Vesicular Stomatitis Virus Detected in Biting Midges and Black Flies during the 2023 Outbreak in Southern California
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Collections
2.2. Vesicular Stomatitis Host Premises Data for San Diego County
2.3. Morphological Identification of Insects
2.4. Viral RNA Extraction and RT-qPCR for VSNJV Detection
2.5. Molecular Identification of C. variipennis Complex
2.6. Infectious Virus Isolation
2.7. Environmental Data
2.8. Statistical Analyses
3. Results
3.1. Culicoides and Simulium Individuals Were Collected throughout San Diego County
3.2. VSNJV RNA and Infectious Virus Detected in Culicoides and Simulium Pools
3.3. VSNJV-Positive Pools Were Collected at a Wildlife Park When Rhinoceros Were Symptomatic
3.4. Field Infection Rates
3.5. Environmental Conditions in San Diego County before and during the Outbreak Were Atypical
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Letchworth, G.; Rodriguez, L.; Del Cbarrera, J. Vesicular stomatitis. Vet. J. 1999, 157, 239–260. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.L.; Bunch, T.A.; Fraire, M.; Llewellyn, Z.N. Re-emergence of vesicular stomatitis in the western United States is associated with distinct viral genetic lineages. Virology 2000, 271, 171–181. [Google Scholar] [CrossRef]
- Pelzel-McClusky, A.M. Vesicular stomatitis in large animals. In Merck Veterinary Manual, Online Edition; Merck & Co. Inc.: Kenilworth, NJ, USA, 2022. [Google Scholar]
- Schmidtmann, E.; Tabachnick, W.; Hunt, G.; Thompson, L.; Hurd, H. 1995 epizootic of vesicular stomatitis (New Jersey serotype) in the western United States: An entomologic perspective. J. Med. Entomol. 1999, 36, 1–7. [Google Scholar] [CrossRef]
- Pelzel-McCluskey, A.M. Vesicular Stomatitis Virus. Vet. Clin. N. Am. Food Anim. Pract. 2024, 40, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Goodger, W.; Thurmond, M.; Nehay, J.; Mitchell, J.; Smith, P. Economic impact of an epizootic of bovine vesicular stomatitis in California. J. Am. Vet. Med. Assoc. 1985, 186, 370–373. [Google Scholar] [PubMed]
- Alderink, F.J. Vesicular stomatitis epidemic in Colorado: Clinical observations and financial losses reported by dairymen. Prev. Vet. Med. 1984, 3, 29–44. [Google Scholar] [CrossRef]
- Thurmond, M.; Ardans, A.; Picanso, J.; McDowell, T.; Reynolds, B.; Saito, J. Vesicular stomatitis virus (New Jersey strain) infection in two California dairy herds: An epidemiologic study. J. Am. Vet. Med. Assoc. 1987, 191, 965–970. [Google Scholar]
- Stallknecht, D.E.; Perzak, D.E.; Bauer, L.D.; Murphy, M.D.; Howerth, E.W. Contact transmission of vesicular stomatitis virus New Jersey in pigs. Am. J. Vet. Res. 2001, 62, 516–520. [Google Scholar] [CrossRef]
- Rozo-Lopez, P.; Drolet, B.S.; Londoño-Renteria, B. Vesicular stomatitis virus transmission: A comparison of incriminated vectors. Insects 2018, 9, 190. [Google Scholar] [CrossRef]
- De Leon, A.A.P.; Tabachnick, W.J. Transmission of vesicular stomatitis New Jersey virus to cattle by the biting midge Culicoides sonorensis (Diptera: Ceratopogonidae). J. Med. Entomol. 2006, 43, 323–329. [Google Scholar] [CrossRef]
- De León, A.A.P.; O’Toole, D.; Tabachnick, W.J. Infection of guinea pigs with vesicular stomatitis New Jersey virus transmitted by Culicoides sonorensis (Diptera: Ceratopogonidae). J. Med. Entomol. 2006, 43, 568–573. [Google Scholar] [CrossRef]
