Recent Advance on Draw Solutes Development in Forward Osmosis
Abstract
:1. Introduction
2. Classifications of DS Based on the Types of Energy Used in Regeneration Process
2.1. Direct Use without Recovery
2.2. Chemical Energy
2.3. Thermal Energy
2.3.1. Gas and Volatile Compounds
2.3.2. Phase Transition Materials
2.3.3. MD
2.4. Electric Energy
2.4.1. RO
2.4.2. NF
2.4.3. UF
2.5. Magnetic Energy
2.6. Solar Energy
3. Future Challenges or Perspectives
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zou, L.; Tang, C.Y.; Mulcahy, D. Recent developments in forward osmosis: Opportunities and challenges. J. Membr. Sci. 2012, 396, 1–21. [Google Scholar] [CrossRef]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, M.A.; Elimelech, M. Water and sanitation in developing countries: Including health in the equation. Environ. Sci. Technol. 2007, 41, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nanosci. Technol. 2009, 337–346. [Google Scholar] [CrossRef]
- Ge, Q.; Ling, M.; Chung, T.-S. Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future. J. Membr. Sci. 2013, 442, 225–237. [Google Scholar] [CrossRef]
- King, C.W.; Webber, M.E. Water intensity of transportation. Environ. Sci. Technol. 2008, 42, 7866–7872. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, R.L.; Elimelech, M. Global challenges in energy and water supply: The promise of engineered osmosis. Environ. Sci. Technol. 2008, 42, 8625–8629. [Google Scholar] [CrossRef] [PubMed]
- Chon, K.; KyongShon, H.; Cho, J. Membrane bioreactor and nanofiltration hybrid system for reclamation of municipal wastewater: Removal of nutrients, organic matter and micropollutants. Bioresour. Technol. 2012, 122, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Subramani, A.; Badruzzaman, M.; Oppenheimer, J.; Jacangelo, J.G. Energy minimization strategies and renewable energy utilization for desalination: A review. Water Res. 2011, 45, 1907–1920. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef] [PubMed]
- Service, R.F. Desalination freshens up. Science 2006, 313, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, R.L.; Elimelech, M. Energy requirements of ammonia–carbon dioxide forward osmosis desalination. Desalination 2007, 207, 370–382. [Google Scholar] [CrossRef]
- Chung, T.-S.; Li, X.; Ong, R.C.; Ge, Q.; Wang, H.; Han, G. Emerging forward osmosis (fo) technologies and challenges ahead for clean water and clean energy applications. Curr. Opin. Chem. Eng. 2012, 1, 246–257. [Google Scholar] [CrossRef]
- Shaffer, D.L.; Werber, J.R.; Jaramillo, H.; Lin, S.; Elimelech, M. Forward osmosis: Where are we now? Desalination 2015, 356, 271–284. [Google Scholar] [CrossRef]
- Mi, B.; Elimelech, M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. J. Membr. Sci. 2010, 348, 337–345. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, K.Y.; Chung, T.-S.; Jean, Y.C.; Chen, H. Molecular design of the cellulose ester-based forward osmosis membranes for desalination. Chem. Eng. Sci. 2011, 66, 2008–2018. [Google Scholar] [CrossRef]
- Qasim, M.; Darwish, N.A.; Sarp, S.; Hilal, N. Water desalination by forward (direct) osmosis phenomenon: A comprehensive review. Desalination 2015, 374, 47–69. [Google Scholar] [CrossRef]
- Valladares Linares, R.; Li, Z.; Sarp, S.; Bucs, S.S.; Amy, G.; Vrouwenvelder, J.S. Forward osmosis niches in seawater desalination and wastewater reuse. Water Res. 2014, 66, 122–139. [Google Scholar] [CrossRef] [PubMed]
- Phuntsho, S.; Shon, H.K.; Majeed, T.; El Saliby, I.; Vigneswaran, S.; Kandasamy, J.; Hong, S.; Lee, S. Blended fertilizers as draw solutions for fertilizer-drawn forward osmosis desalination. Environ. Sci. Technol. 2012, 46, 4567–4575. [Google Scholar] [CrossRef] [PubMed]
