Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,364)

Search Parameters:
Keywords = arthropods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1521 KiB  
Review
Vector-Borne Zoonotic Lymphadenitis—The Causative Agents, Epidemiology, Diagnostic Approach, and Therapeutic Possibilities—An Overview
by Martina Oršolić, Nikolina Sarač and Mirjana Balen Topić
Viewed by 194
Abstract
In addition to common skin pathogens, acute focal lymphadenitis in humans can, in rare cases, be caused by a zoonotic pathogen. Furthermore, it can develop in the absence of any direct or indirect contact with infected animals, in cases when the microorganism is [...] Read more.
In addition to common skin pathogens, acute focal lymphadenitis in humans can, in rare cases, be caused by a zoonotic pathogen. Furthermore, it can develop in the absence of any direct or indirect contact with infected animals, in cases when the microorganism is transmitted by a vector. These clinical entities are rare, and therefore often not easily recognized, yet many zoonotic illnesses are currently considered emerging or re-emerging in many regions. Focal zoonotic vector-borne lymphadenitis and its numerous causative agents, with their variegated clinical manifestations, have been described in some case reports and small case series. Therefore, we summarized those data in this narrative overview, with the aim of raising clinical awareness, which could improve clinical outcomes. This overview briefly covers reported pathogens, their vectors and geographic distribution, and their main clinical manifestations, diagnostic possibilities, and recommended therapy. Vector-borne tularemia, plague, bartonellosis, rickettsioses, borreliosis, and Malayan filariasis are mentioned. According to the existing data, when acute focal bacterial vector-borne zoonotic lymphadenitis is suspected, in severe or complicated cases it seems prudent to apply combined aminoglycoside (or quinolone) plus doxycycline as an empirical therapy, pending definite diagnostic results. In this field, the “one health approach” and further epidemiological and clinical studies are needed. Full article
(This article belongs to the Special Issue Emerging and Re-emerging Zoonotic Infectious Diseases)
Show Figures

Figure 1

23 pages, 3170 KiB  
Article
Biochemical Characterization and Disease Control Efficacy of Pleurotus eryngii-Derived Chitosan—An In Vivo Study against Monilinia laxa, the Causal Agent of Plum Brown Rot
by Ippolito Camele, Amira A. Mohamed, Amira A. Ibrahim and Hazem S. Elshafie
Plants 2024, 13(18), 2598; https://doi.org/10.3390/plants13182598 - 17 Sep 2024
Viewed by 500
Abstract
Chitin (Ct) is a crucial biopolymer present in fungi, algae, arthropods, and is usually obtained from crustacean shells. Chitosan (Cs) is a derivative from Ct deacetylation, and possesses numerous uses in various agro-industrial fields. Research on fungal-derived Ct and Cs is mostly focused [...] Read more.
Chitin (Ct) is a crucial biopolymer present in fungi, algae, arthropods, and is usually obtained from crustacean shells. Chitosan (Cs) is a derivative from Ct deacetylation, and possesses numerous uses in various agro-industrial fields. Research on fungal-derived Ct and Cs is mostly focused on pharmaceutical uses, however their uses for plant disease control remain less explored. The main objective of the current study is to evaluate the possibility of using chitosan obtained from mushroom Pleurotus eryngii (Cs-Pe) for controlling some phytopathogens compared to commercial chitosan (C.Cs). This study is focused on the following key areas: (i) extracting Ct from P. eryngii mycelium and converting it to Cs through deacetylation, using both bleaching and non-bleaching methods; (ii) conducting a physico-chemical characterization and in vitro evaluation of the antimicrobial activity of the obtained Cs; (iii) performing an in vivo assessment of the phytotoxic and cytotoxic effects of Cs; and (iv) investigating in vivo the impact of the studied chitosan on fruit quality and its biocontrol efficacy against Monilinia laxa infections in plum fruits. Results showed that Cs-Pe, especially the unbleached one, displayed promising in vitro antimicrobial activity against the majority of tested pathogens. Regarding the cytotoxicity, the highest significant increase in cell abnormality percentage was observed in the case of C.Cs compared to Cs-Pe. In the in vivo study, Cs-Pe acted as a protective barrier, lowering and/or preventing moisture loss and firmness of treated plums. The studied Cs-Pe demonstrated notable efficacy against M. laxa which decreased the fruits’ percentage decline. These results strongly suggest that Cs derived from P. eryngii is a potential candidate for increasing plums’ shelf-life. This research shed light on the promising applications of P. eryngii-derived Cs in the agri-food field. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

