the safe and sound use of battery applications by (1) preventing the
overcharging and overdischarging of batteries, (2) as well as monitoring and informing
users regarding the state of the charge (SOC) and state of the health (SOH) of the bat-
tery cells. The two battery characteristics, i.e., the SOC and SOH, have been rigorously
studied recently. The following methods are currently among the state-of-the-art for their
determination and estimation:

• Direct measurement methods. These are as follows: the ampere-hour integral SOC es-
timation [5,6], open circuit voltage method, internal resistant method, electrochemical
impedance spectroscopy, load voltage method, discharge test method, etc.
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• Estimation method based on the black box battery model. Typical applications here
involve machine learning (ML) methods, such as artificial neural networks (ANNs),
support vector machines, genetic algorithms (GA), particle swarm optimization al-
gorithms, fuzzy algorithms, deep learning methods, etc., to obtain the battery model
from a large amount of input data for SOC estimation [7].

• Estimation method based on the state-space battery cell model. The original and
adaptive Kalman filter (KF) versions are frequently found, such as extended KF [8],
dual KF [9], unscented KF [10], adaptive KF [11], sigma-point KF [12]. Also, particle
filters have been utilized in the past to adapt the model parameters due to battery cell
temperature fluctuations and measurement noises [13].

Direct measurement methods do not require any modeling, as all necessary data
are acquired through physical measurement. Some of these methods are invasive and
irreversible, potentially causing permanent damage to the battery cell, while others are
non-harmful. Black box battery models, based on statistical learning, are powerful and
effective but traditionally require large amounts of data. These methods can also pose
significant resource challenges when run on embedded hardware. In contrast, state-space
battery cell models typically demand fewer resources. It is important to note that both
black box and state-space battery models require some degree of measurement to run and
monitor the surrogate model. Surrogate model-based methods are indirect; they need to
be evaluated to estimate the SOC, unlike direct measurement methods, which provide the
SOC directly. The following battery cell models are well-known among practitioners [7]:

• Electrochemical mechanism models (pseudo-two-dimensional models [14] and its sim-
plified models, single-particle models [15], and the newest model, the most accurate
model, the full homogenized macroscale model [16]).

• Equivalent circuit models (Rint model [17], RC model [17], Thevenin model [5,17],
PNGV model [17], dual polarisation model [17], enhanced self-correcting model
(ECM) [17,18], etc.).

• Data-driven models which mainly include neural network models, autoregressive
models, and support vector machine models [7].

Despite their very high accuracy, electrochemical mechanism models have not been
widely used in engineering applications for two main reasons: (1) the high complexity of
the non-linear system with partial differential equations that lack analytical solutions, re-
quiring significant computational power for numerical solutions, and (2) poor adaptability
to certain working conditions. Equivalent circuit models have gained popularity for SOC
engineering applications over the past decade due to their simple structure and parameter
adaptability, despite their questionable accuracy and inability to reflect the internal charac-
teristics of the battery cell. The popularity of data-driven models is rising, but they still
require a large amount of input data to learn the battery cell model and achieve at least
moderate accuracy.

Coulomb counting (CC) [17,19] is a widely used method for estimating the state of
charge (SOC) of batteries due to its simplicity. It is reliable, but susceptible to integrator
drift over time and variations in charging efficiency. The problem of integrator drift is
traditionally addressed by frequent recalibrations at the battery’s maximum or minimum
voltage when fully charged or discharged. However, such an approach is not always
feasible as batteries may run without achieving these two extremes. Another problem of
the CC is the charging efficiency. Namely, when charging, excessive heat may generated
which can cause less than 100 percent of the charging energy to be stored into the battery.
The enhanced Coulomb counting (ECC) method addresses this problem by introducing
a parameter known as charging efficiency, denoted by η. The ECC will be used in the
continuation of the study.
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The Thevenin model is the most commonly employed ECM [20]. However,
the Thevenin model is unable to address the nature of cell hysteresis due to the effects
of charging and discharging. Hence, new versions of models like the Equivalent Circuit
Model (ECM) emerged, with the Enhanced Self-Correcting (ESC) model being one of the
most widely used ECMs today. Typically, two parallel pairs of RC circuits (2RC) are utilized
rather than one pair (1RC), to capture the rapid and complex cell dynamics better. Identify-
ing the ESC parameters is called parameterization. To identify these parameters, the battery
cell (or group of cells) needs to undergo a specific experimental test with numerous consec-
utive charging and discharging periods. This activates both the static and dynamic nature
of the battery, varying its Open Circuit Voltage (OCV). The measured time lags in OCV can
then be used to estimate the RC parameters. Knox et al. [20] compared several test profile
identification methods. The more well-known non-invasive methods include the Gal-
vanostatic Intermittent Titration Technique (GITT), Hybrid Pulse Power Characterization
(HPPC), and Electrochemical Impedance Spectroscopy (EIS). In GITT, the cell undergoes a
profile of short current pulses followed by relaxation periods [21]. Temperature, voltage,
and current are monitored, and their dynamics are used for the parameterization of the
ESC model. The most fundamental method of parameter identification is the non-linear
least-square curve fitting method, where a higher-order polynomial is fitted. Customized
test profiles are frequently practiced among researchers. A more coherent method is the
Iterative Parameter Identification Algorithm (IPIA) [20]. Often, fitting is conducted using
metaheuristic methods, where the penalty function is set as the squared deviation between
actual and ESC-predicted voltage. HPPC involves monitoring the ratio of voltage drop to
the current load applied, ∆V/∆I, and deriving ohmic parameters from voltage drops. EIS,
on the other hand, is a frequency-based identification method, rather than a time-based
one like GITT and HPPC, making it somewhat more complex [22].

The Linear Kalman Filter (LKF) is another computation method for estimating the
SOC, although its linear nature imposes several drawbacks. Practice shows that extreme
values of SOC, i.e., below 10% and above 90%, are often difficult to estimate due to the
very nonlinear nature of the cell (except 100%, which is called a maximum end voltage and
is hence utilized for calibration purposes). This is because basic LKF is suitable only for
linear systems with white and Gaussian noises, which is clearly not the case for the highly
non-linear ESC model of a battery cell. The Extended Kalman Filter (EKF) corrects the cell
nonlinearities to some degree by performing linearizations. Hence, EKFs are more suitable
for such problems, contributing to their popularity among researchers [18,23]. A sample of
these includes [24–26]. A drawback of the EKF is sometimes a burdensome convergence
of the learning algorithm, as stated in He et al. [27]. As a result, various hybridizations
of EKF emerged, such as adapting the battery parameters or covariance matrices. Yun et
al. presented the idea of adapting the battery parameters in [28]. The authors adapted
the battery’s internal resistance as well as the parameters of RC elements. Underlying
various simulations have shown more accurate estimations compared to the classic EKF.
Zhang et al. [29] implemented an adaptive EKF named AEKF, in which they adapted the
measurement noise covariance and error covariance matrices. The authors reported that
the estimation accuracy was better than using the classical EKF. Alternatively, ref. [30]
implemented a hierarchical adaptive EKF, i.e., the HAEKF, where they split the state-space
equation into two different submodels with two different sampling rates. One of these was
intended to capture the lower dynamics, the other the faster dynamics. Experiments have
shown greater reliability of such a method compared to the classic EKF.

The Sigma Point Kalman Filter (SPKF) [31] and Particle Filter (PF) [32] are other
examples of a KF for estimating the SOC, even more advanced than the EKF. Furthermore,
the SPKF can be easily adapted to enhance its performance below the SOC of 10% by
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including an H infinity filter [5]. This may be an accurate method. Authors in [16] compared
the accuracies of two electrochemical mechanism models, i.e., the Doyle–Fuller–Newman
model (DFN) and the full homogenized macroscale model (FHM). Parameters of both
the models were obtained using particle swarm optimization (PSO), where 18 variables
per model were involved. The FHM was shown to overcome the limitations of the DFN
regarding the prediction of voltage responses at high temperatures. Another example of
combining the PSO with the PF was published by Pang et al. [33].

