Estimation of Bubble Size and Gas Dispersion Property in Column Flotation
Abstract
:1. Introduction
2. Theoretical Aspects
3. Experimental
3.1. Column Flotation System
3.2. Bubble Size Measurements
4. Results and Discussion
4.1. Frother Concentration
4.2. Gas Velocity
4.3. Bubble-Rising Velocity
4.4. Bubble Surface Area Flux
4.5. Bubble Size Estimation
5. Conclusions
- Increasing the frother concentration significantly reduces bubble size, with a CCC identified at 120 ppm, above which bubble coalescence is effectively prevented. Increasing the frother concentration from 30 to 120 ppm changed the BSD from bimodal to unimodal, resulting in finer bubbles with minimum sizes of approximately 0.62 mm.
- Gas and wash water velocities substantially influenced bubble size, with gas holdup peaking at 27% at 1.08 cm/s a gas velocity. A higher gas velocity increases the bubble size through coalescence, whereas a higher wash water velocity reduces it, owing to the increased pressure. Optimizing these variables, along with the frother concentration, can enhance column stability and flotation performance.
- Bubble surface area flux decreases linearly with increasing bubble size and is significantly affected by gas velocity, ranging from 62.58 to 111.86 cm2/s/cm2 at gas velocities of 0.65 and 1.29 cm/s, respectively. The relationship between the bubble surface area flux and gas holdup is proportional, and both are influenced by the gas velocity, wash water velocity, and frother concentration.
- A strong correlation (R2 = 0.86) between measured and calculated bubble sizes was achieved, with an average bubble size of 0.64 mm and an estimation error of ±13%. The study demonstrates that bubble size and distribution can be effectively controlled under specific operational conditions (Jg = 0.65–1.3 cm/s, Jw = 0.13–0.52 cm/s, frother = 30–120 ppm). Further research on gas dispersion properties and sparger types is recommended to optimize flotation column performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Trass, O. Characterization and preparation of biomass, oil shale and coal-based feedstocks. In Advances in Clean Hydrocarbon Fuel Processing; Elsevier: Amsterdam, The Netherlands, 2011; pp. 3–53. [Google Scholar]
- Mathimani, T.; Mallick, N. A comprehensive review on harvesting of microalgae for biodiesel–key challenges and future directions. Renew. Sustain. Energy Rev. 2018, 91, 1103–1120. [Google Scholar] [CrossRef]
- Sakr, M.; Mohamed, M.M.; Maraqa, M.A.; Hamouda, M.A.; Hassan, A.A.; Ali, J.; Jung, J. A critical review of the recent developments in micro–nano bubbles applications for domestic and industrial wastewater treatment. Alex. Eng. J. 2022, 61, 6591–6612. [Google Scholar] [CrossRef]
- Jameson, G.J.; Emer, C. Effect of bubble loading on the recovery of coarse mineral particles by flotation. Miner. Eng. 2024, 215, 108788. [Google Scholar] [CrossRef]
- Miettinen, T.; Ralston, J.; Fornasiero, D. The limits of fine particle flotation. Miner. Eng. 2010, 23, 420–437. [Google Scholar] [CrossRef]
- Reis, A.S.; Filho, A.; Carvalho, G.; Barrozo, M.A. Effect of surfactant on bubble size and air holdup on column flotation. Mater. Sci. Forum 2017, 899, 71–76. [Google Scholar] [CrossRef]
- Ahmed, N.; Jameson, G. The effect of bubble size on the rate of flotation of fine particles. Int. J. Miner. Process. 1985, 14, 195–215. [Google Scholar] [CrossRef]
- Gorain, B.K. The Effect of Bubble Surface Area Flux on the Kinetics of Flotation and Its Relevance to Scale-Up. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 1997. [Google Scholar]
- Thomas, B.G.; Denissov, A.; Bai, H. Behavior of argon bubbles during continuous casting of steel. In Proceedings of the Steelmaking Conference Proceedings, Chicago, IL, USA, 13–16 April 1997; pp. 375–384. [Google Scholar]
- Pandit, A.; Varley, J.; Thorpe, R.; Davidson, J. Measurement of bubble size distribution: An acoustic technique. Chem. Eng. Sci. 1992, 47, 1079–1089. [Google Scholar] [CrossRef]
- Nikhita, B.; Deekshith, P.; Guguluto, S. A Review of Methodologies to Determine Bubble Diameter and Bubble Velocity. Int. J. Sci. Res. Publ. 2012, 2, 11–20. [Google Scholar]
- Mazahernasab, R.; Ahmadi, R.; Ravanasa, E. Direct bubble size measurement in a mechanical flotation cell by image analysis and laser diffraction technique-A comparative study. Iran. J. Chem. Chem. Eng. 2021, 40, 1653–1664. [Google Scholar]
- Ksentini, I.; Kotti, M.; Ben Mansour, L. Effect of liquid phase physicochemical characteristics on hydrodynamics of an electroflotation column. Desalination Water Treat. 2014, 52, 3347–3354. [Google Scholar] [CrossRef]