20 pages, 3837 KiB  
Article
NF-κB Transcription Factors: Their Distribution, Family Expansion, Structural Conservation, and Evolution in Animals
by Siphesihle Msweli, Suresh B. Pakala and Khajamohiddin Syed
Int. J. Mol. Sci. 2024, 25(18), 9793; https://doi.org/10.3390/ijms25189793 - 10 Sep 2024
Viewed by 439
Abstract
The Nuclear Factor Kappa B (NF-κB) transcription factor family consists of five members: RelA (p65), RelB, c-Rel, p50 (p105/NF-κB1), and p52 (p100/NF-κB2). This family is considered a master regulator of classical biochemical pathways such as inflammation, immunity, cell proliferation, and cell death. The [...] Read more.
The Nuclear Factor Kappa B (NF-κB) transcription factor family consists of five members: RelA (p65), RelB, c-Rel, p50 (p105/NF-κB1), and p52 (p100/NF-κB2). This family is considered a master regulator of classical biochemical pathways such as inflammation, immunity, cell proliferation, and cell death. The proteins in this family have a conserved Rel homology domain (RHD) with the following subdomains: DNA binding domain (RHD-DBD) and dimerization domain (RHD-DD). Despite the importance of the NF-κB family in biology, there is a lack of information with respect to their distribution patterns, evolution, and structural conservation concerning domains and subdomains in animals. This study aims to address this critical gap regarding NF-κB proteins. A comprehensive analysis of NF-κB family proteins revealed their distinct distribution in animals, with differences in protein sizes, conserved domains, and subdomains (RHD-DBD and RHD-DD). For the first time, NF-κB proteins with multiple RHD-DBDs and RHD-DDs have been identified, and in some cases, this is due to subdomain duplication. The presence of RelA/p65 exclusively in vertebrates shows that innate immunity originated in fishes, followed by amphibians, reptiles, aves, and mammals. Phylogenetic analysis showed that NF-κB family proteins grouped according to animal groups, signifying structural conservation after speciation. The evolutionary analysis of RHDs suggests that NF-κB family members p50/p105 and c-Rel may have been the first to emerge in arthropod ancestors, followed by RelB, RelA, and p52/p100. Full article
(This article belongs to the Special Issue Advances in Endoplasmic Reticulum Stress and Apoptosis)
Show Figures

Figure 1

40 pages, 2180 KiB  
Article
Unveiling Arthropod Responses to Climate Change: A Functional Trait Analysis in Intensive Pastures
by Sophie Wallon, François Rigal, Catarina D. Melo, Rui B. Elias and Paulo A. V. Borges
Viewed by 490
Abstract
This study investigates the impact of elevated temperatures on arthropod communities in intensively managed pastures on the volcanic island of Terceira, Azores (Portugal), using a functional trait approach. Open Top Chambers (OTCs) were employed to simulate increased temperatures, and the functional traits of [...] Read more.
This study investigates the impact of elevated temperatures on arthropod communities in intensively managed pastures on the volcanic island of Terceira, Azores (Portugal), using a functional trait approach. Open Top Chambers (OTCs) were employed to simulate increased temperatures, and the functional traits of ground dwelling arthropods were analyzed along a small elevation gradient (180–400 m) during winter and summer. Key findings include lower abundances of herbivores, coprophagous organisms, detritivores, and fungivores at high elevations in summer, with predators showing a peak at middle elevations. Larger-bodied arthropods were more prevalent at higher elevations during winter, while beetles exhibited distinct ecological traits, with larger species peaking at middle elevations. The OTCs significantly affected the arthropod communities, increasing the abundance of herbivores, predators, coprophagous organisms, and fungivores during winter by alleviating environmental stressors. Notably, iridescent beetles decreased with elevation and were more common inside OTCs at lower elevations, suggesting a thermoregulatory advantage. The study underscores the importance of considering functional traits in assessing the impacts of climate change on arthropod communities and highlights the complex, species-specific nature of their responses to environmental changes. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