The recursive least squares (RLS) is another example of a battery parameter estimator.
It is a type of adaptive filter that rests on a weighted least squares regression method.
Initially, the covariance matrix is initialized to a high value, and identified parameters are
equal to 0. The forgetting factor 0 < λ ≤ 1 is introduced, where values close to 1 represent
a focus on the new data points, and values close to 0 focus on the old data points. As the
RLS recursively runs each time step, the identified parameters adapt in the way that the
cost function, which represents the error between actual and predicted values, minimizes.

Ren et al. [34] show an application of the RLS for parameter identification of the
lithium-ion battery. Authors argue that as the battery parameters are continuously
adapted, the predicted value of a terminal voltage continuously approaches its true value.
Liu et al. [35] employ a variable and adaptable window size within which the battery
parameters are identified. The authors argue that too many data points too far away in the
past may cause data saturation, which can act negatively on the correctness of identified
parameters. Interestingly, they use RLS only for online parameter identification, while
for estimating the SOC, they employ an unscented Kalman filter that runs in parallel.
Ge et al. [36] employ an adaptation of the forgetting factor. They argue that the so-called
improved forgetting factor RLS makes the parameter identification less prone to jitter
and divergence under complex conditions. Li et al. [37] employed an RLS parameter
identification under strong electromagnetic interference. Both the SOC and SOH were
co-estimated using the UKF, here the SOH has been expressed as a ratio between estimated
and rated capacities.

Recent trends within the state-of-the-art methodologies in the field include machine
learning and deep learning approaches towards both the SOC and SOH predictions.
Chen et al. [38] proposed the self-attention long short-term memory (LSTM-SA) for reliable
and robust SOC estimations on different current profiles, temperatures and aging levels.
Empirical experiments have shown clear LSTM-SA convergence to the unbiased estimate of
the SOC with average errors within 2%. Li et al. [39] implemented a digital twin involving
the LSTM and the convolutional neural network (CNN) for predicting the SOH. Predicted
capacity errors of less than 3 mAh were observed. Reza et al. [40] implemented a hybrid
LSTM where its hyperparameters are optimized using the lightning search algorithm (LSA).
The authors argued that the hybrid LSTM-LSA outperformed the standard LSTM on the
problem of remaining useful life (RUL) prediction. Dineva [41] and Madani et al. [42]
published a thorough review of deep learning approaches toward reliable SOH predictions.

Our inspiration for this work was the ESC model, parameterized on an experimental
training cycle, and utilizing the metaheuristic nature-inspired optimization algorithm (in
our case, GA). The novelties of the paper are as follows:

• In the first proposed framework, a self-correcting feedback loop with an adaptable
gain is proposed to obtain an unbiased estimate of the SOC. Initially, a biased initial
condition of SOC0 is input externally, which then gradually with time converges to an
unbiased estimate.

• The second proposed framework does not utilize a feedback loop as a first frame-
work to realize the initial condition of SOC0 but rather estimates it as an additional
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GA dimension. The dimensionality of the GA problem thus increases from 9 to 10
independent variables.

• The adaptation of mutation probability (mutation rate pm) is implemented. An av-
erage fitness performance is measured for the last generations and if no significant
improvements are realized, the mutation probability is increased for the pm + ∆pm.
If no further improvements are realized the mutation probability is increased further,
each time by ∆pm.

The proposed ESC model is realized in practice in less time than the classic ESC,
as knowing the initial condition of SOC0 is not needed. This means that the operator does
not have to run experimental tests to find one. Also, due to the existence of the feedback
loop, the ESC performs in a more reliable way. Even if the initially set SOC0 is not correct
and the bias exists, such bias is decreased automatically over time.

The structure of the paper is as follows: First, the materials and methods, including
all three proposed techniques are presented. Next, the experiments and results follow.
A reader may find practical evidence regarding the visual and statistical analyses of the
results. Finally, the discussion is supplied.

2. Materials and Methods
Lithium Titanate Oxide cell (LTO) batteries are a type of battery with low self-discharge

characteristics, high energy density, and relatively opportunistic recycling options [43].
The LTO is a graphite-free cell with anode chemistry formulae Li4Ti5O12 (titanate oxide
nanocrystals). Lithium salt LiPF6 dissolved in an organic solvent acts as an electrolyte.
Their working principle lies in a cathode full of lithium ions which are moved through the
electrolyte to a titanate anode [44]. Charging the battery is called oxidation, and discharging
reduction (lithiation of titanate oxide) [44]. Both the charging and discharging form a so-
called redox cycle, with voltage (or SOC) slightly changing between minimal, nominal and
fully charged. The OCV varies with respect to the SOC [1], the higher the SOC, the higher
the OCV, and vice versa. Experiments and testings in this paper were executed utilizing the
LTOs, with specification tag LTO1865-13, purchased from the company GWL a. s., Prague,
Czech Republic. Crucial parameters of the LTO battery are presented in Table 1.

Table 1. Specifics of the LTO battery cell utilized in the experiments.

Parameter Value

Model name LTO1865-13
Nominal voltage 2.4 VDC
Nominal capacity 1300 mAh
Minimal capacity 950 mAh

Max. voltage per cell 2.8 VDC
Min. voltage per cell 1.5 VDC

Standard operating voltage 1.85–2.75 VDC
Max. discharge current <13 A @ 10 C

Max. peak discharge current <26 A @ 20 C
Optimal discharge current <1.3 A @ 1 C

Max. Charge current <6 A @ 5 C
Optimal charge current <1.3 A @ 1 C

Static charge or discharge current ≤43.33 mA @ C/30
Internal resistance <20 mΩ

The proposed work was based on three distinctive tasks (yellow, blue, and red), as out-
lined in Figure 1. The first task involved the identification of the battery cell, as suggested
by [1]. Two different identification procedures were conducted: static and dynamic identifi-
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cations, both represented by yellow rectangles. The OCV-SOC relationship was recorded as
a static battery relationship, implying that the identification experiments of charging and
discharging were carried out at a very low reference current rate, typically ire f = C/30 or
below [1]. The motivation for keeping the current that low was to avoid exciting dynamic
elements within the battery. Next, the dynamic identification of the battery cell followed.
This included rapid current changes while monitoring the transient phenomena. Extensive
and durable battery tests and measurements were conducted for this first task. Following
this, the training (or tuning) of the ESC model was performed. The objective of ESC tuning
was to seek and find the optimal ESC parameters. Frequently, this was conducted using an
optimization algorithm; we chose the Genetic Algorithm (GA). Here, three different frame-
works of the ESC model were proposed and implemented, all utilizing the GA. These were
named GA-ESC, GA-ESC+FB, and GA-(ESC+SOC0), where FB stood for feedback. Finally,
laboratory experiments and testing were conducted to check the validity of the frameworks.

Static relationship Dynamic relationship

GA-ESC
GA-ESC

+FB

GA-
(ESC+SOC0)

Tuning (training) the
GA-ESC model

System (battery cell)
identification

Exploitation & Testing
(utilise the obtained

ESC model in practice)

ESC
model

battery
characteristics

ESC model
parameters

Figure 1. The flowchart of estimating the SOC with the ESC: (1) identify the static and dynamic
battery characteristics, (2) build the ESC model, three frameworks are proposed and (3) utilize the
identified ESC model parameters for exploitation and testing.