- Hau, N.T.; Chen, S.-S.; Nguyen, N.C.; Huang, K.Z.; Ngo, H.H.; Guo, W. Exploration of edta sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge. J. Membr. Sci. 2014, 455, 305–311. [Google Scholar] [CrossRef]
- Cornelissen, E.R.; Harmsen, D.; de Korte, K.F.; Ruiken, C.J.; Qin, J.-J.; Oo, H.; Wessels, L.P. Membrane fouling and process performance of forward osmosis membranes on activated sludge. J. Membr. Sci. 2008, 319, 158–168. [Google Scholar] [CrossRef]
- Klaysom, C.; Cath, T.Y.; Depuydt, T.; Vankelecom, I.F.J. Forward and pressure retarded osmosis: Potential solutions for global challenges in energy and water supply. Chem. Soc. Rev. 2013, 42, 6959–6989. [Google Scholar] [CrossRef] [PubMed]
- Straub, A.P.; Deshmukh, A.; Elimelech, M. Pressure-retarded osmosis for power generation from salinity gradients: Is it viable? Energy Environ. Sci. 2016, 9, 31–48. [Google Scholar] [CrossRef]
- Wan, C.F.; Chung, T.-S. Energy recovery by pressure retarded osmosis (pro) in swro–pro integrated processes. Appl. Energy 2016, 162, 687–698. [Google Scholar] [CrossRef]
- Lutchmiah, K.; Verliefde, A.R.D.; Roest, K.; Rietveld, L.C.; Cornelissen, E.R. Forward osmosis for application in wastewater treatment: A review. Water Res. 2014, 58, 179–197. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Chung, T.-S. Oxalic acid complexes: Promising draw solutes for forward osmosis (fo) in protein enrichment. Chem. Commun. 2015, 51, 4854–4857. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, N.K. Opportunities and challenges in application of forward osmosis in food processing. Crit. Rev. Food Sci. Nutr. 2016, 56, 266–291. [Google Scholar] [CrossRef] [PubMed]
- LaVan, D.A.; McGuire, T.; Langer, R. Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 2003, 21, 1184. [Google Scholar] [CrossRef] [PubMed]
- Cath, T.Y.; Adams, D.; Childress, A.E. Membrane contactor processes for wastewater reclamation in space: Ii. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater. J. Membr. Sci. 2005, 257, 111–119. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Marczak, L.D.F.; Tessaro, I.C. Membrane concentration of liquid foods by forward osmosis: Process and quality view. J. Food Eng. 2012, 111, 483–489. [Google Scholar] [CrossRef]
- Qin, J.-J.; Lay, W.C.L.; Kekre, K.A. Recent developments and future challenges of forward osmosis for desalination: A review. Desalin. Water Treat. 2012, 39, 123–136. [Google Scholar] [CrossRef]
- Achilli, A.; Cath, T.Y.; Childress, A.E. Selection of inorganic-based draw solutions for forward osmosis applications. J. Membr. Sci. 2010, 364, 233–241. [Google Scholar] [CrossRef]
- Luo, H.; Wang, Q.; Tao, T.; Zhang, T.C.; Zhou, A. Performance of strong ionic hydrogels based on 2-acrylamido-2-methylpropane sulfonate as draw agents for forward osmosis. J. Environ. Eng. 2014, 140, 04014044. [Google Scholar] [CrossRef]
- Cai, Y.; Shen, W.; Loo, S.L.; Krantz, W.B.; Wang, R.; Fane, A.G.; Hu, X. Towards temperature driven forward osmosis desalination using semi-ipn hydrogels as reversible draw agents. Water Res. 2013, 47, 3773–3781. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Liu, Z.; Sun, D.D. Highly water soluble and recovered dextran coated fe3o4 magnetic nanoparticles for brackish water desalination. Sep. Purif. Technol. 2011, 81, 392–399. [Google Scholar] [CrossRef]
- Ling, M.M.; Wang, K.Y.; Chung, T.-S. Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse. Ind. Eng. Chem. Res. 2010, 49, 5869–5876. [Google Scholar] [CrossRef]