17 pages, 12790 KiB  
Article
Vesicular Stomatitis Virus Detected in Biting Midges and Black Flies during the 2023 Outbreak in Southern California
by Stacey L. P. Scroggs, Dustin A. Swanson, Taylor D. Steele, Amy R. Hudson, Lindsey M. Reister-Hendricks, Jessica Gutierrez, Phillip Shults, Bethany L. McGregor, Caitlin E. Taylor, Travis M. Davis, Nadine Lamberski, Kristen A. Phair, Lauren L. Howard, Nathan E. McConnell, Nikos Gurfield, Barbara S. Drolet, Angela M. Pelzel-McCluskey and Lee W. Cohnstaedt
Viruses 2024, 16(9), 1428; https://doi.org/10.3390/v16091428 - 7 Sep 2024
Viewed by 600
Abstract
Vesicular stomatitis (VS) is a viral disease that affects horses, cattle, and swine that is transmitted by direct contact and hematophagous insects. In 2023, a multi-state outbreak of vesicular stomatitis New Jersey virus (VSNJV) occurred in California, Nevada, and Texas, infecting horses, cattle, [...] Read more.
Vesicular stomatitis (VS) is a viral disease that affects horses, cattle, and swine that is transmitted by direct contact and hematophagous insects. In 2023, a multi-state outbreak of vesicular stomatitis New Jersey virus (VSNJV) occurred in California, Nevada, and Texas, infecting horses, cattle, and rhinoceros. To identify possible insect vectors, we conducted insect surveillance at various locations in San Diego County, CA, including at a wildlife park. CO2 baited traps set from mid-May to mid-August 2023 collected 2357 Culicoides biting midges and 1215 Simulium black flies, which are insect genera implicated in VSNJV transmission. Insects were pooled by species, location, and date, then tested for viral RNA. Nine RNA-positive pools of Culicoides spp. and sixteen RNA-positive pools of Simulium spp were detected. Infectious virus was detected by cytopathic effect in 96% of the RNA-positive pools. This is the first report of VSNJV in wild-caught C. bergi, C. freeborni, C. occidentalis, S. argus, S. hippovorum, and S. tescorum. The vector competency of these species for VSNJV has yet to be determined but warrants examination. Active vector surveillance and testing during disease outbreaks increases our understanding of the ecology and epidemiology of VS and informs vector control efforts. Full article
(This article belongs to the Special Issue Vesicular Stomatitis Virus (VSV))
Show Figures

Figure 1

23 pages, 1001 KiB  
Review
MALDI-TOF MS Profiling and Its Contribution to Mosquito-Borne Diseases: A Systematic Review
by Monique Melo Costa, Vincent Corbel, Refka Ben Hamouda and Lionel Almeras
Viewed by 720
Abstract
Mosquito-borne diseases are responsible for hundreds of thousands of deaths per year. The identification and control of the vectors that transmit pathogens to humans are crucial for disease prevention and management. Currently, morphological classification and molecular analyses via DNA barcoding are the standard [...] Read more.
Mosquito-borne diseases are responsible for hundreds of thousands of deaths per year. The identification and control of the vectors that transmit pathogens to humans are crucial for disease prevention and management. Currently, morphological classification and molecular analyses via DNA barcoding are the standard methods used for vector identification. However, these approaches have several limitations. In the last decade, matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as an innovative technology in biological sciences and is now considered as a relevant tool for the identification of pathogens and arthropods. Beyond species identification, this tool is also valuable for determining various life traits of arthropod vectors. The purpose of the present systematic review was to highlight the contribution of MALDI-TOF MS to the surveillance and control of mosquito-borne diseases. Published articles from January 2003 to August 2024 were retrieved, focusing on different aspects of mosquito life traits that could be determinants in disease transmission and vector management. The screening of the scientific literature resulted in the selection of 54 published articles that assessed MALDI-TOF MS profiling to study various mosquito biological factors, such species identification, life expectancy, gender, trophic preferences, microbiota, and insecticide resistance. Although a large majority of the selected articles focused on species identification, the present review shows that MALDI-TOF MS profiling is promising for rapidly identifying various mosquito life traits, with high-throughput capacity, reliability, and low cost. The strengths and weaknesses of this proteomic tool for vector control and surveillance are discussed. Full article
Show Figures