2.1. Static OCV Relationship of the Battery Cell

The identification of a static relationship OCV-SOC was conducted in a controllable test
temperature chamber. The process was executed as suggested in [1]. First, the battery cell
was placed at the ambient temperature of Ta = −5 ◦C and was fully charged. Next, the OCV-
SOC nonlinear characteristics were recorded at discharging reference rate ire f = C/30
until the battery was fully discharged. The ambient temperature was then increased by
∆T = 5 ◦C and the process was repeated. We continued this process until the ambient
temperature reached Ta = 45 ◦C (see Algorithm 1). Here, ire f represents reference (desired)
current. Figure 2 depicts how the battery was connected to the testing platform.



Batteries 2025, 11, 1 7 of 26

Algorithm 1 SOC-OCV Recording with Temperature Variation

1: Initialize empty lists and monitor each time step: Ta, SOC, OCV0
2: Set initial temperature: Ta[0] = −5 ◦C
3: Set temperature increment: ∆T = 5 ◦C
4: Set maximal ambient temperature Tmax = 45 ◦C
5: Start of SOC-OCV recording
6: while Ta ≤ Tmax do
7: Set and record temperature Ta
8: Relax for 2 h ▷ Remark: Relaxing the battery means ire f = 0 A.
9: Discharge at ire f = C/30 for 10 min

10: Charge at ire f = C/30 till Ubatt = Vmax then relax for 2 h
11: Discharge at ire f = C/30 till Ubatt = Vmin then relax for 2 h
12: Charge at ire f = C/30 for 10 min
13: Discharge at ire f = C/30 till Ubatt = Vmin then relax for 2 h
14: Charge at ire f = C/30 till Ubatt = Vmax
15: Record corresponding SOC and OCV values at all times
16: Increase temperature: Ta ← Ta−1 + ∆T
17: end while
18: End of SOC-OCV recording
19: Output: Ta, SOC, OCV

A

V LOAD

i [k]

T [k]
Ubatt [k]

Figure 2. Battery, load and underlying sensors.

The following OCV relationship was established [1] as shown in the following
Equation (1):

OCV(SOC[k], T[k]) = OCV0(S0C[k]) + T[k] ·OCVrel(S0C[k]), (1)

where k represents the time sample and the OCVrel() is a temperature correction factor of
V/ ◦C [1]. Essentially, this equation calculates the OCV0 for a given SOC and corrects it for
the underlying temperature (so that the calculation is valid for any underlying temperature).

2.2. Dynamic Relationship of the Battery

The dynamic relationship of the battery focuses on realizing the dynamics of the battery
when undergoing abrupt and rapid changes in load. Figure 3 shows an equivalent RC circuit
of the battery. The static relationship considers the voltage generator OCV(SOC[k], T[k])
and the resistor R0. The dynamic relationship considers the n-th parallel pairs of the RC
elements and a hysteresis element [1]. The equivalent series resistance R0 represents the
voltage drop if the battery is being discharged and the voltage rise if the battery is being
charged. The n-th RC parallel elements, which are wired in series, represent diffusion
voltages that correspond to transient responses. Each RC element incorporates its time
constant by capacitor Cj being discharged through resistor Rj. A hysteresis element (black
box in Figure 3) symbolizes the terminal voltage difference, depending on whether the
battery has been recently charged or discharged. Several different types of battery hysteresis
exist, among others voltage hysteresis, due to first-order phase transitions and kinetic
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pathways [45], battery resistance hysteresis due to aging [46], and temperature-dependent
hysteresis due to ambient temperature Ta [47]. Plett et al. [1] in the classic ESC model
consider the voltage hysteresis only in two different types, i.e., the SOC-varying hysteresis
h[k] and instantaneous hysteresis s[k]. The first type describes changes in hysteresis with
respect to the SOC, while the second type describes voltage jumps at a constant SOC if
the direction of current flow changes. Two additional dimensionless parameters to be
tuned were supplied here, i.e., M and M0, where the final hysteresis voltage, denoted as
hyst_volt[k] in Figure 3, is calculated as their sum.

SOC

SOC* [k] SOC [k]

iR [k]

Ubatt [k]

h [k]

Vbatt

OCV

h [k+1]

+

-
iR [k+1]

SOC [k+1]

ηGA tuning

i [k]

i [k] Qtotal

SOC

SOC [k]

SOC [k]

OCV0 [k]

OCVrel [k]

iR [k]

Ubatt [k]

h [k]

Vbatt

OCV

h [k+1]

v [k] +
−

iR [k+1]

SOC [k+1]

ηGA

ESC

γ   C1    C2    R0    R1    R2   M0    M

i [k]

i [k] Qtotal

z −1SOC0
ext. given

T [k]

SOC

SOC [k]

SOC [k]

T [k]

OCV0 [k]

OCVrel [k]

iR [k]

Ubatt [k]

h [k]

Vbatt

OCV

h [k+1]

v [k] +
−

iR [k+1]

SOC [k+1]

ηGA

ESC

γ   C1    C2    R0    R1    R2   M0    MSOC [0]

init

i [k]

i [k] Qtotal

Ubatt [k]z −1

SOC

SOC [k]

SOC [k]

T [k]

OCV0 [k]

OCVrel [k]

iR [k]

Ubatt [k]

h [k]

Vbatt

OCV

h [k+1]

v [k] +
−

iR [k+1]

SOC [k+1]

ηGA

ESC

γ   C1    C2    R0    R1    R2   M0    M

i [k]

i [k] Qtotal

Ubatt [k]

SOC* [k]

+

−

Gain

z −1

SOC*[0]
ext. given

+

−

+
−

R0 i

iR1 iR2

OCV(SOC[k], T[k])

C1 C2

R1 R2

hysteresis

v[k]

Figure 3. Equivalent electric circuit of the ESC model.

2.3. Synthesis of the ESC Model

The ECC model is defined as follows in Equation (2) [1]:

SOC[k + 1] = SOC[k]− ∆t
Qtotal

· η[k] · i[k], (2)

where Qtotal represents the total capacity, ∆t the time sample, η[k] the Coulombic (charge)
efficiency, i[k] the current in given k-th time step. The direction of the current i[k] can be
either positive or negative, where positive current represents discharging and negative
current represents charging the battery cell [1].

Let the Fj represent the rate factor of the j-th RC circuit as Fj = exp
(
− ∆t

RjCj

)
, where

j = 1, 2, . . . , n, and let the iR[k] represent the current vector of currents flowing through
each RC element. Let the i[k] be a current (scalar quantity) flowing through the R0. Then,
a forthcoming state of the current vector iR[k + 1] can be predicted as follows:

iR[k + 1] =


F1 · · · 0
...

. . .
...

0 · · · Fn


︸ ︷︷ ︸

(ARC)

· iR[k] +




1− F1

1− F2
...

1− Fn




︸ ︷︷ ︸
(BRC)

· i[k],

where ARC and BRC represent a diagonal matrix of rate factors and a vector of elements
1− Fj, respectively.