- Ling, M.M.; Chung, T.-S.; Lu, X. Facile synthesis of thermosensitive magnetic nanoparticles as “smart” draw solutes in forward osmosis. Chem. Commun. 2011, 47, 10788–10790. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Su, J.; Chung, T.-S.; Amy, G. Hydrophilic superparamagnetic nanoparticles: Synthesis, characterization, and performance in forward osmosis processes. Ind. Eng. Chem. Res. 2011, 50, 382–388. [Google Scholar] [CrossRef]
- Ling, M.M.; Chung, T.-S. Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration. Desalination 2011, 278, 194–202. [Google Scholar] [CrossRef]
- Ling, M.M.; Chung, T.-S. Surface-dissociated nanoparticle draw solutions in forward osmosis and the regeneration in an integrated electric field and nanofiltration system. Ind. Eng. Chem. Res. 2012, 51, 15463–15471. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, N.; Zhao, D.; Lu, X. Thermoresponsive magnetic nanoparticles for seawater desalination. ACS Appl. Mater. Interfaces 2013, 5, 11453–11461. [Google Scholar] [CrossRef] [PubMed]
- Ling, M.M.; Chung, T.-S. Novel dual-stage fo system for sustainable protein enrichment using nanoparticles as intermediate draw solutes. J. Membr. Sci. 2011, 372, 201–209. [Google Scholar] [CrossRef]
- Phuntsho, S.; Shon, H.K.; Hong, S.; Lee, S.; Vigneswaran, S.; Kandasamy, J. Fertiliser drawn forward osmosis desalination: The concept, performance and limitations for fertigation. Rev. Environ. Sci. Biol. 2012, 11, 147–168. [Google Scholar] [CrossRef]
- Chekli, L.; Kim, Y.; Phuntsho, S.; Li, S.; Ghaffour, N.; Leiknes, T.; Shon, H.K. Evaluation of fertilizer-drawn forward osmosis for sustainable agriculture and water reuse in arid regions. J. Environ. Manag. 2017, 187, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Phuntsho, S.; Shon, H.K.; Hong, S.; Lee, S.; Vigneswaran, S. A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions. J. Membr. Sci. 2011, 375, 172–181. [Google Scholar] [CrossRef]
- Frank, B.S. Desalination of Sea Water. U.S. Patent US 3670897A, 20 June 1972. [Google Scholar]
- Garcia-Castello, E.M.; McCutcheon, J.R.; Elimelech, M. Performance evaluation of sucrose concentration using forward osmosis. J. Membr. Sci. 2009, 338, 61–66. [Google Scholar] [CrossRef]
- Alnaizy, R.; Aidan, A.; Qasim, M. Draw solute recovery by metathesis precipitation in forward osmosis desalination. Desalin. Water Treat. 2013, 51, 5516–5525. [Google Scholar] [CrossRef]
- Stone, M.L.; Rae, C.; Stewart, F.F.; Wilson, A.D. Switchable polarity solvents as draw solutes for forward osmosis. Desalination 2013, 312, 124–129. [Google Scholar] [CrossRef]
- Ge, Q.; Su, J.; Amy, G.L.; Chung, T.-S. Exploration of polyelectrolytes as draw solutes in forward osmosis processes. Water Res. 2012, 46, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Wang, P.; Wan, C.; Chung, T.-S. Polyelectrolyte-promoted forward osmosis-membrane distillation (fo-md) hybrid process for dye wastewater treatment. Environ. Sci. Technol. 2012, 46, 6236–6243. [Google Scholar] [CrossRef] [PubMed]
- Tian, E.; Hu, C.; Qin, Y.; Ren, Y.; Wang, X.; Wang, X.; Xiao, P.; Yang, X. A study of poly (sodium 4-styrenesulfonate) as draw solute in forward osmosis. Desalination 2015, 360, 130–137. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, P.; Zhao, Q.; Chen, N.; Lu, X. Thermoresponsive copolymer-based draw solution for seawater desalination in a combined process of forward osmosis and membrane distillation. Desalination 2014, 348, 26–32. [Google Scholar] [CrossRef]
- Gwak, G.; Jung, B.; Han, S.; Hong, S. Evaluation of poly (aspartic acid sodium salt) as a draw solute for forward osmosis. Water Res. 2015, 80, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Reimund, K.K.; Coscia, B.J.; Arena, J.T.; Wilson, A.D.; McCutcheon, J.R. Characterization and membrane stability study for the switchable polarity solvent N,N-dimethylcyclohexylamine as a draw solute in forward osmosis. J. Membr. Sci. 2016, 501, 93–99. [Google Scholar] [CrossRef]