Graphical abstract

14 pages, 2283 KiB  
Article
The First Isolation of Insect-Specific Alphavirus (Agua Salud alphavirus) in Culex (Melanoconion) Mosquitoes in the Brazilian Amazon
by Bruna Ramos, Valéria Carvalho, Eliana da Silva, Maria Freitas, Landeson Junior Barros, Maissa Santos, Jamilla Augusta Pantoja, Ercília Gonçalves, Joaquim Nunes Neto, José Wilson Junior, Durval Vieira, Daniel Dias, Ana Cecília Cruz, Bruno Nunes, Sandro Silva, Carine Aragão, Alexandre Casseb and Lívia Martins
Viruses 2024, 16(9), 1355; https://doi.org/10.3390/v16091355 - 24 Aug 2024
Viewed by 639
Abstract
Advances in diagnostic techniques coupled with ongoing environmental changes have resulted in intensified surveillance and monitoring of arbovirus circulation in the Amazon. This increased effort has resulted in increased detection of insect-specific viruses among hematophagous arthropods collected in the field. This study aimed [...] Read more.
Advances in diagnostic techniques coupled with ongoing environmental changes have resulted in intensified surveillance and monitoring of arbovirus circulation in the Amazon. This increased effort has resulted in increased detection of insect-specific viruses among hematophagous arthropods collected in the field. This study aimed to document the first isolation of Agua Salud alphavirus in mosquitoes collected within the Brazilian Amazon. Arthropods belonging to the family Culicidae were collected within a forest fragment located in the Environmental Protection Area of the metropolitan region of Belem. Subsequently, these specimens were meticulously identified to the species level. Afterward, the collected batches were macerated, and the resulting supernatant was then inoculated into C6/36 and Vero cell cultures to facilitate viral isolation. The presence of arboviruses within the inoculated cell cultures was determined through indirect immunofluorescence analysis. Furthermore, positive supernatant samples underwent nucleotide sequencing to precisely identify the viral strains present. Notably, a batch containing Culex (Melanoconion) mosquitoes was identified to be positive for the genus Alphavirus via indirect immunofluorescence. This study is the first report on insect-specific alphavirus isolation in Brazil and the first-ever description of Agua Salud alphavirus isolation within Amazon Forest remnants. Full article
(This article belongs to the Special Issue Advances in Alphavirus and Flavivirus Research)
Show Figures