Let the AH [k] = exp
(
−
∣∣∣ η[k]i[k]γ∆t

Q

∣∣∣) represent the dynamic behavior of the battery.
Then, the dynamic hysteresis voltage h[k] is calculated as follows (Equation (3)):

h[k + 1] = AH [k] · h[k] + (AH [k]− 1) · sgn(i[k]), (3)

and the instantaneous hysteresis voltage s[k] is calculated as follows (Equation (4)):
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s[k] =

sgn(i[k]), if |i[k]| > 0

s[k− 1], otherwise
(4)

The overall hysteresis voltage hyst_volt[k] is defined as (Equation (5)):

hyst_volt[k] = M0 · s[k] + M · h[k]. (5)

Finally, a vector of forthcoming SOC[k + 1], j-th RC element current iRj [k + 1] and
dynamic hysteresis voltage h[k + 1] can be defined in the form of a state-space equation,
as follows [1]: SOC[k + 1]

iR[k + 1]
h[k + 1]

 =

1 a 0
0 ARC b
0 a AH [k]

 ·
SOC[k]

iR[k]
h[k + 1]

+

+

−
η[k]∆t

Q 0
BRC 0

0 (AH [k]− 1)

 · [ i[k]
sgn(i[k])

] (6)

Here, the iR[k] =
[
iR1 [k], . . . , iRj [k], . . . , iRn [k]

]T
, a is a vector of n-sized zeros

a = [0, 0, . . . , 0], and b = aT . Then, the estimated voltage v[k] from a Vbatt block (see
Figures 4–6) as a third task can be calculated as follows [1]. Finally, the predicted voltage
equation can be calculated as follows, see Equation (7),

v[k] = OCV(SOC[k], T[k]) + M0 · s[k] + M · h[k]−
n

∑
j=1

Rj · iRj [k]− R0 · i[k], (7)

where the v[k] resembles the predicted voltage which is compared with the actual voltage
Ubatt[k] and the deviation between the two can be calculated v[k]−Ubatt[k]. The term
OCV(SOC[k], T[k]) includes the temperature correction.

SOC

SOC* [k] SOC [k]

iR [k]

Ubatt [k]

h [k]

Vbatt

OCV

h [k+1]

+

-
iR [k+1]

SOC [k+1]

ηGA tuning

i [k]

i [k] Qtotal

SOC

SOC [k]

SOC [k]

OCV0 [k]
OCVrel [k]

iR [k]

Ubatt [k]

h [k]

Vbatt

OCV

h [k+1]

v [k] +
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Figure 4. The GA-ESC method. The initial condition of SOC0 needs to be known prior to the
exploitation of this method. The SOC[k + 1] is predicted from the SOC block which in the next time
step k becomes the SOC[k], hence the symbolic feedback time-delayed representation given by z−1.
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Figure 5. The GA-ESC+FB method. The initial condition of SOC∗[0] is input arbitrarily. Then,
the SOC∗[k] is updated each time step regularly, again following the time delay representation of z−1.
The error corrected SOC[k] is then calculated by subtracting the error from SOC∗[k].
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Figure 6. The GA-(ESC+SOC0). Initial condition of SOC0 calculated by the GA as additional input
dimension. Then, the SOC[k] is updated each time step regularly, again following the time delay
representation of z−1.

2.3.1. ECC: Enhanced Coulomb Counting Method to Estimate the SOC

The ECC method is the simplest method for estimating the SOC (Equation (2)). SOC
estimation using ECC is quite accurate under certain conditions [16,17,19]: (1) the parameter
coulomb efficiency η[k] of the ECC model must exactly match the real battery parameter,
(2) the initial SOC must be known, (3) frequent recalibrations at SOCs of either 100 or
0% must be performed, and (4) the measurement of i[k] must be very accurate with noise
filtered. Such conditions can typically be maintained for a short time only, i.e., the first few
discharging/charging cycles, due to the expected drift induced by integrating the current.
However, its simplicity makes it a very suitable benchmark method.
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2.3.2. EKF: Extended Kalman Filter Based on the ESC, Initial SOC0 Is Known

The implemented EKF is based on the underlying ESC model in state space. The benefit
of the EKF compared to the ESC is that the EKF is capable of filtering process and sensor
noises, which either come from measurement noise or sporadic disturbances. The EKF
procedure is divided into six steps, which Plett et al. [18] further divide into (step 1a) state-
prediction time update x̂−k , (step 1b) error-covariance time update Σ−x̃,k, (step 1c) predicting
system output ŷk, (step 2a) calculating estimator gain matrix Lk, (step 2b) state-estimate
measurement update x̂+k , and finally (step 2c) error-covariance measurement update Σ+

x̃,k.
Four non-measurable states are estimated as follows: 2RC-pair currents, dynamic hysteresis
voltage, and SOC, i.e., x̂ = {iR1[k], iR2[k], h[k], SOC[k]} (as shown in Figure 1). The state-
space model is in the discrete form defined as (see Equation (8)):

xk+1 = A · xk + B · uk,

yk+1 = C · xk + D · uk
(8)

where four matrices, i.e., the Â, B̂, Ĉ, and D̂, are defined as follows (see Equation (9)):

Â =


F1

F2

AH [k]
1

, B̂ =


1− F1

1− F2

BH [k]
−∆t

Q

, Ĉ =


−R1

−R2

M
∂OCV(SOC[k])

∂SOC[k]

, D̂ = 1, (9)

where
BH [k] = −abs(

γ · ∆t
Q

) · AH [k] · (1 + sgn(i[k− 1]) · x̂[idxh]), (10)

where idxh represents the index of hysteresis within the estimated state-space vector x̂,
i.e., idxh = 2 if indexing starts with 0 or idxh = 3 if indexing starts with 1. Additionally,
the ∂OCV(SOC[k])

∂SOC[k] term is approximated by real measurement data from the SOC-OCV curve
as an interpolated derivative of the OCV at a given SOC point [1].

The Kalman estimator gain is calculated as

L[k] = Σ−x̃,k · Ĉ[k]′ ·
[
Ĉ[k] · Σ−x̃,k · Ĉ[k]′ + D̂[k] · Σṽ · Ĉ[k]′

]−1
, (11)

where Σṽ represents the estimated variance of sensor noise, and residual (estimation error)
is calculated as r[k] = Ubatt[k]− ŷ[k]. A six-step Kalman procedure is implemented as listed
in Algorithm 2.

Algorithm 2 Extended Kalman Filter with an underlying ESC model [1]

1: Initialize empty matrices: Â, B̂, Ĉ, D̂
2: for n do
3: (A-priori estimate) State-prediction time update x̂−[k] and update Â[k], B̂[k]
4: (A-priori estimate) Error-covariance time update Σ−x̃,k
5: Predict system output ŷ[k]
6: Calculate Ĉ[k] and Kalman gain L[k]
7: (A-posteriori estimate) State-estimate measurement update x̂+[k]
8: (A-posteriori estimate) Error-covariance measurement update Σ+

x̃ [k]
9: end for

2.3.3. GA-ESC: Initial SOC0 Is Known, ESC Parameters Determined by GA

The GA-ESC framework, depicted in Figure 4, utilizes a classical ESC model, of which
parameters (in cyan color in Figure 4) are tuned using the GA as trial solutions. An underly-
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ing experimental training cycle is recorded, involving voltages, currents and temperatures.
The objective of the ESC model is to predict actual voltage, denoted as Ubatt[k], given the
state vector SOC[k], iR[k], and h[k]. The objective of GA is to tune the ESC parameters such
that the mean squared error between the predicted voltage v[k] and actual voltage Ubatt[k]
is minimized for the complete experimental training cycle.

The initial SOC0 is externally given, as the classical ESC is unable to determine it.
The initial SOC needs to be measured. The blue-colored “SOC” block represents the
calculation of the predicted forthcoming state of the SOC[k + 1], iR[k + 1], and h[k + 1]
from current SOC[k], iR[k], and h[k]. Predicted forthcoming states are input into the orange-
colored “Vbatt” block which calculates predicted voltage v[k]. Predicted voltage v[k] is
compared to the Ubatt[k] and the difference between the two Ubatt[k]− v[k] is an indicator
of fitness of a trial solution (the fittest trial solution is being searched for). As mentioned,
the GA-ESC is unable to determine the initial condition SOC0, still it is involved here as an
individual framework as a benchmark.

2.3.4. GA-ESC+FB: Initial SOC0 Set to Arbitrary Value and Corrected by FB, ESC
Parameters Determined by GA

The GA-ESC+FB framework utilizes a modified ESC model with an additional feed-
back loop and Gain parameter. The GA-ESC+FB tuning of ESC parameters is similar to the
GA-ESC. A set of trial solutions is given to the ESC and the mean squared error using these
ESC parameters on the underlying experimental training cycle is calculated. The lower the
mean squared error, the better the fitness.