- Drolet, B.S.; Campbell, C.L.; Stuart, M.A.; Wilson, W.C. Vector competence of Culicoides sonorensis (Diptera: Ceratopogonidae) for vesicular stomatitis virus. J. Med. Entomol. 2005, 42, 409–418. [Google Scholar] [CrossRef]
- Mead, D.G.; Maré, C.J.; Ramberg, F.B. Bite transmission of vesicular stomatitis virus (New Jersey serotype) to laboratory mice by Simulium vittatum (Diptera: Simuliidae). J. Med. Entomol. 1999, 36, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Mead, D.G.; Mare, C.; Cupp, E. Vector competence of select black fly species for vesicular stomatitis virus (New Jersey serotype). Am. J. Trop. Med. Hyg. 1997, 57, 42–48. [Google Scholar] [CrossRef]
- Mead, D.G.; Gray, E.W.; Noblet, R.; Murphy, M.D.; Howerth, E.W.; Stallknecht, D.E. Biological transmission of vesicular stomatitis virus (New Jersey serotype) by Simulium vittatum (Diptera: Simuliidae) to domestic swine (Sus scrofa). J. Med. Entomol. 2004, 41, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Mead, D.; Lovett, K.R.; Murphy, M.; Pauszek, S.; Smoliga, G.; Gray, E.; Noblet, R.; Overmyer, J.; Rodriguez, L. Experimental transmission of vesicular stomatitis New Jersey virus from Simulium vittatum to cattle: Clinical outcome is influenced by site of insect feeding. J. Med. Entomol. 2009, 46, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Francy, D.; Moore, C.; Smith, G.; Jakob, W.; Taylor, S.; Calisher, C. Epizoötic vesicular stomatitis in Colorado, 1982: Isolation of virus from insects collected along the northern Colorado Rocky Mountain Front Range. J. Med. Entomol. 1988, 25, 343–347. [Google Scholar] [CrossRef]
- Schnitzlein, W.; Reichmann, M. Characterization of New Jersey vesicular stomatitis virus isolates from horses and black flies during the 1982 outbreak in Colorado. Virology 1985, 142, 426–431. [Google Scholar] [CrossRef]
- Comer, J.A.; Tesh, R.B.; Modi, G.B.; Corn, J.L.; Nettles, V.F. Vesicular stomatitis virus, New Jersey serotype: Replication in and transmission by Lutzomyia shannoni (Diptera: Psychodidae). Am. J. Trop. Med. Hyg. 1990, 42, 483–490. [Google Scholar] [CrossRef]
- Comer, J.A.; Corn, J.L.; Stallknecht, D.E.; Landgraf, J.G.; Nettles, V.F. Titers of vesicular stomatitis virus, New Jersey serotype, in naturally infected male and female Lutzomyia shannoni (Diptera: Psychodidae) in Georgia. J. Med. Entomol. 1992, 29, 368–370. [Google Scholar] [CrossRef]
- Comer, J.; Stallknecht, D.; Corn, J.; Nettles, V. Lutzomyia shannoni (Diptera: Psychodidae): A biological vector of the New Jersey serotype of vesicular stomatitis virus on Ossabaw Island, Georgia. Parassitologia 1991, 33, 151–158. [Google Scholar] [PubMed]
- Weaver, S.C.; Tesh, R.B.; Guzman, H. Ultrastructural aspects of replication of the New Jersey serotype of vesicular stomatitis virus in a suspected sand fly vector, Lutzomyia shannoni (Diptera: Psychodidae). Am. J. Trop. Med. Hyg. 1992, 46, 201–210. [Google Scholar] [CrossRef]
- Sudia, W.D.; Fields, B.N.; Calisher, C.H. The isolation of vesicular stomatitis virus (Indiana strain) and other viruses from mosquitoes in New Mexico, 1965. Am. J. Epidemiol. 1967, 86, 598–602. [Google Scholar] [CrossRef]
- Mussgay, M.; Suárez, O. Multiplication of vesicular stomatitis virus in Aedes aegypti (L.) mosquitoes. Virology 1962, 17, 202–204. [Google Scholar] [CrossRef]
- Bergold, G.; Suarez, O.; Munz, K. Multiplication in and transmission by Aedes aegypti of vesicular stomatitis virus. J. Invertebr. Pathol. 1968, 11, 406–428. [Google Scholar] [CrossRef]