Figure 1

19 pages, 8173 KiB  
Article
Etravirine Prevents West Nile Virus and Chikungunya Virus Infection Both In Vitro and In Vivo by Inhibiting Viral Replication
by Xu Zheng, Yanhua He, Binghui Xia, Wanda Tang, Congcong Zhang, Dawei Wang, Hailin Tang, Ping Zhao, Haoran Peng and Yangang Liu
Pharmaceutics 2024, 16(9), 1111; https://doi.org/10.3390/pharmaceutics16091111 - 23 Aug 2024
Viewed by 534
Abstract
Diseases transmitted by arthropod-borne viruses such as West Nile virus (WNV) and chikungunya virus (CHIKV) pose threat to global public health. Unfortunately, to date, there is no available approved drug for severe symptoms caused by both viruses. It has been reported that reverse [...] Read more.
Diseases transmitted by arthropod-borne viruses such as West Nile virus (WNV) and chikungunya virus (CHIKV) pose threat to global public health. Unfortunately, to date, there is no available approved drug for severe symptoms caused by both viruses. It has been reported that reverse transcriptase inhibitors can effectively inhibit RNA polymerase activity of RNA viruses. We screened the anti-WNV activity of the FDA-approved reverse transcriptase inhibitor library and found that 4 out of 27 compounds showed significant antiviral activity. Among the candidates, etravirine markedly inhibited WNV infection in both Huh 7 and SH-SY5Y cells. Further assays revealed that etravirine inhibited the infection of multiple arboviruses, including yellow fever virus (YFV), tick-borne encephalitis virus (TBEV), and CHIKV. A deeper study at the phase of action showed that the drug works primarily during the viral replication process. This was supported by the strong interaction potential between etravirine and the RNA-dependent RNA polymerase (RdRp) of WNV and alphaviruses, as evaluated using molecular docking. In vivo, etravirine significantly rescued mice from WNV infection-induced weight loss, severe neurological symptoms, and death, as well as reduced the viral load and inflammatory cytokines in target tissues. Etravirine showed antiviral effects in both arthrophlogosis and lethal mouse models of CHIKV infection. This study revealed that etravirine is an effective anti-WNV and CHIKV arbovirus agent both in vitro and in vivo due to the inhibition of viral replication, providing promising candidates for clinical application. Full article
Show Figures

Figure 1

15 pages, 3734 KiB  
Article
Effects of Different Tillage Years on Soil Composition and Ground-Dwelling Arthropod Diversity in Gravel-Sand Mulching Watermelon Fields
by Haixiang Zhang, Ziyu Cao, Yifan Cui, Changyu Xiong, Wei Sun, Ying Wang, Liping Ban, Rong Zhang and Shuhua Wei
Agronomy 2024, 14(8), 1841; https://doi.org/10.3390/agronomy14081841 - 20 Aug 2024
Viewed by 322
Abstract
Arthropods play a crucial role in ecological processes and agricultural productivity. Soil physicochemical properties, indicators of soil health, are closely linked to arthropod communities. Gravel-sand mulching, commonly employed in arid farming, initially enhances water retention and temperature regulation but may contribute to land [...] Read more.
Arthropods play a crucial role in ecological processes and agricultural productivity. Soil physicochemical properties, indicators of soil health, are closely linked to arthropod communities. Gravel-sand mulching, commonly employed in arid farming, initially enhances water retention and temperature regulation but may contribute to land degradation with prolonged use. This study investigated how varying tillage durations affected soil properties and arthropod diversity under gravel-sand mulching. The analysis employed multiple comparison methods, covariance analysis (ANCOVA), non-metric multidimensional scaling (NMDS), and redundancy analysis (RDA). The results indicated that while soil fertility was better preserved in cultivated fields compared to in the desert grassland, arthropod diversity significantly decreased with longer cultivation periods. A total of 1099 arthropods from 79 species were sampled, by Barber trap. The highest diversity was observed in native grassland (NG), with 305 arthropods from 39 species, while tillage 21 years (GPS-21Y) exhibited the lowest diversity, with only 103 arthropods from 6 species. Dominant species included the carnivores Labidura japonica and Cataglyphis aenes. The analysis revealed low similarity in arthropod communities between GPS-21Y and other fields and high similarity in soil physicochemical properties between NG and the transition zone (STZ). RDA showed available potassium (APP) was negatively correlated with arthropod species diversity and concentration, total Nitrogen (TN) was positively correlated with arthropod species diversity but negatively correlated with species concentration, total phosphorus (TP) was negatively correlated with arthropod species diversity and concentration. This study provides insights into the relationship between maintaining soil fertility and supporting arthropod diversity in grassland agriculture. While soil fertility and arthropod diversity were correlated, continuous cropping practices negatively impacted arthropod diversity, offering valuable information for pest management and sustainable agricultural practices. Full article
(This article belongs to the Special Issue Sustainable Pest Management under Climate Change)
Show Figures