- Orme, C.J.; Wilson, A.D. 1-cyclohexylpiperidine as a thermolytic draw solute for osmotically driven membrane processes. Desalination 2015, 371, 126–133. [Google Scholar] [CrossRef]
- Roach, J.D.; Abdulrahman, A.-A.; Alaa, A.-N.; Mohammed, H. Use of micellar solutions as draw agents in forward osmosis. J. Surfactants Deterg. 2014, 17, 1241–1248. [Google Scholar] [CrossRef]
- Ge, Q.; Fu, F.; Chung, T.-S. Ferric and cobaltous hydroacid complexes for forward osmosis (fo) processes. Water Res. 2014, 58, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Yen, S.K.; Mehnas Haja, N.F.; Su, M.; Wang, K.Y.; Chung, T.-S. Study of draw solutes using 2-methylimidazole-based compounds in forward osmosis. J. Membr. Sci. 2010, 364, 242–252. [Google Scholar] [CrossRef]
- Boo, C.; Khalil, Y.F.; Elimelech, M. Performance evaluation of trimethylamine–carbon dioxide thermolytic draw solution for engineered osmosis. J. Membr. Sci. 2015, 473, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Kravath, R.E.; Davis, J.A. Desalination of sea water by direct osmosis. Desalination 1975, 16, 151–155. [Google Scholar] [CrossRef]
- Stache, K. Apparatus for Transforming Sea Water, Brackish Water, Polluted Water or the Like into a Nutrious Drink by Means of Osmosis. U.S. Patent US 4879030A, 7 November 1989. [Google Scholar]
- Yaeli, J. Method and Apparatus for Processing Liquid Solutions of Suspensions Particularly Useful in the Desalination of Saline Water. U.S. Patent US 5098575A, 24 March 1992. [Google Scholar]
- Ray, S.S.; Chen, S.S.; Nguyen, N.C.; Nguyen, H.T.; Dan, N.P.; Thanh, B.X.; Trang, L.T. Exploration of polyelectrolyte incorporated with triton-x 114 surfactant based osmotic agent for forward osmosis desalination. J. Environ. Manag. 2018, 209, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Monjezi, A.A.; Mahood, H.B.; Campbell, A.N. Regeneration of dimethyl ether as a draw solute in forward osmosis by utilising thermal energy from a solar pond. Desalination 2017, 415, 104–114. [Google Scholar] [CrossRef]
- Huang, J.; Long, Q.; Xiong, S.; Shen, L.; Wang, Y. Application of poly(4-styrenesulfonic acid-co-maleic acid) sodium salt as novel draw solute in forward osmosis for dye-containing wastewater treatment. Desalination 2017, 421, 40–46. [Google Scholar] [CrossRef]
- Li, Z.; Wei, L.; Gao, M.Y.; Lei, H. One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv. Mater. 2005, 17, 1001–1005. [Google Scholar] [CrossRef]
- Park, S.Y.; Ahn, H.-W.; Chung, J.W.; Kwak, S.-Y. Magnetic core-hydrophilic shell nanosphere as stability-enhanced draw solute for forward osmosis (fo) application. Desalination 2016, 397, 22–29. [Google Scholar] [CrossRef]
- Hee-Man, Y.; Bum-Kyoung, S.E.O.; Kune-Woo, L.E.E.; Jei-Kwon, M. Hyperbranched polyglycerol-coated magnetic nanoparticles as draw solute in forward osmosis. Asian J. Chem. 2014, 26, 4031–4034. [Google Scholar]
- Chekli, L.; Phuntsho, S.; Shon, H.K.; Vigneswaran, S.; Kandasamy, J.; Chanan, A. A review of draw solutes in forward osmosis process and their use in modern applications. Desalin. Water Treat. 2012, 43, 167–184. [Google Scholar] [CrossRef]
- Yong, J.S.; Phillip, W.A.; Elimelech, M. Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes. J. Membr. Sci. 2012, 392–393, 9–17. [Google Scholar] [CrossRef]
- Su, J.; Chung, T.-S.; Helmer, B.J.; de Wit, J.S. Enhanced double-skinned fo membranes with inner dense layer for wastewater treatment and macromolecule recycle using sucrose as draw solute. J. Membr. Sci. 2012, 396, 92–100. [Google Scholar] [CrossRef]