Again, the initial SOC0 (denoted as SOC∗[0] in Figure 5) is given externally. However,
this time the initial SOC0 can be externally given as an arbitrary number between 0%
and 100%. There is no need to measure it, which is the benefit of using GA-ESC+FB
compared to the GA-ESC. The feedback loop with the variable Gain parameter then acts as
a correction mechanism to correct the error between uncorrected SOC∗[k] and actual SOC[k]
as follows. If v[k] overreads the Ubatt[k], the error Ubatt[k]− v[k] becomes negative and
the SOC∗[k] is reduced. If v[k] underreads the Ubatt[k], the error Ubatt[k]− v[k] becomes
positive and the SOC∗[k] is increased. Such correction does not take place in a single step,
but rather gradually with time (we expect that the largest error will be at the beginning).
The adaptation of the Gain parameter controls allowed corrections. The equation that
follows represents the feedback loop mechanism numerically.

SOC[k] = SOC∗[k]− Gain× (Ubatt[k]− v[k]) (12)

The advantage of GA-ESC+FB lies in the constant self-correcting action. While the
GA is run once only to determine the proper ESC parameters during the GA training
period, the FB mechanism is run constantly during the testing period (and also during
the remaining life cycle of the battery cell) as well. Still, the FB is not able to compensate
for diminishing SOH due to aging. To address the aging of the battery cell, new ESC
model parameters should be recalculated recurrently every now and then (based on the
underlying time period).

2.3.5. GA-(ESC+SOC0): ESC Parameter and Initial SOC0 Both Determined by GA

The GA-(ESC+SOC0) is similar to the GA-ESC method. The main difference between
the two is that besides seeking the optimal ESC model parameters it seeks the initial
condition of SOC0 as well. Practically this means that the dimension of the problem is
incremented by +1. Figure 6 exhibits the GA-(ESC+SOC0) method.
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GA-(ESC+SOC0) is a simple yet effective hack of the fundamental GA-ESC. Instead of
realizing the initial condition SOC0 by hand, it is being found automatically during the
ESC model parameters searching.

3. Experiments and Results
The goal of the experiments was twofold: (1) implement all proposed five SOC

estimation methods (including the ECC and EKF) with real laboratory equipment, and
(2) utilize all of these to estimate the SOC of a real battery cell and realize the main
differences between the frameworks.

3.1. Laboratory Setup

Laboratory measurements of the battery cell consisted of current in the k-th time step
i[k], measured voltage Ubatt[k], and temperature T[k], all depicted in Figure 2. The lab-
oratory framework was connected to a personal computer (PC) to monitor the batteries
in real time via a microcontroller (MCU). A processor-in-the-loop system, STM32 MCU,
was deployed for two-way information transfer. The DC electronic load Rigol DL3021A
acted as an (electronic) load, and the Rigol DP8921A served as a programmable DC power
supply, i.e., the current source. Information regarding the best obtainable accuracy per unit
of measurements for the given experimental system is described in Table 2.

Table 2. Accuracy obtained and ranges of units of measurements of the data acquisition hardware,
built on purpose.

Parameter Value

Voltage measure accuracy of cell ±1.25 mV
Current measure accuracy of cell ±625 µA

Temperature measure accuracy of cell ±0.1 °C
Temperature measure accuracy of temperature chamber ±0.2 °C

Min. reachable temperature of temperature chamber −15 °C
Max. reachable temperature of temperature chamber +70 °C

Figure 7 depicts the hardware equipment utilized during the experimental tests.
A battery cell measurement card was built purposely, with an integrative holder for a single
battery cell. The measurement card supports many different types of battery chemistry.
Figure 8 depicts the results obtained. The first subplot shows the OCV obtained at a given
temperature, varying from Ta = −5 ◦C to Ta = 45 ◦C. The subplot below depicts the
calculated temperature correction factor OCVrel.

The dependency on the steady-state ambient temperature Ta was recorded experimen-
tally using the temperature chamber. Due to the very low charging/discharging reference
current, i.e., ire f = C/30, the warming effect of the battery was neglected, which implied
that the battery temperature T equaled the ambient temperature T = Ta. We cycled the
battery and monitored the current and OCV. Next, the total capacity Qtotal was calculated
by integrating current with time, for the discharging cycle at T = 25 ◦C [1] (SOC here
dropped from 100% to 0%). Conversion of the x-axis from capacity to SOC was conducted
where the total capacity equaled an SOC of 100%. Next, the effect of internal resistance was
carefully studied, which is the reason why the charging and discharging OCVs differ (the
Coulombic efficiency states the ratio between the two). The charging cycle was rescaled to
fit into the SOC 0–100% domain and the battery internal resistance (which on the diagram
symbolically changes from 0 to 100%) was averaged across the complete SOC domain.
Finally, the single OCV-SOC curve was plotted accounting for the single averaged battery
internal resistance [1].
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The complete dependency on steady state ambient temperature Ta was recorded exper-
imentally [1] by forcing the battery into different temperatures, ranging from Ta = −5 ◦C
to Ta = 45 ◦C with steps of ∆T = 5 ◦C. For each temperature, the OCV-SOC curve was
extracted. An interpolation of OCV-SOC with respect to SOC and temperature can be
used in practice. Once this step was finished, two diagrams were extracted using matrix
algebra [1]. First, the OCV0 diagram showed the relationship between OCV and SOC
for Ta = 0 ◦C. Second, the OCVrel diagram showed the relationship between the OCVrel
compensation factor, given in V/◦C, and SOC, given in percent. Typically, both are highly
nonlinear functions, as depicted in Figure 8.

Figure 7. The DC power supply, electronic load, and built battery cell measurement card. On the
right image a detailed view of the battery cell measurement card and a temperature chamber.
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Figure 8. The upper subplot depicts the OCV as a function of the percentage of the SOC. Multiple lines
are plotted, each of them corresponding to a given ambient temperature, varying from Ta = −5 ◦C to
Ta = 45 ◦C. The lower subplot depicts the temperature correction factor OCVrel() in units of V/ ◦C.
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In the out-of-steady-state scenario where the battery undergoes a variable current
profile, its temperature does not equal the ambient temperature T ̸= Ta. The higher
the current flowing, the higher the temperature due to the internal resistance (increasing
the current warms the battery and hence the indication T[k]). The higher the ambient
temperature, the higher the battery temperature. Fixing the SOC[k] constant and ceteris
paribus in a steady state condition gives the OCVrel(SOC[k]) constant, further implying
that the higher the battery temperature the higher the OCV, i.e., a linear relationship.
However, if SOC is not constant, ceteris paribus, a non-linear relationship between OCVrel
and SOC, exhibited in Figure 8, is established. The temperature correction factor OCVrel
varies with the function OCVrel(). A complete steady-state OCV equation is derived by
summing two independent terms, i.e., the OCV0 and the OCVrel. The OCV0 is conducted by
interpolating the OCV curve, which is given in a tabular form and held constant in all cases.
The OCVrel term gives the temperature correction by multiplying T[k] ·OCVrel(S0C[k]).
For example, if the measured battery temperature is 20 ◦C and the SOC = 10%, this gives
OCVrel(SOC = 10%) = −0.5e−3 V/ ◦C from Figure 8, which further implies that T[k] ·
OCVrel(S0C[k]) = 20◦C · (−0.5e−3 V/◦C) = −0.01 V, a small negative correction factor for
a given setting. The OCVrel compensation can be performed for the measured temperature
range only, so a rough estimation of working temperatures needs to be conducted.