Figure 1

15 pages, 1658 KiB  
Article
Spatial and Temporal Variation in the Antagonistic and Mutualistic Interactions among Seed Predator Arthropods, Seed-Dispersing Birds, and the Spanish Juniper
by Eduardo T. Mezquida and José Miguel Olano
Viewed by 640
Abstract
Plants interact with both antagonistic and mutualistic animals during reproduction, with the outcomes of these interactions significantly influencing plant reproductive success, population dynamics, and the evolution of plant traits. Here, we investigated the spatial and temporal variations in the interactions between Juniperus thurifera [...] Read more.
Plants interact with both antagonistic and mutualistic animals during reproduction, with the outcomes of these interactions significantly influencing plant reproductive success, population dynamics, and the evolution of plant traits. Here, we investigated the spatial and temporal variations in the interactions between Juniperus thurifera, its seed-dispersing birds, and three specific arthropod species that attack the fleshy cones during the predispersal period. We assessed how plant traits affect levels of cone damage by arthropods and seed dispersal by birds, the occurrence of competition among arthropod species, and the impact of seed predators on the activity of frugivores. Plant traits, cone damage by arthropods, and seed dispersal by birds showed spatiotemporal variability. Fluctuation in cone abundance was the leading factor determining damage by arthropods and bird dispersal with a secondary role of cone traits. Large crops satiated predispersal seed predators, although the amount of frugivory did not increase significantly, suggesting a potential satiation of bird dispersers. Crop size and cone traits at individual trees determined preferences by seed predator species and the foraging activity of bird dispersers. Competition among arthropods increased during years of low cone production, and seed predators sometimes negatively affected bird frugivory. High supra-annual variations in cone production appear to be a key evolutionary mechanism enhancing J. thurifera reproductive success. This strategy reduces the impact of specialized seed predators during years of high seed production, despite the potential drawback of satiating seed dispersers. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

13 pages, 1943 KiB  
Article
Exploring Virus Diversity in the Potato leafhopper (Empoasca fabae), an Economically Important Agricultural Pest
by Thanuja Thekke-Veetil, Doris Lagos-Kutz, Leslie L. Domier, Nancy K. McCoppin, Glen L. Hartman and Steven J. Clough
Viruses 2024, 16(8), 1305; https://doi.org/10.3390/v16081305 - 16 Aug 2024
Viewed by 553
Abstract
The potato leafhopper (Empoasca fabae, PLH) is a serious pest that feeds on a wide range of agricultural crops and is found throughout the United States but is not known to be a vector for plant-infecting viruses. We probed the diversity [...] Read more.
The potato leafhopper (Empoasca fabae, PLH) is a serious pest that feeds on a wide range of agricultural crops and is found throughout the United States but is not known to be a vector for plant-infecting viruses. We probed the diversity of virus sequences in field populations of PLH collected from four Midwestern states: Illinois, Indiana, Iowa, and Minnesota. High-throughput sequencing data from total RNAs extracted from PLH were used to assemble sequences of fifteen positive-stranded RNA viruses, two negative-stranded RNA viruses, and one DNA virus. These sequences included ten previously described plant viruses and eight putative insect-infecting viruses. All but one of the insect-specific viruses were novel and included three solemoviruses, one iflavirus, one phenuivirus, one lispivirus, and one ambidensovirus. Detailed analyses of the novel genome sequences and their evolutionary relationships with related family members were conducted. Our study revealed a diverse group of plant viruses circulating in the PLH population and discovered novel insect viruses, expanding knowledge on the untapped virus diversity in economically important crop pests. Our findings also highlight the importance of monitoring the emergence and circulation of plant-infecting viruses in agriculturally important arthropod pests. Full article
(This article belongs to the Special Issue Molecular Virus-Insect Interactions)
Show Figures