- Xie, M.; Zheng, M.; Cooper, P.; Price, W.E.; Nghiem, L.D.; Elimelech, M. Osmotic dilution for sustainable greenwall irrigation by liquid fertilizer: Performance and implications. J. Membr. Sci. 2015, 494, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Litwiller, E.; Choi, S.-H.; Pinnau, I. Evaluation of sodium lignin sulfonate as draw solute in forward osmosis for desert restoration. J. Membr. Sci. 2014, 453, 463–470. [Google Scholar] [CrossRef]
- Liu, Z.; Bai, H.; Lee, J.; Sun, D.D. A low-energy forward osmosis process to produce drinking water. Energy Environ. Sci. 2011, 4, 2582–2585. [Google Scholar] [CrossRef]
- Alnaizy, R.; Aidan, A.; Qasim, M. Copper sulfate as draw solute in forward osmosis desalination. J. Environ. Chem. Eng. 2013, 1, 424–430. [Google Scholar] [CrossRef]
- Batchelder, G.W. Process for the Demineralization of Water. U.S. Patent US 3171799A, 2 March 1965. [Google Scholar]
- McCutcheon, J.R.; McGinnis, R.L.; Elimelech, M. Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance. J. Membr. Sci. 2006, 278, 114–123. [Google Scholar] [CrossRef]
- Li, D.; Zhang, X.; Yao, J.; Simon, G.P.; Wang, H. Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chem. Commun. 2011, 47, 1710–1712. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Feng, X.; Chen, W.; Wang, X.; Huang, K.-W.; Gnanou, Y.; Lai, Z. Using ucst ionic liquid as a draw solute in forward osmosis to treat high-salinity water. Environ. Sci. Technol. 2016, 50, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Joo, H.; Noh, M.; Namkoong, Y.; Lee, S.; Jung, K.H.; Ahn, H.R.; Kim, S.; Lee, J.-C.; Yoon, J.H.; et al. Systematic structure control of ammonium iodide salts as feasible ucst-type forward osmosis draw solutes for the treatment of wastewater. J. Mater. Chem. A 2018, 6, 1255–1265. [Google Scholar] [CrossRef]
- Kim, J.-J.; Kang, H.; Choi, Y.-S.; Yu, Y.A.; Lee, J.-C. Thermo-responsive oligomeric poly(tetrabutylphosphonium styrenesulfonate)s as draw solutes for forward osmosis (fo) applications. Desalination 2016, 381, 84–94. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, R.; Krantz, W.B.; Fane, A.G.; Hu, X.M. Exploration of using thermally responsive polyionic liquid hydrogels as draw agents in forward osmosis. RSC Adv. 2015, 5, 97143–97150. [Google Scholar] [CrossRef]
- Cai, Y.; Shen, W.; Wei, J.; Chong, T.H.; Wang, R.; Krantz, W.B.; Fane, A.G.; Hu, X. Energy-efficient desalination by forward osmosis using responsive ionic liquid draw solutes. Environ. Sci. Water Res. 2015, 1, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Mok, Y.; Nakayama, D.; Noh, M.; Jang, S.; Kim, T.; Lee, Y. Circulatory osmotic desalination driven by a mild temperature gradient based on lower critical solution temperature (lcst) phase transition materials. Phys. Chem. Chem. Phys. 2013, 15, 19510–19517. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, H.; Xie, R.; Zhao, K.; Ju, X.; Wang, W.; Liu, Z.; Chu, L. An easily recoverable thermo-sensitive polyelectrolyte as draw agent for forward osmosis process. Chin. J. Chem. Eng. 2016, 24, 86–93. [Google Scholar] [CrossRef]
- Noh, M.; Mok, Y.; Lee, S.; Kim, H.; Lee, S.H.; Jin, G.-W.; Seo, J.-H.; Koo, H.; Park, T.H.; Lee, Y. Novel lower critical solution temperature phase transition materials effectively control osmosis by mild temperature changes. Chem. Commun. 2012, 48, 3845–3847. [Google Scholar] [CrossRef] [PubMed]
- Wendt, D.S.; Orme, C.J.; Mines, G.L.; Wilson, A.D. Energy requirements of the switchable polarity solvent forward osmosis (sps-fo) water purification process. Desalination 2015, 374, 81–91. [Google Scholar] [CrossRef]