- Liu, I.; Zee, Y.C. The pathogenesis of vesicular stomatitis virus, serotype Indiana, in Aedes aegypti mosquitoes. I. Intrathoracic injection. Am. J. Trop. Med. Hyg. 1976, 25, 177–185. [Google Scholar] [CrossRef]
- Limesand; Higgs; Pearson; Beaty. Potentiation of vesicular stomatitis New Jersey virus infection in mice by mosquito saliva. Parasite Immunol. 2000, 22, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Mead, D.G.; Ramberg, F.B.; Besselsen, D.G.; Maré, C.J. Transmission of vesicular stomatitis virus from infected to noninfected black flies co-feeding on nonviremic deer mice. Science 2000, 287, 485–487. [Google Scholar] [CrossRef] [PubMed]
- Rozo-Lopez, P.; Londono-Renteria, B.; Drolet, B.S. Venereal transmission of vesicular stomatitis virus by Culicoides sonorensis midges. Pathogens 2020, 9, 316. [Google Scholar] [CrossRef]
- McGregor, B.L.; Rozo-Lopez, P.; Davis, T.M.; Drolet, B.S. Detection of Vesicular Stomatitis Virus Indiana from Insects Collected during the 2020 Outbreak in Kansas, USA. Pathogens 2021, 10, 1126. [Google Scholar] [CrossRef]
- Young, K.I.; Valdez, F.; Vaquera, C.; Campos, C.; Zhou, L.; Vessels, H.K.; Moulton, J.K.; Drolet, B.S.; Rozo-Lopez, P.; Pelzel-McCluskey, A.M. Surveillance along the Rio Grande during the 2020 vesicular stomatitis outbreak reveals spatio-temporal dynamics of and viral RNA detection in black flies. Pathogens 2021, 10, 1264. [Google Scholar] [CrossRef]
- Drolet, B.S.; Reeves, W.K.; Bennett, K.E.; Pauszek, S.J.; Bertram, M.R.; Rodriguez, L.L. Identical viral genetic sequence found in black flies (Simulium bivittatum) and the equine index case of the 2006 US vesicular stomatitis outbreak. Pathogens 2021, 10, 929. [Google Scholar] [CrossRef] [PubMed]
- Whelpley, M.J.; Zhou, L.H.; Rascon, J.; Payne, B.; Moehn, B.; Young, K.I.; Mire, C.E.; Peters, D.P.; Rodriguez, L.L.; Hanley, K.A. Community composition of black flies during and after the 2020 vesicular stomatitis virus outbreak in Southern New Mexico, USA. Parasites Vectors 2024, 17, 93. [Google Scholar] [CrossRef]
- WHO. Arboviruses and Human Disease: Report of a WHO Scientific Group [Meeting Held in Geneva from 26 September to 1 October 1966]; World Health Organization: Geneva, Switzerland, 1967. [Google Scholar]
- Rodríguez, L.L. Emergence and re-emergence of vesicular stomatitis in the United States. Virus Res. 2002, 85, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.; Thurmond, M.; Thorburn, M. Factors associated with the spread of clinical vesicular stomatitis in California dairy cattle. Am. J. Vet. Res. 1985, 46, 789–795. [Google Scholar] [PubMed]
- USDA-APHIS. Vesicular Stomatitis Virus (VSV) Situation Report—May 17, 2023; USDA-APHIS: Riverdale Park, MD, USA, 2023; pp. 1–2.
- USDA-APHIS. Vesicular Stomatitis Virus (VSV) Situation Report—January 22, 2024; USDA-APHIS: Riverdale Park, MD, USA, 2024; pp. 1–5.
- Berlin, E.R.; Kinney, M.E.; Howard, L.L.; Perrin, K.L.; Rodriguez, P.; Kubiski, S.V.; Phair, K.A. Vesicular stomatitis virus in two species of rhinoceros at a California zoological park. Am. J. Vet. Res. 2024, 85, 1–10. [Google Scholar] [CrossRef]
- USDA. 2022 Census of Agriculture: California State and County Data; USDA: Washington DC, USA, 2022; p. 5. Available online: https://www.nass.usda.gov/Publications/AgCensus/2022/Full_Report/Census_by_State/California/index.php (accessed on 1 August 2024).