3.2. GA Setup and Estimation of ESC Model Parameters by GA

For optimization purposes, the elitism-enhanced GA was used; the experimental setup
is outlined in Table 3. Genetic operators included roulette wheel selection, single-point
crossover, bit-flip mutation and elitism. Termination conditions were set as either the
reached maximum number of generations, or the fitness function value threshold. The
representation of individuals was binary. The probability of mutation was set to be adaptive,
ranging from pm = 0.0001 to maximum pm = 1. The following rule has been applied to the
adaptation of the probability of mutation pm. The fitness function value averages f f (avg)

were monitored for: (1) the last g− 6 to g− 4 generations f f (avg)
(g−6:g−4), (2) the last g− 3 to

g− 1 generations f f (avg)
(g−3:g−1). All fitness function evaluations were included here. If the

value f f (avg)
(g−3:g−1) remained bounded between positive and negative thresholds, as shown

symbolically, then the probability of mutation increased by 1 percentage point, i.e., for
∆pm = 0.01. Otherwise, the probability of mutation was reset to pm = 0.0001. This process
was repeated indefinitely.

pm =

{
pm + ∆pm f f (avg)

(g−3:g−1) ∈
[

f f (avg)
(g−6:g−4) ± 0.2

]
0.0001 otherwise

(13)

Effectively, this adaptation was implemented as a mechanism to prevent convergence
into the local optima. It was realized experimentally that such adaptation increased the
system identification success drastically. Algorithm 3 represents the pseudo-code of the
GA utilized, where the NP stands for population size (number of individuals).

The GA was utilized to tune the ESC model parameters, for which real battery data
were necessary. An ESC model parameters experimental cycle, including charging and
discharging profiles in the duration of almost 10 h, was utilized. The experimental cycle is
depicted in Algorithm 4 (relaxing the battery means ire f = 0 A.). The tuning profile included
periods of abrupt and rapid changes in load, as well as stationary periods. Moreover, these
two periods were interchanged and repeated. Two such cycles, run one after the other,
were run in order to estimate the ESC model parameters, as shown in Figure 9.
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Algorithm 3 Elitist-Enhanced Genetic Algorithm

1: Initialize population NP with random solutions
2: Evaluate the fitness of each individual in NP
3: while stopping criterion not met do
4: Convert population NP into binary form (genes)
5: Select parents for reproduction
6: Perform crossover and mutation to create offspring
7: Convert binary genes of the population NP back into a decimal representation
8: Evaluate the fitness of the offspring
9: Apply elitism: select the best individuals for the next generation

10: Replace the worst individuals in the population with offspring
11: Apply probability of mutation pm adaptation
12: end while

Table 3. GA setup. * = in case of GA-(ESC+SOC0) the D = 10 due to the additional parameter of SOC
being optimized. ** = pm is tunable and can gradually be increased to 1 if optimization is caught into
the local optimum and immediately decreased to a minimum value of 0.0001 when the optimization
is out of the local optimum. f fmin is a fitness function value threshold that stops optimization once
this value is hit.

Parameter Symbol Value

Population size NP 200
Max. no. of generations MAX_GEN 500

Fitness function threshold f fmin 0.01
Binary chromosome length (genotype length) Nc 16

Dimension of the problem D 9 *
Elitism E 2

Initial probability of mutation pm 0.0001 **
Probability of crossover pc 0.8

Objective minimize

Algorithm 4 The experimental cycle to tune the ESC with GA as depicted in Figure 9

1: Initialize empty lists and monitor each time step: T, i, Ubatt, ire f
2: for i = 1,2 do
3: Relax for 30 s
4: Discharge at ire f = 1 A for 5 min then relax for 5 min
5: Discharge at ire f = 3 A for 5 min then relax for 5 min
6: Discharge at ire f = 5 A for 30 s then relax for 5 min
7: Charge at ire f = 1 A for 5 min then relax for 5 min
8: Discharge at ire f = 3 A for 30 s
9: Charge at ire f = 1.5 A for 30 s

10: Discharge at ire f = 3 A for 30 s
11: Charge at ire f = 1 A for 30 s then relax for 1 min
12: Charge at ire f = 0.5 A for 5 min then relax for 30 s
13: Discharge at ire f = 2 A for 1 min
14: end for
15: Output: T, i, Ubatt, ire f vectors

As seen from the figure, the discharging cycle introduced short charging bursts. These
were introduced to help estimate more accurately the parameters of the ESC model, es-
pecially parameters of the RC links (R1, C1, R2, C2), which are supposed to define the
temporal dynamics.
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Figure 9. The experimental cycle to tune the ESC model parameters with GA. The full red vertical
lines denote the start and end of the two cycles for the GA-ESC tuning of model parameters, the red
dotted line represents the end of the first cycle and the start of the second cycle.

The GA was utilized to estimate the ESC model parameters. Ten different runs of the
GA were held and the best run of these, according to the best fitness function value f f (best),
was taken as a final solution. The fitness function value was calculated as follows:

ff =
1
n
·

n

∑
k=0

(Ubatt[k]− v[k])2 (14)

where n is the number of samples within the repeated experimental cycles. Table 4 ex-
hibits the best-found ESC model parameters by the GA, for each of the methods separately.
The best-found ESC parameters by GA will not be unique as different combinations of
parameters lead to the approximately same solutions. This is the main reason why such dif-
ferences arise between multiple independent runs. Kalogiannis et al. [48] have empirically
shown that the robustness of the found solutions may thus vary heavily.

Table 4. Best found ESC model parameters and appropriate best fitness function value, among the
10 independent runs of the GA. “up. lim.” = upper limit, “low. lim.” = lower limit.

GA-ESC GA-ESC+FB GA-(ESC+SOC0) Low. Lim. Up. Lim.

f f (best) 0.5484 0.5287 0.5394 n/a n/a
R0 [Ω] 0.0208 0.0211 0.0275 0 0.2

η 1 1 0.9200 0.9 1
γ 59,432 17,126 15,171 0 60,000
M 0 0 0 0 0.1
M0 0.0024 0.0015 0.0021 0 0.01

R1 [Ω] 0.0119 0.0259 0.0258 0 0.2
C1 [F] 1634 45,112 49,984 0 60,000
R2 [Ω] 0.0200 0.0156 0.0109 0 0.2
C2 [F] 27,037 1795 10,000 0 60,000

The best found M was found to be zero in all three cases as follows: By increasing
the γ, the term AH [k]→ 0. Having that, the term AH [k] · h[k]→ 0 and (AH [k]− 1)→ −1,
which further means that (AH [k]− 1) · sgn(i[k])→ −sgn(i[k]). As this is exactly opposite
to the instantaneous hysteresis voltage s[k], the optimization algorithm eliminates this term
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by setting the M = 0. As proposed methods are offline only, further adaptations of ESC
parameters, accounting for changes in temperature or SOH, are not possible.

3.3. Experimental Setup and Conduct of Experiments

The experiment involved a recurrent experimental testing cycle that was repeated
20 times. Before the experimental testing, the battery was charged fully and then relaxed
for 2 h at reference current ire f = 0 A. The ECC and EKF were benchmarks for estimating
SOC with externally given initial conditions (SOC0 = 100%). The three proposed models,
i.e., GA-ESC, GA-ESC+FB and GA-(ESC+SOC0) involved a feedback loop FB with variable
gain. The initial condition on SOC0 was thus not relevant for these three methods, as the
FB guaranteed convergence towards an unbiased estimate of the SOC. Hence, the initial
condition was set to be SOC0 = 50%, as setting it to a middle ensured the lowest latency
when converging to either extreme value, e.g., 100 or 0 %. Figure 10 depicts the ESC as
was used during the experimental testing, i.e., exploitation. The three different sets of ESC
parameters were tested (initial conditions on SOC0 were given externally and fixed to be
SOC∗[0] = 50%).
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Figure 10. The ESC involving the FB as used during the experimental testing or exploitation. Three
separate sets of GA-tuned ESC parameters were tested: GA-ESC, GA-(ESC+SOC0), and GA-ESC+FB.
The FB allowed the ESC’s state-space vector component of SOC to converge to the unbiased estimate.
Thus, the externally given initial condition was set to SOC∗[0] = 50% to allow just convergence to
any extreme value, e.g., 0 or 100 %.