- Cai, Y.; Shen, W.; Wang, R.; Krantz, W.B.; Fane, A.G.; Hu, X. CO2 switchable dual responsive polymers as draw solutes for forward osmosis desalination. Chem. Commun. 2013, 49, 8377–8379. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, H.; Jin, B.; Yun, S.; Dai, S. Gas-responsive cationic microgels for forward osmosis desalination. Chem. Eng. J. 2018, 347, 424–431. [Google Scholar] [CrossRef]
- Guo, C.X.; Zhao, D.; Zhao, Q.; Wang, P.; Lu, X. Na+-functionalized carbon quantum dots: A new draw solute in forward osmosis for seawater desalination. Chem. Commun. 2014, 50, 7318–7321. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Chen, S.; Wang, P.; Zhao, Q.; Lu, X. A dendrimer-based forward osmosis draw solute for seawater desalination. Ind. Eng. Chem. Res. 2014, 53, 16170–16175. [Google Scholar] [CrossRef]
- Ge, Q.; Amy, G.L.; Chung, T.-S. Forward osmosis for oily wastewater reclamation: Multi-charged oxalic acid complexes as draw solutes. Water Res. 2017, 122, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, M.; Sharif, A.O.; Derwish, G.; Al-Aibi, S.; Altaee, A. Draw solutions for forward osmosis process: Osmotic pressure of binary and ternary aqueous solutions of magnesium chloride, sodium chloride, sucrose and maltose. J. Food Eng. 2015, 155, 10–15. [Google Scholar] [CrossRef]
- York, R.J.; Thiel, R.S.; Beaudry, E.G. Full-scale experience of direct osmosis concentration applied to leachate management. In Proceedings of the Seventh International Waste Management and Landfill Symposium (Sardinia’99), S. Margherita di Pula, Cagliari, Sardinia, Italy, 4–8 October 1999. [Google Scholar]
- Bowden, K.S.; Achilli, A.; Childress, A.E. Organic ionic salt draw solutions for osmotic membrane bioreactors. Bioresour. Technol. 2012, 122, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.H.; Ng, H.Y. A novel hybrid forward osmosis-nanofiltration (fo-nf) process for seawater desalination: Draw solution selection and system configuration. Desalin. Water Treat. 2010, 13, 356–361. [Google Scholar] [CrossRef]
- Ge, Q.; Chung, T.-S. Hydroacid complexes: A new class of draw solutes to promote forward osmosis (fo) processes. Chem. Commun. 2013, 49, 8471–8473. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.; Wang, Y. Novel carboxyethyl amine sodium salts as draw solutes with superior forward osmosis performance. AIChE J. 2016, 62, 1226–1235. [Google Scholar] [CrossRef]
- Long, Q.; Shen, L.; Chen, R.; Huang, J.; Xiong, S.; Wang, Y. Synthesis and application of organic phosphonate salts as draw solutes in forward osmosis for oil-water separation. Environ. Sci. Technol. 2016, 50, 12022–12029. [Google Scholar] [CrossRef] [PubMed]
- Ou, R.; Wang, Y.; Wang, H.; Xu, T. Thermo-sensitive polyelectrolytes as draw solutions in forward osmosis process. Desalination 2013, 318, 48–55. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Chen, S.-S.; Nguyen, N.C.; Ngo, H.H.; Guo, W.; Li, C.-W. Exploring an innovative surfactant and phosphate-based draw solution for forward osmosis desalination. J. Membr. Sci. 2015, 489, 212–219. [Google Scholar] [CrossRef]
- Gadelha, G.; Nawaz, M.S.; Hankins, N.P.; Khan, S.J.; Wang, R.; Tang, C.Y. Assessment of micellar solutions as draw solutions for forward osmosis. Desalination 2014, 354, 97–106. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, H.; Jiang, W.; Yang, F. Preparation and assessment of carboxylate polyelectrolyte as draw solute for forward osmosis. Environ. Sci. Pollut. Res. 2018, 25, 5752–5761. [Google Scholar] [CrossRef] [PubMed]
- Laohaprapanon, S.; Fu, Y.-J.; Hu, C.-C.; You, S.-J.; Tsai, H.-A.; Hung, W.-S.; Lee, K.-R.; Lai, J.-Y. Evaluation of a natural polymer-based cationic polyelectrolyte as a draw solute in forward osmosis. Desalination 2017, 421, 72–78. [Google Scholar] [CrossRef]
