Modelling the flow behaviour of gas bubbles in a bubble column
Master Thesis
2009
Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
University of Cape Town
License
Series
Abstract
The bubble column reactor is commonly used in industry, although the fluid dynamics inside are not well understood. The challenges associated with solving multi phase flow problems arise from the complexity of the governing equations which have to be solved, which are typically mass, momentum and energy balances. These time-dependent problems need to include effects of turbulence and are computationally expensive when simulating the hydrodynamics of large bubble columns. In an attempt to reduce the computational expense in solving bubble column reactor models, a "cell" model is proposed which predicts the velocity flow field in the vicinity of a single spherical bubble. It is intended that this model would form the fundamental building block in a macroscale model framework that does predict the flow of multiple bubbles in the whole column. The non-linear Navier-Stokes (NVS) equations are used to model fluid flow around the bubble. This study focusses on the Reynolds number range where the linear Stokes equations can be used to accurately predict the flow around the bubble. The Stokes equations are mathematically easier to solve than the NVS equations and are thus less computationally expensive. The validity of the NVS model was tested against experimental data for the flow of water around a solid sphere and was found to be in close agreement for the Reynolds number range 25 to 80. The simulation results from the Stokes flow model were compared with those from the NVS flow model and were similar at Reynolds numbers below 1. The application is then in the partitioning of the bubble column into regions governed by either Stokes or NVS equations.
Description
Includes abstract.
Includes bibliographical references (leaves 96-99).
Keywords
Reference:
McMahon, A. 2009. Modelling the flow behaviour of gas bubbles in a bubble column. University of Cape Town.