The Gain parameter was realized experimentally. By setting it to a high value of
Gain = 0.1 it was realized that the estimation bias was compensated rapidly. However,
such a high value produced estimation instabilities in the range of SOC below 10% and
above 90%. Therefore, a lower value of Gain was selected for these two areas, as follows:

Gain =

0.1, if 10% ≤ SOC[k] ≤ 90%

0.0001, otherwise
(15)

The reference current profile was determined prior to conducting the experimental
test. The reference current profile involved short charge and discharge bursts as well as
steady-state periods of charge and discharge. It was set by a combination of electronic load
and DC power supply. Algorithm 5 exhibits the reference current profile for a single testing
cycle. Figure 11 exhibits the same experimental testing cycle graphically.
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Algorithm 5 Recurrent experimental testing cycle as depicted in Figure 11

1: Initialize empty lists and monitor each time step: T, i, Ubatt, ire f
2: for l do = 1, 2, 3, . . . , 20
3: for m do = 1, 2
4: Short discharge burst at ire f = 1 A for 10 s then relax for 10 s
5: Short discharge burst at ire f = 5 A for 10 s then relax for 10 s
6: Short discharge burst at ire f = 10 A for 10 s then relax for 10 s
7: Short discharge burst at ire f = 15 A for 10 s then relax for 10 s
8: Short discharge burst at ire f = 20 A for 10 s then relax for 10 s
9: Steady-state discharge at ire f = 1 A for 5 min then relax for 1 min

10: Short charge burst at ire f = 1 A for 10 s then relax for 10 s
11: Short charge burst at ire f = 2 A for 10 s then relax for 10 s
12: Short charge burst at ire f = 3 A for 10 s then relax for 10 s
13: Short charge burst at ire f = 4 A for 10 s then relax for 10 s
14: Short charge burst at ire f = 5 A for 10 s then relax for 10 s
15: Steady-state discharge at ire f = 5 A for 1.67 min then charge at ire f = 3 A for 1.67 min
16: Steady-state discharge at ire f = 10 A for 1.67 min then charge at ire f = 5 A for 1.67 min
17: Steady-state discharge at ire f = 5 A for 1 min then charge at ire f = 5 A for 1 min
18: Steady-state discharge at ire f = 4 A for 5 min then charge at ire f = 4 A for 5 min
19: Relax for 10 s
20: Steady-state discharge at ire f = 1 A for 5 min then charge at ire f = 1 A for 5 min
21: Steady-state discharge at ire f = 2 A for 5 min then charge at ire f = 2 A for 5 min
22: Steady-state discharge at ire f = 3 A for 5 min then charge at ire f = 3 A for 5 min
23: Steady-state discharge at ire f = 4 A for 5 min then charge at ire f = 4 A for 5 min
24: Steady-state discharge at ire f = 5 A for 5 min then charge at ire f = 5 A for 5 min
25: Steady-state discharge at ire f = 6 A for 5 min then charge at ire f = 6 A for 5 min
26: Short discharge burst at ire f = 10 A for 10 s then charge at ire f = 6 A for 10 s
27: Steady-state discharge at ire f = 8 A for 1 min then relax for 2 min
28: end for
29: Charge the battery cell at ire f = 1 A till Ubatt = 2.8 V
30: Charge the battery cell at ire f = C/30 till Ubatt = 2.8 V
31: end for
32: End of recurrent experimental testing cycle
33: Output: T, i, Ubatt vectors

▷ If terminal voltage Ubatt[k] < 1.5 V, the for loop for index m is break and charging takes place
immediately. Remark: Relaxing the battery battery means ire f = 0 A.
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Figure 11. The experimental testing cycle. Positive current i represents discharging the battery,
negative current charging it. Red dotted lines represent SOC equal to 100% which is an end of
the single cycle. Black dotted lines in second subplot represent minimum and maximum voltages.
The reference rate ire f = C/30 equals to 43.33 mA.
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3.4. Results

The quality of the methods proposed and the benchmarks were tested using the
experimental test, which involved cycling the battery in a recurrent loop 20 times. A single
cycle loop took a bit more than 4 h and a half in average, while a complete experimental
test took 92 h. Each loop involved the battery undergoing the reference current for a given
period of time, as introduced by the experimental testing cycle in Algorithm 5. Actual
current, temperature and terminal voltage of the battery cell were monitored during this
period to form a testing dataset. Implemented methods were run on this underlying testing
dataset to estimate the SOC in each time step. The recalibrations and limitations at 100%
or 0% were excluded for all methods. Results were presented fourfold, each in a separate
subsection, First, a complete 92 h experimental testing was plotted. Next, detailed plots for
the first and the last experimental testing cycles were attached. Finally, statistical analysis
and an affordability study were provided.

3.4.1. Complete Experimental Test

Figure 12 represents experimental test results. The upper subplot represents the
actual terminal and predicted voltages for each method; the lower subplot shows the
estimated SOC.
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Figure 12. Complete experimental test. Exhibited are estimated voltages and SOCs. The black dotted
line markers exhibit extreme values of terminal voltage and SOC.

Long-term drift with respect to time is observable from two methods, the ECC and EKF.
The ECC underestimates the SOC while the EKF overestimates the SOC, as no recalibrations
were performed when SOC equaled either 0 or 100%. Proposed ESC methods worked
similarly to each other and exhibited a stable performance over the whole range. No major
deviations from the expected SOC were observed. The next subsection presents the first
testing cycle in detail.

3.4.2. Detailed View of the First (Initial) Experimental Cycle

Figure 13 represents results on the first cycle in detail. The ECC worked reliably as no
deviations nor outliers were observed. The EKF performed best during the first half of the
cycle. Later, a drift and possibly an offset evolved which caused the EKF to overestimate the
actual SOC. Consequently, SOC estimations of more than 100% were indicated by EKF. Pro-
posed frameworks involving GA-ESC, GA-ESC+FB, and GA-(ESC+SOC0) gave reasonable
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voltage and SOC estimations, although they all started biased from the SOC∗[0] = 50%.
The rapid convergence of the SOC is clearly noticed. However, none of the implemented
methods were able to capture the predicted voltage v[k] well when the SOC was above 90%
or below 10%. When the SOC was below 10% and discharging, the battery cell exposed
significant non-linearity which caused the measured terminal voltage to fall abruptly when
under load. When the SOC was above 90% and charging, the battery terminal voltage
increased abruptly. Significant deviations were detected for all estimation algorithms,
although the GA-ESC performed best in this case, followed by the GA-(ESC+SOC0) and
the GA-ESC+FB.

Minor SOC estimation deviations between methods themselves were noted after
concluding the first experimental cycle. Two highly non-linear regions regarding the
terminal voltage Ubatt (1) when SOC was below 10% and discharging, and (2) when the
SOC was above 90% and charging, were detected. None of the three proposed methods was
able to capture abrupt voltage changes ∆Ubatt within these two regions. Despite this fact,
no drift accumulation when outside these two regions was detected, as the deviations were
corrected soon when the new terminal voltage outside these two regions was established.
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Figure 13. The first experimental cycle. Exhibited are estimated voltages and SOCs. The start of the
first cycle is at t = 0. Red dotted lines represent SOC equal to 100% (end of the first cycle). The black
dotted line markers exhibit allowed end voltages.