- USDA-ERS. Cash Receipts by State; USDA-ERS: Washington DC, USA, 2022. Available online: https://data.ers.usda.gov/reports.aspx?ID=17843 (accessed on 1 August 2024).
- American Horse Council Foundation. 2023 Economic Impact Study of the Horse Industry; American Horse Council Foundation: McLean VA, USA, 2023. [Google Scholar]
- Borkent, A.; Dominiak, P. Catalog of the biting midges of the world (Diptera: Ceratopogonidae). Zootaxa 2020, 4787, 1–377. [Google Scholar] [CrossRef]
- Adler, P.H.; Crosskey, R.W. World blackflies (Diptera: Simuliidae): A comprehensive revision of the taxonomic and geographical inventory. 2020. Zootaxa 2019, 4455, 1–144. [Google Scholar]
- Adler, P.H.; Huang, S. Chromosomes as barcodes: Discovery of a new species of black fly (Diptera: Simuliidae) from California, USA. Insects 2022, 13, 903. [Google Scholar] [CrossRef]
- Wirth, W.W.; Dyce, A.; Peterson, B.V. An atlas of wing photographs, with a summary of the numerical characters of the Nearctic species of Culicoides (Diptera: Ceratopogonidae). Contrib. Am. Entomol. Inst. 1985, 22, 1–46. [Google Scholar]
- Wirth, W.W.; Blanton, F.S. North America Culicoides of the pulicaris group (Diptera: Ceratopogonidae). Fla. Entomol. 1969, 52, 207–243. [Google Scholar] [CrossRef]
- Kato, C.Y.; Mayer, R.T. An improved, high-throughput method for detection of bluetongue virus RNA in Culicoides midges utilizing infrared-dye-labeled primers for reverse transcriptase PCR. J. Virol. Methods 2007, 140, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Hole, K.; Velazques-Salinas, L.; Clavijo, A. Improvement and optimization of a multiplex real-time reverse transcription polymerase chain reaction assay for the detection and typing of Vesicular Stomatitis Virus. J. Vet. Diagn. Investig. 2010, 22, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Rozo-Lopez, P.; Londono-Renteria, B.; Drolet, B.S. Impacts of infectious dose, feeding behavior, and age of Culicoides sonorensis biting midges on infection dynamics of vesicular stomatitis virus. Pathogens 2021, 10, 816. [Google Scholar] [CrossRef]
- Flomer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Peters, D.P.; McVey, D.S.; Elias, E.H.; Pelzel-McCluskey, A.M.; Derner, J.D.; Burruss, N.D.; Schrader, T.S.; Yao, J.; Pauszek, S.J.; Lombard, J. Big data–model integration and AI for vector-borne disease prediction. Ecosphere 2020, 11, e03157. [Google Scholar] [CrossRef]
- Elias, E.; McVey, D.S.; Peters, D.; Derner, J.D.; Pelzel-McCluskey, A.; Schrader, T.S.; Rodriguez, L. Contributions of hydrology to vesicular stomatitis virus emergence in the western USA. Ecosystems 2019, 22, 416–433. [Google Scholar] [CrossRef]
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide (Collection 6); NASA: Washington, DC, USA, 2015; Volume 2015, p. 31.
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- PRISM Climate Group, Oregon State University. Available online: https://prism.oregonstate.edu (accessed on 8 April 2024).
- Hart, E.M.; Bell, K. prism: Download Data from the Oregon Prism Project. R Package Version 0.0.6. 2015. Available online: https://github.com/ropensci/prism (accessed on 1 August 2024).