- Kim, J.-J.; Chung, J.-S.; Kang, H.; Yu, Y.A.; Choi, W.J.; Kim, H.J.; Lee, J.-C. Thermo-responsive copolymers with ionic group as novel draw solutes for forward osmosis processes. Macromol. Res. 2014, 22, 963–970. [Google Scholar] [CrossRef]
- Razmjou, A.; Liu, Q.; Simon, G.P.; Wang, H. Bifunctional polymer hydrogel layers as forward osmosis draw agents for continuous production of fresh water using solar energy. Environ. Sci. Technol. 2013, 47, 13160–13166. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, H. Smart draw agents for emerging forward osmosis application. J. Mater. Chem. A 2013, 1, 14049–14060. [Google Scholar] [CrossRef]
- Han, H.; Lee, J.Y.; Lu, X. Thermoresponsive nanoparticles + plasmonic nanoparticles = photoresponsive heterodimers: Facile synthesis and sunlight-induced reversible clustering. Chem. Commun. 2013, 49, 6122–6124. [Google Scholar] [CrossRef] [PubMed]
- Ou, R.; Zhang, H.; Simon, G.P.; Wang, H. Microfiber-polymer hydrogel monolith as forward osmosis draw agent. J. Membr. Sci. 2016, 510, 426–436. [Google Scholar] [CrossRef]
- Li, D.; Zhang, X.; Yao, J.; Zeng, Y.; Simon, G.P.; Wang, H. Composite polymer hydrogels as draw agents in forward osmosis and solar dewatering. Soft Matter 2011, 7, 10048–10056. [Google Scholar] [CrossRef]
- Li, D.; Zhang, X.; Simon, G.P.; Wang, H. Forward osmosis desalination using polymer hydrogels as a draw agent: Influence of draw agent, feed solution and membrane on process performance. Water Res. 2013, 47, 209–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; Qiu, L.; Wang, K.; Yao, J.; Li, D.; Simon, G.P.; Wang, R.; Wang, H. Significantly enhanced water flux in forward osmosis desalination with polymer-graphene composite hydrogels as a draw agent. RSC Adv. 2013, 3, 887–894. [Google Scholar] [CrossRef]
- Na, Y.; Yang, S.; Lee, S. Evaluation of citrate-coated magnetic nanoparticles as draw solute for forward osmosis. Desalination 2014, 347, 34–42. [Google Scholar] [CrossRef]
- Dey, P.; Izake, E.L. Magnetic nanoparticles boosting the osmotic efficiency of a polymeric fo draw agent: Effect of polymer conformation. Desalination 2015, 373, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Cath, T.Y.; Childress, A.E.; Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci. 2006, 281, 70–87. [Google Scholar] [CrossRef]
- Zou, S.; He, Z. Enhancing wastewater reuse by forward osmosis with self-diluted commercial fertilizers as draw solutes. Water Res. 2016, 99, 235–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasr, P.; Sewilam, H. Investigating the performance of ammonium sulphate draw solution in fertilizer drawn forward osmosis process. Clean Technol. Environ. 2016, 18, 717–727. [Google Scholar] [CrossRef]
- Roy, D.; Rahni, M.; Pierre, P.; Yargeau, V. Forward osmosis for the concentration and reuse of process saline wastewater. Chem. Eng. J. 2016, 287, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Ansari, A.J.; Hai, F.I.; Price, W.E.; Nghiem, L.D. Phosphorus recovery from digested sludge centrate using seawater-driven forward osmosis. Sep. Purif. Technol. 2016, 163, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Zou, L.; Mulcahy, D. Brackish water desalination by a hybrid forward osmosis–nanofiltration system using divalent draw solute. Desalination 2012, 284, 175–181. [Google Scholar] [CrossRef]
- Wang, K.Y.; Teoh, M.M.; Nugroho, A.; Chung, T.-S. Integrated forward osmosis–membrane distillation (fo–md) hybrid system for the concentration of protein solutions. Chem. Eng. Sci. 2011, 66, 2421–2430. [Google Scholar] [CrossRef]