- Nesset, J.E.; Hernandez-Aguilar, J.R.; Acuna, C.; Gomez, C.O.; Finch, J.A. Some gas dispersion characteristics of mechanical flotation machines. Miner. Eng. 2006, 19, 807–815. [Google Scholar] [CrossRef]
- Seger, M.; Oliveira, C.; Rodrigues, R. Development of a laboratory-scale flotation column with inlet bubble size measurement. Miner. Eng. 2019, 142, 105936. [Google Scholar] [CrossRef]
- Eskanlou, A.; Khalesi, M.; Abdollahy, M.; Hemmati Chegeni, M. Interactional effects of bubble size, particle size, and collector dosage on bubble loading in column flotation. J. Min. Environ. 2018, 9, 107–116. [Google Scholar]
- Riquelme, A.; Desbiens, A.; Del Villar, R.; Maldonado, M. Identification of a non-linear dynamic model of the bubble size distribution in a pilot flotation column. Int. J. Miner. Process. 2015, 145, 7–16. [Google Scholar] [CrossRef]
- Grau, R.; Heiskanen, K. Visual technique for measuring bubble size in flotation machines. Miner. Eng. 2002, 15, 507–513. [Google Scholar] [CrossRef]
- Kracht, W.; Finch, J. Bubble break-up and the role of frother and salt. Int. J. Miner. Process. 2009, 92, 153–161. [Google Scholar] [CrossRef]
- Besagni, G.; Inzoli, F. The effect of liquid phase properties on bubble column fluid dynamics: Gas holdup, flow regime transition, bubble size distributions and shapes, interfacial areas and foaming phenomena. Chem. Eng. Sci. 2017, 170, 270–296. [Google Scholar] [CrossRef]
- Alam, D.; Lee, S.; Hong, J.; Fletcher, D.F.; Liu, X.; McClure, D.; Cook, D.; de Carfort, J.l.N.; Krühne, U.; Cullen, P. Influence of bubble size on perfluorooctanesulfonic acid degradation in a pilot scale non-thermal plasma treatment reactor. Chem. Eng. J. 2024, 489, 151349. [Google Scholar] [CrossRef]
- Grau, R.A.; Laskowski, J.S.; Heiskanen, K. Effect of frothers on bubble size. Int. J. Miner. Process. 2005, 76, 225–233. [Google Scholar] [CrossRef]
- Capponi, F.; Matiolo, E.; Rodrigues, R.; Rubio, J. Flotação extensora de finos de minérios de cobre e molibdênio. An. Do 2005, 21, 235–242. [Google Scholar]
- Reis, A.S.; Reis Filho, A.M.; Demuner, L.R.; Barrozo, M.A. Effect of bubble size on the performance flotation of fine particles of a low-grade Brazilian apatite ore. Powder Technol. 2019, 356, 884–891. [Google Scholar] [CrossRef]
- Finch, J.A.; Dobby, G. Column flotation. In Flotation Science and Engineering; CRC Press: Boca Raton, FL, USA, 1990; pp. 291–329. [Google Scholar]
- Riquelme, A.; Desbiens, A.; Del Villar, R.; Maldonado, M. Predictive control of the bubble size distribution in a two-phase pilot flotation column. Miner. Eng. 2016, 89, 71–76. [Google Scholar] [CrossRef]
- Wallis, G.B. One-Dimensional Two-Phase Flow; Courier Dover Publications: New York, NY, USA, 2020. [Google Scholar]
- Masliyah, J.H. Hindered settling in a multi-species particle system. Chem. Eng. Sci. 1979, 34, 1166–1168. [Google Scholar] [CrossRef]
- Yianatos, J.; Finch, J.; Laplante, A. Selectivity in column flotation froths. Int. J. Miner. Process. 1988, 23, 279–292. [Google Scholar] [CrossRef]
- Richardson, J.T. Sedimentation and fluidization: Part-1. Trans. Inst. Chem. Eng. 1954, 32, 35–53. [Google Scholar]
- Laskowski, J. Fundamental properties of flotation frothers. In Proceedings of the 22nd International Mineral Processing Congress, Cape Town, South Africa, 29 September–3 October 2003; pp. 788–797. [Google Scholar]
- Mendes, T.F.; Reis, A.S.; Silva, A.C.; Barrozo, M.A. Analysis of the Effect of Surfactants on the Performance of Apatite Column Flotation. Minerals 2024, 14, 840. [Google Scholar] [CrossRef]
- Han, Y.; Zhu, J.; Shen, L.; Zhou, W.; Ling, Y.; Yang, X.; Wang, S.; Dong, Q. Bubble size distribution characteristics of a jet-stirring coupling flotation device. Minerals 2019, 9, 369. [Google Scholar] [CrossRef]
- Cho, Y.-S.; Laskowski, J. Effect of flotation frothers on bubble size and foam stability. Int. J. Miner. Process. 2002, 64, 69–80. [Google Scholar] [CrossRef]
- Wang, H.; Yang, W.; Yan, X.; Wang, L.; Wang, Y.; Zhang, H. Regulation of bubble size in flotation: A review. J. Environ. Chem. Eng. 2020, 8, 104070. [Google Scholar] [CrossRef]
- Rodrigues, R.; Rubio, J. New basis for measuring the size distribution of bubbles. Miner. Eng. 2003, 16, 757–765. [Google Scholar] [CrossRef]
- Krishna, R.; De Swart, J.W.; Ellenberger, J.; Martina, G.B.; Maretto, C. Gas holdup in slurry bubble columns: Effect of column diameter and slurry concentrations. AIChE J. 1997, 43, 311–316. [Google Scholar] [CrossRef]
- Pandit, A.; Joshi, J. Three phase sparged reactors—Some design aspects. Rev. Chem. Eng. 1984, 2, 1–84. [Google Scholar] [CrossRef]
- McMahon, A.M. Modelling the Flow Behaviour of Gas Bubbles in a Bubble Column. 2009. Available online: https://open.uct.ac.za/items/c038e9c0-fcde-47b6-b6c1-06dce28d230c (accessed on 1 August 2024).