3.4.3. Detailed View of the Twentieth (Last) Experimental Cycle

Figure 14 shows detailed results on the last experimental cycle. The ECC strongly
deviated from the proposed ESC methods. Its SOC estimations were prone to drifting with
respect to time. With each cycle, the SOC estimations were underestimating the actual SOC
more and more. After 10 cycles the ECC exhibited significantly negative SOC values. This
was due to the fact that ECC rests on the traditional current integration.

On the other hand, the EKF and GA-ESC were consistently overestimating values of
the SOC of more than 100%, but never more than 4 or 0.6 percentage points for EKF and
GA-ESC, respectively. During experimental tests, the GA-(ESC+SOC0) never reached more
than 99.5% and the GA-ESC+FB never reached more than 99%, when the battery was fully
charged. This meant max. 1 percentage point of error for all three proposed methods which
is a very solid performance.
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Figure 14. The last experimental cycle. Exhibited are estimated voltages and SOCs. Red dotted lines
represent SOC equal to 100% (start and end of the first cycle). The black dotted line markers exhibit
allowed end voltages.

3.4.4. Statistical Results and Affordability of the Proposed Frameworks

Table 5 represents statistical results of voltage prediction errors Ubatt[k]− v[k] tabu-
larly. The ECC algorithm was not involved here as it was unable to predict the voltage v[k]
(just the SOC). Columns are separated by MSE and MAE statistical indicators. Each indica-
tor shows squared errors for the first, last and all cycles. Please note that the Table 5 does
not represent any SOC statistical errors, but the terminal to predicted voltage Ubatt[k]− v[k]
errors only.

For the first cycle, differences in MSE and MAE between GA-ESC, GA-ESC+FB and
GA-(ESC+SOC0) are negligible, but EKF works significantly better. The good performance
of the EKF is partly due to the fact that EKF starts with proper SOC0 at the beginning,
i.e., 100%, while proposed methods start at SOC0 equal to 50% and converge toward an
unbiased estimate with time. As the process of converging takes time, large errors at the
beginning are integrated that increase the MSE and MAE significantly. For the last cycle,
the GA-ESC performs best for both MSE and MAE. The EKF is more competitive for the
MAE than for MSE, which is an indicator of outliers presence. Namely, the MSE indicator
is more susceptible to outliers than the MAE. The GA-ESC+FB performs worst for all cycle
indicators. Please note that the table of SOC errors would be much more representative,
instead of terminal voltage errors, but cannot be obtained as the true SOC is not known
(exceptions apply for 2 points, SOC equal to 100 and 0%).

The affordability of the proposed frameworks comes in two parts. The first part
represented obtaining the battery data utilizing the underlying experimental training cycle
that lasted in our case 5680 s (which roughly equals to 1 h and 35 min). In this time, the
battery was statically and dynamically excited within different time periods under different
loads. Electronic load and auxiliary power supply were used to ensure accurate readings.
During that time, battery cells were unable to perform any useful work, i.e., a serious
drawback compared to online methods such as RLS. The second part represented the
computational complexity of a GA for battery identification (the ESC model). Based on the
recorded experimental cycle, the GA, on average spent 251.14± 1.23 min (N = 10), which
roughly equaled 4 h and 11 min for GA-ESC and GA-ESC+FB (on a personal computer).
For the GA-(ESC+SOC0) this process took even more time due to an additional dimension.
Two facts need to be mentioned here. The first fact is that optimization was executed



Batteries 2025, 11, 1 23 of 26

for a maximal number of generations (MAX_GEN = 500) without hitting the early-
stopping criterion. Still, minor or no improvements were spotted after the GEN = 100.
By early-stopping at GEN = 100 the execution time would decrease by a factor of 5,
which is less than 1 h, and the quality of results would not have been hurt much. The
second fact is that the used programming code for the GA was written in an interpreter
programming language and little effort was put into its optimization. Further optimization
of programming code and transfer to a compiler programming language would significantly
decrease computational complexity. Also, a graphical process unit could be used for a
parallel calculation of a GA, especially the fitness function evaluation which took most of
the time.

Theoretically, there is no need to run the GA on the dedicated hardware as this can
be run offline on the computer server. Still, experiments have been made on a dedicated
digital signal processor with minimal resources but highly optimized programming code,
which revealed that the GA identification can finish in less than a minute. This is not such
a drawback compared to the online RLS, since the GA can be implemented similarly to the
online RLS. For example, in each time step a single GA generation can be executed and
by incrementing the time steps, better and better solutions are found. Then, a real-time
parameter adaptation by GA is possible by monitoring the data within the moving window.
Still, the initial dataset experimental cycle needs to be prerecorded as GA may not converge
if the experimental cycle too short.

Table 5. The MSE (mean squared error) and MAE (mean absolute error) of the predicted voltage v[k]
for each method. Lower score represents better solution.

MSE [×10−3] MAE [×10−3]

Cycle 1st 20th All 1st 20th All

EKF 1.73 3.07 2.76 16.48 26.26 25.02
GA-ESC 2.09 2.86 2.58 23.88 25.79 24.86

GA-ESC+FB 2.54 3.67 3.33 29.50 32.93 32.39
GA-(ESC+SOC0) 2.15 3.05 2.80 26.12 28.92 28.47

4. Discussion
Three different underlying designs for predicting the state-of-charge given its uncertain

initial conditions were implemented and tested. The simplest of all was the direct method
called enhanced Coulomb counter which was only able to predict SOC without estimating
the state space vector. Two other designs, the extended Kalman filter and enhanced self-
correcting mechanism, optimized by a genetic algorithm, estimated the state space vector
too. Given appropriate settings, both of these designs should have ensured unbiased
estimates of the state of charge of a lithium-ion battery cell.

The enhanced Coulomb counter functioned as expected. In the short term, it was
seen as a reliable indicator. In the long term, integral drift with respect to time prevented
it from making unbiased estimates. Soon after the last recalibration at a state-of-charge
equal to 100%, it began predicting a negative state-of-charge. The extended Kalman filter
performed with more stability. Minimal bias, possibly an offset, was spotted in the long
term and caused the Kalman filter to overread the actual state-of-charge by approximately
four percentage points. Further analysis would be necessary to determine the exact cause.

One of the proposed frameworks, i.e., the enhanced self-correction model with a
feedback loop, seemed the best option. The variable Gain of the feedback loop tends to
control the convergence rate to the unbiased estimate of state-of-charge. Some experiments
were necessary to properly determine the Gain parameter, if set to high it may have caused
instabilities; if set to low, the convergence rate was slow. This framework functioned well
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even if an arbitrary value of the state-of-charge initial condition was input. The other two
alternatives of the enhanced self-correcting model without the feedback loop needed prior
knowledge of the state-of-charge initial condition.

In the future, it would be crucial to address the changing battery parameters due to
aging. Keeping the identified model constant may induce bias in state-of-charge predictions.
Battery parameters are not obliged to be updated continuously, as there is no need for
this, but they should be updated every now and then at underlying update times. These
update times may be either (1) fixed, for example, after five discharging/charging cycles,
or (2) adaptive after the battery cell was misused due to over-charging/-discharging or
discharging with too high currents, etc. A time window with all the necessary data needs
to be recorded and a “silent” genetic algorithm execution, where in each time step only
a single generation is executed (or even less) to prevent non-real-time microcontroller
behavior, would need to be implemented.
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Abbreviations

OCV Open Circuit Voltage
OCV0 Open Circuit Voltage at ambient temperature Ta = 0 ◦C
OCVrel Linear temperature correction factor
SOC State of Charge
SOC0 Initial State of Charge
Ta Ambient temperature
Q Capacity of the battery cell in mAh
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