- RCoreTeam. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Biggerstaff, B.J.; Petersen, L.R. Estimated risk of transmission of the West Nile virus through blood transfusion in the US, 2002. Transfusion 2003, 43, 1007–1017. [Google Scholar] [CrossRef]
- Gu, W.; Lampman, R.; Novak, R.J. Problems in estimating mosquito infection rates using minimum infection rate. J. Med. Entomol. 2003, 40, 595–596. [Google Scholar] [CrossRef]
- Kramer, W.L.; Jones, R.H.; Holbrook, F.R.; Walton, T.E.; Calisher, C.H. Isolation of arboviruses from Culicoides midges (Diptera: Ceratopogonidae) in Colorado during an epizootic of vesicular stomatitis New Jersey. J. Med. Entomol. 1990, 27, 487–493. [Google Scholar] [CrossRef]
- Walton, T.; Webb, P.; Kramer, W.; Smith, G.; Davis, T.; Holbrook, F.; Moore, C.; Schiefer, T.; Jones, R.; Janney, G. Epizootic vesicular stomatitis in Colorado, 1982: Epidemiologic and entomologic studies. Am. J. Trop. Med. Hyg. 1987, 36, 166–176. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Gerry, A.C. Seasonal change and influence of environmental variables on host-seeking activity of the biting midge Culicoides sonorensis at a southern California dairy, USA. Parasites Vectors 2024, 17, 212. [Google Scholar] [CrossRef] [PubMed]
- Tabachnick, W.J. Culicoides variipennis and bluetongue-virus epidemiology in the United States. Annu. Rev. Entomol. 1996, 41, 23–43. [Google Scholar] [CrossRef] [PubMed]
- Shults, P.; Moran, M.; Blumenfeld, A.J.; Vargo, E.L.; Cohnstaedt, L.W.; Eyer, P.-A. Development of microsatellite markers for population genetics of biting midges and a potential tool for species identification of Culicoides sonorensis Wirth & Jones. Parasites Vectors 2022, 15, 69. [Google Scholar] [PubMed]
- Adler, P.H.; Currie, D.C.; Wood, D.M.; Idema, R.M.; Zettler, L.W. The Black Flies (Simuliidae) of North America; Comstock Pub. Associates: New York, NY, USA, 2004. [Google Scholar]
- Medlock, J.; Balenghien, T.; Alten, B.; Versteirt, V.; Schaffner, F. Field sampling methods for mosquitoes, sandflies, biting midges and ticks: VectorNet project 2014–2018. EFSA Support. Publ. 2018, 15, 1435E. [Google Scholar] [CrossRef]
- McGregor, B.L.; Lewis, A. Host associations of Culicoides biting midges in Northeastern Kansas, USA. Animals 2023, 13, 2504. [Google Scholar] [CrossRef]
- Blanton, F.S.; Wirth, W.W. Arthropods of Florida and Neighboring Land Areas; Florida Dept of Agriculture and Consumer Services, Division of Plant Industry: Miami, FL, USA, 1979; Volume 10.
- Young, K.I.; Medwid, J.T.; Azar, S.R.; Huff, R.M.; Drumm, H.; Coffey, L.L.; Pitts, R.J.; Buenemann, M.; Vasilakis, N.; Perera, D. Identification of mosquito bloodmeals collected in diverse habitats in Malaysian Borneo using COI barcoding. Am. J. Trop. Med. Hyg. 2020, 5, 51. [Google Scholar] [CrossRef]
- McDermott, E.; Lysyk, T. Sampling considerations for adult and immature Culicoides (Diptera: Ceratopogonidae). J. Insect Sci. 2020, 20, 2. [Google Scholar] [CrossRef]
- Kettle, D.; Lawson, J. The early stages of British biting midges Culicoides latreille (Diptera: Ceratopogonidae) and allied genera. Bull. Entomol. Res. 1952, 43, 421–467. [Google Scholar] [CrossRef]