- Prakash, R.; Sangtam, B.T.; Hembrom, K.; Majumder, S.K. Bubble size analysis in a two-phase countercurrent flow in the narrow rectangular column. Phys. Fluids 2022, 34, 043305. [Google Scholar] [CrossRef]
- Panjipour, R.; Karamoozian, M.; Albijanic, B. Investigations of gas holdup, interfacial area of bubbles and bubble size distributions in a pilot plant flotation column. Miner. Eng. 2021, 164, 106819. [Google Scholar] [CrossRef]
- Mwandawande, I.; Akdogan, G.; Bradshaw, S.; Karimi, M.; Snyders, N. Prediction of gas holdup in a column flotation cell using computational fluid dynamics (CFD). J. South. Afr. Inst. Min. Metall. 2019, 119, 81–95. [Google Scholar] [CrossRef]
- Han, J.; Li, Y.; Chen, P. A study of bubble size/shape evolution in microbubble countercurrent contacting flotation column. Asia-Pac. J. Chem. Eng. 2023, 18, e2865. [Google Scholar] [CrossRef]
- Tan, Y.; Rafiei, A.; Elmahdy, A.; Finch, J. Bubble size, gas holdup and bubble velocity profile of some alcohols and commercial frothers. Int. J. Miner. Process. 2013, 119, 1–5. [Google Scholar] [CrossRef]
- Leiva, J.; Vinnett, L.; Contreras, F.; Yianatos, J. Estimation of the actual bubble surface area flux in flotation. Miner. Eng. 2010, 23, 888–894. [Google Scholar] [CrossRef]
- Leonard, C.; Ferrasse, J.-H.; Lefevre, S.; Viand, A.; Boutin, O. Bubble rising velocity and bubble size distribution in columns at high pressure and temperature: From lab scale experiments to design parameters. Chem. Eng. Res. Des. 2021, 173, 108–118. [Google Scholar] [CrossRef]
- Nesset, J.E. Modeling the Sauter Mean Bubble Diameter in Mechanical Forced-Air Flotation Machines. 2011. Available online: https://escholarship.mcgill.ca/concern/theses/1831ck330 (accessed on 1 September 2024).
- Hernandez, H.; Gomez, C.; Finch, J. Gas dispersion and de-inking in a flotation column. Miner. Eng. 2003, 16, 739–744. [Google Scholar] [CrossRef]
- Yianatos, J.; Finch, J.; Dobby, G.; Xu, M. Bubble size estimation in a bubble swarm. J. Colloid Interface Sci. 1988, 126, 37–44. [Google Scholar] [CrossRef]
- Vinnett, L.; Urriola, B.; Orellana, F.; Guajardo, C.; Esteban, A. Reducing the presence of clusters in bubble size measurements for gas dispersion characterizations. Minerals 2022, 12, 1148. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Park, C.-H. Estimation of Bubble Size and Gas Dispersion Property in Column Flotation. Separations 2024, 11, 331. https://doi.org/10.3390/separations11120331
Kim H, Park C-H. Estimation of Bubble Size and Gas Dispersion Property in Column Flotation. Separations. 2024; 11(12):331. https://doi.org/10.3390/separations11120331
Chicago/Turabian StyleKim, HyunSoo, and Chul-Hyun Park. 2024. "Estimation of Bubble Size and Gas Dispersion Property in Column Flotation" Separations 11, no. 12: 331. https://doi.org/10.3390/separations11120331
APA StyleKim, H., & Park, C. -H. (2024). Estimation of Bubble Size and Gas Dispersion Property in Column Flotation. Separations, 11(12), 331. https://doi.org/10.3390/separations11120331