Figure 1

13 pages, 1953 KiB  
Article
Potential for Grain Sorghum as a Trap and Nursery Crop for Helicoverpa zea and Its Natural Enemies and Dissemination of HearNPV into Cotton
by Wilfrid Calvin, Jeffrey Gore, Jeremy Greene, Lindsey Perkin and David L. Kerns
Agronomy 2024, 14(8), 1779; https://doi.org/10.3390/agronomy14081779 - 13 Aug 2024
Viewed by 531
Abstract
Experiments were conducted in 2020 and 2021 in College Station, TX; Stoneville, MS; and Blackville, SC, to evaluate the potential of grain sorghum to serve as a trap crop for Helicoverpa zea (Boddie), a nursery crop for natural enemies of H. zea, [...] Read more.
Experiments were conducted in 2020 and 2021 in College Station, TX; Stoneville, MS; and Blackville, SC, to evaluate the potential of grain sorghum to serve as a trap crop for Helicoverpa zea (Boddie), a nursery crop for natural enemies of H. zea, and a source of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) for H. zea management in cotton. The experiments consisted of three treatments, including cotton-only, non-treated cotton–sorghum, and HearNPV-treated cotton–sorghum. Variables, including percent injury to fruiting forms, parasitized H. zea larvae, egg density, H. zea larval density, beneficial arthropod numbers, and HearNPV prevalence, were compared between the treatments. Growing cotton in an intercropping system with grain sorghum did not result in a consistent increase in H. zea control and beneficial arthropod density relative to the cotton-only treatment. Additionally, our results did not show sufficient evidence that grain sorghum interplanted with cotton can serve as a source of HearNPV that can favor H. zea control in cotton. However, we found that, if maintained in the cotton canopy, HearNPV may favor some level of H. zea suppression in cotton. Based on our HearNPV infection analyses using PCR, chrysopids, coccinellids, pentatomids, reduviids, formicids, anthocorids, and spiders appeared to be carrying HearNPV. The virus was detected consistently in specimens of coccinellids, pentatomids, and reduviids across both years of the study. We suggest that further investigation on virus efficacy against H. zea in cotton using the sorghum–cotton system as well as the ability of grain sorghum to serve as a H. zea trap crop and source of H. zea natural enemies be considered in future studies. Full article
Show Figures

Figure 1

11 pages, 2752 KiB  
Article
Detection of Dengue Virus 1 and Mammalian Orthoreovirus 3, with Novel Reassortments, in a South African Family Returning from Thailand, 2017
by Petrus Jansen van Vuren, Rhys H. Parry and Janusz T. Pawęska
Viruses 2024, 16(8), 1274; https://doi.org/10.3390/v16081274 - 9 Aug 2024
Viewed by 616
Abstract
In July 2017, a family of three members, a 46-year-old male, a 45-year-old female and their 8-year-old daughter, returned to South Africa from Thailand. They presented symptoms consistent with mosquito-borne diseases, including fever, headache, severe body aches and nausea. Mosquito bites in all [...] Read more.
In July 2017, a family of three members, a 46-year-old male, a 45-year-old female and their 8-year-old daughter, returned to South Africa from Thailand. They presented symptoms consistent with mosquito-borne diseases, including fever, headache, severe body aches and nausea. Mosquito bites in all family members suggested recent exposure to arthropod-borne viruses. Dengue virus 1 (Genus Orthoflavivirus) was isolated (isolate no. SA397) from the serum of the 45-year-old female via intracerebral injection in neonatal mice and subsequent passage in VeroE6 cells. Phylogenetic analysis of this strain indicated close genetic identity with cosmopolitan genotype 1 DENV1 strains from Southeast Asia, assigned to major lineage K, minor lineage 1 (DENV1I_K.1), such as GZ8H (99.92%) collected in November 2018 from China, and DV1I-TM19-74 isolate (99.72%) identified in Bangkok, Thailand, in 2019. Serum samples from the 46-year-old male yielded a virus isolate that could not be confirmed as DENV1, prompting unbiased metagenomic sequencing for virus identification and characterization. Illumina sequencing identified multiple segments of a mammalian orthoreovirus (MRV), designated as Human/SA395/SA/2017. Genomic and phylogenetic analyses classified Human/SA395/SA/2017 as MRV-3 and assigned a tentative genotype, MRV-3d, based on the S1 segment. Genomic analyses suggested that Human/SA395/SA/2017 may have originated from reassortments of segments among swine, bat, and human MRVs. The closest identity of the viral attachment protein σ1 (S1) was related to a human isolate identified from Tahiti, French Polynesia, in 1960. This indicates ongoing circulation and co-circulation of Southeast Asian and Polynesian strains, but detailed knowledge is hampered by the limited availability of genomic surveillance. This case represents the rare concurrent detection of two distinct viruses with different transmission routes in the same family with similar clinical presentations. It highlights the complexity of diagnosing diseases with similar sequelae in travelers returning from tropical areas. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