- González, M.; López, S.; Mullens, B.A.; Baldet, T.; Goldarazena, A. A survey of Culicoides developmental sites on a farm in northern Spain, with a brief review of immature habitats of European species. Vet. Parasitol. 2013, 191, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Hurd, H.S.; McCluskey, B.J.; Mumford, E.L. Management factors affecting the risk for vesicular stomatitis in livestock operations in the western United States. J. Am. Vet. Med. Assoc. 1999, 215, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- McCluskey, B.J.; Hurd, H.S.; Mumford, E.L. Review of the 1997 outbreak of vesicular stomatitis in the western United States. J. Am. Vet. Med. Assoc. 1999, 215, 1259–1262. [Google Scholar] [CrossRef] [PubMed]
- Peck, D.E.; Reeves, W.K.; Pelzel-McCluskey, A.M.; Derner, J.D.; Drolet, B.; Cohnstaedt, L.W.; Swanson, D.; McVey, D.S.; Rodriguez, L.L.; Peters, D.P. Management strategies for reducing the risk of equines contracting vesicular stomatitis virus (VSV) in the western United States. J. Equine Vet. Sci. 2020, 90, 103026. [Google Scholar] [CrossRef] [PubMed]
Species | Total N (Pools) | VSNJV + Pools (%) | Ct Range | MIR (95% CI) | MLE (95% CI) |
---|---|---|---|---|---|
Culicoides bergi | 75 (18) | 1 (5.6) | 35.61 | 8.0 (0–23.6) | 8.0 (0–23.8) |
Culicoides crepuscularis | 1 (1) | 0 | - | NA | NA |
Culicoides freeborni | 1048 (222) | 3 (1.4) | 34.8–35.6 | 2.9 (0–6.1) | 2.9 (0–6.1) |
Culicoides variipennis complex/ Culicoides occidentalis * | 1148 (242) | 5 (1.7) | 29.1–36.6 | 4.4 (0.5–8.2) | 4.4 (0.6–8.3) |
Simulium argus | 38 (18) | 1 (5.6) | 35.5 | 26.3 (0–77.2) | 26.7 (0–78.6) |
Simulium donovani | 42 (16) | 0 | - | NA | NA |
Simulium hippovorum | 36 (17) | 3 (17.6) | 28.2–36.2 | 83.3 (0–173.6) | 90.0 (0–188.9) |
Simulium tescorum | 1055 (228) | 9 (3.9) | 29.2–36.6 | 8.5 (3.0–14.1) | 8.6 (3.0–14.3) |
Simulium vittatum complex | 37 (14) | 3 (21.4) | 35.3–35.9 | 81.1 (0–169.0) | 88.9 (0–186.8) |
Date | Trap | Lesioned Rhinoceros Nearby (n) | VSNJV + Pools (n) | Vector Species |
---|---|---|---|---|
12 June 2023 | A | 7 | 2 | C. freeborni; S. vittatum complex |
10 July 2023 | A | 4 | 1 | S. hippovorum |
B | n/a | 1 | S. tescorum | |
C | n/a | 2 | S. argus; S. tescorum | |
E | 6 | 1 | S. hippovorum | |
F | n/a | 1 | C. freeborni | |
24 July 2023 | A | 2 | 1 | S. hippovorum |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scroggs, S.L.P.; Swanson, D.A.; Steele, T.D.; Hudson, A.R.; Reister-Hendricks, L.M.; Gutierrez, J.; Shults, P.; McGregor, B.L.; Taylor, C.E.; Davis, T.M.; et al. Vesicular Stomatitis Virus Detected in Biting Midges and Black Flies during the 2023 Outbreak in Southern California. Viruses 2024, 16, 1428. https://doi.org/10.3390/v16091428
Scroggs SLP, Swanson DA, Steele TD, Hudson AR, Reister-Hendricks LM, Gutierrez J, Shults P, McGregor BL, Taylor CE, Davis TM, et al. Vesicular Stomatitis Virus Detected in Biting Midges and Black Flies during the 2023 Outbreak in Southern California. Viruses. 2024; 16(9):1428. https://doi.org/10.3390/v16091428
Chicago/Turabian StyleScroggs, Stacey L. P., Dustin A. Swanson, Taylor D. Steele, Amy R. Hudson, Lindsey M. Reister-Hendricks, Jessica Gutierrez, Phillip Shults, Bethany L. McGregor, Caitlin E. Taylor, Travis M. Davis, and et al. 2024. "Vesicular Stomatitis Virus Detected in Biting Midges and Black Flies during the 2023 Outbreak in Southern California" Viruses 16, no. 9: 1428. https://doi.org/10.3390/v16091428