17 pages, 1270 KiB  
Review
TRIMming down Flavivirus Infections
by Marion Cannac and Sébastien Nisole
Viruses 2024, 16(8), 1262; https://doi.org/10.3390/v16081262 - 6 Aug 2024
Viewed by 743
Abstract
Flaviviruses comprise a large number of arthropod-borne viruses, some of which are associated with life-threatening diseases. Flavivirus infections are rising worldwide, mainly due to the proliferation and geographical expansion of their vectors. The main human pathogens are mosquito-borne flaviviruses, including dengue virus, Zika [...] Read more.
Flaviviruses comprise a large number of arthropod-borne viruses, some of which are associated with life-threatening diseases. Flavivirus infections are rising worldwide, mainly due to the proliferation and geographical expansion of their vectors. The main human pathogens are mosquito-borne flaviviruses, including dengue virus, Zika virus, and West Nile virus, but tick-borne flaviviruses are also emerging. As with any viral infection, the body’s first line of defense against flavivirus infections is the innate immune defense, of which type I interferon is the armed wing. This cytokine exerts its antiviral activity by triggering the synthesis of hundreds of interferon-induced genes (ISGs), whose products can prevent infection. Among the ISGs that inhibit flavivirus replication, certain tripartite motif (TRIM) proteins have been identified. Although involved in other biological processes, TRIMs constitute a large family of antiviral proteins active on a wide range of viruses. Furthermore, whereas some TRIM proteins directly block viral replication, others are positive regulators of the IFN response. Therefore, viruses have developed strategies to evade or counteract TRIM proteins, and some even hijack certain TRIM proteins to their advantage. In this review, we summarize the current state of knowledge on the interactions between flaviviruses and TRIM proteins, covering both direct and indirect antiviral mechanisms. Full article
(This article belongs to the Special Issue TRIM Proteins in Antiviral Immunity and Virus Pathogenesis)
Show Figures

Figure 1

22 pages, 6248 KiB  
Article
DNA Metabarcoding Analysis of Arthropod Diversity in Dust from the Natural History Museum, Vienna
by Pascal Querner, Nikola Szucsich, Bill Landsberger and Peter Brimblecombe
Diversity 2024, 16(8), 476; https://doi.org/10.3390/d16080476 - 6 Aug 2024
Viewed by 1084
Abstract
This paper introduces a new method for identifying museum pests through the analysis of DNA present in settled dust. Traditionally, the identification of pests in cultural institutions such as museums and depositories has relied on insect trapping (monitoring). They give good results but [...] Read more.
This paper introduces a new method for identifying museum pests through the analysis of DNA present in settled dust. Traditionally, the identification of pests in cultural institutions such as museums and depositories has relied on insect trapping (monitoring). They give good results but need time (minimum spring until summer of one year for a complete survey) and face challenges related to the identification of small, rare, or damaged species. Our study presents a non-invasive approach that utilizes metabarcoding analysis of dust samples to identify pests and other arthropods at the species level. We collected dust samples with a handheld vacuum cleaner in summer 2023 from the six different floors of the Natural History Museum in Vienna and compared the results with the insect monitoring. We found over 359 different species of arthropods in the museum and could show how the diversity increases with the elevation of the building floor. This method could be used for rapid and cost-effective screening of pests before monitoring. But the interpretation of results is sometimes difficult (for Lepismatidae, for example), and it cannot replace a continuous monitoring of pests with traps. This investigation might present the highest indoor animal biodiversity ever found in a single building. Full article
(This article belongs to the Special Issue DNA Barcodes for Evolution and Biodiversity—2nd Edition)
Show Figures

Figure 1

Back to TopTop