- Adham, S.; Hussain, A.; Matar, J.M.; Dores, R.; Janson, A. Application of membrane distillation for desalting brines from thermal desalination plants. Desalination 2013, 314, 101–108. [Google Scholar] [CrossRef]
- Wang, P.; Chung, T.-S. A conceptual demonstration of freeze desalination–membrane distillation (fd–md) hybrid desalination process utilizing liquefied natural gas (lng) cold energy. Water Res. 2012, 46, 4037–4052. [Google Scholar] [CrossRef] [PubMed]
- El-Bourawi, M.S.; Ding, Z.; Ma, R.; Khayet, M. A framework for better understanding membrane distillation separation process. J. Membr. Sci. 2006, 285, 4–29. [Google Scholar] [CrossRef]
- Xie, M.; Nghiem, L.D.; Price, W.E.; Elimelech, M. A forward osmosis–membrane distillation hybrid process for direct sewer mining: System performance and limitations. Environ. Sci. Technol. 2013, 47, 13486–13493. [Google Scholar] [CrossRef] [PubMed]
- Cath, T.Y.; Hancock, N.T.; Lundin, C.D.; Hoppe-Jones, C.; Drewes, J.E. A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water. J. Membr. Sci. 2010, 362, 417–426. [Google Scholar] [CrossRef]
- Semiat, R. Energy issues in desalination processes. Environ. Sci. Technol. 2008, 42, 8193–8201. [Google Scholar] [CrossRef] [PubMed]
- Mistry, K.H.; McGovern, R.K.; Thiel, G.P.; Summers, E.K.; Zubair, S.M.; Lienhard, J.H. Entropy generation analysis of desalination technologies. Entropy 2011, 13, 1829–1864. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Chen, S.; Guo, C.X.; Zhao, Q.; Lu, X. Multi-functional forward osmosis draw solutes for seawater desalination. Chin. J. Chem. Eng. 2016, 24, 23–30. [Google Scholar] [CrossRef]
- Miller, S.; Shemer, H.; Semiat, R. Energy and environmental issues in desalination. Desalination 2015, 366, 2–8. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, P.; Fu, X.; Chung, T.-S. Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (fo-md). Water Res. 2014, 52, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Lattemann, S.; Höpner, T. Environmental impact and impact assessment of seawater desalination. Desalination 2008, 220, 1–15. [Google Scholar] [CrossRef]
- Ge, Q.; Lau, C.H.; Liu, M. A novel multi-charged draw solute that removes organic arsenicals from water in a hybrid membrane process. Environ. Sci. Technol. 2018, 52, 3812–3819. [Google Scholar] [CrossRef] [PubMed]
- Altaee, A.; Zaragoza, G.; van Tonningen, H.R. Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination. Desalination 2014, 336, 50–57. [Google Scholar] [CrossRef]
- Hancock, N.T.; Xu, P.; Heil, D.M.; Bellona, C.; Cath, T.Y. Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis. Environ. Sci. Technol. 2011, 45, 8483–8490. [Google Scholar] [CrossRef] [PubMed]
- Yangali-Quintanilla, V.; Li, Z.; Valladares, R.; Li, Q.; Amy, G. Indirect desalination of red sea water with forward osmosis and low pressure reverse osmosis for water reuse. Desalination 2011, 280, 160–166. [Google Scholar] [CrossRef]
- Fane, A.G.; Fell, C.J.D. A review of fouling and fouling control in ultrafiltration. Desalination 1987, 62, 117–136. [Google Scholar] [CrossRef]
- Gao, W.; Liang, H.; Ma, J.; Han, M.; Chen, Z.-L.; Han, Z.-S.; Li, G.-B. Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination 2011, 272, 1–8. [Google Scholar] [CrossRef]
- Chung, T.-S.; Zhang, S.; Wang, K.Y.; Su, J.; Ling, M.M. Forward osmosis processes: Yesterday, today and tomorrow. Desalination 2012, 287, 78–81. [Google Scholar] [CrossRef]
- Fei, R.; George, J.T.; Park, J.; Means, A.K.; Grunlan, M.A. Ultra-strong thermoresponsive double network hydrogels. Soft Matter 2013, 9, 2912–2919. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; Yang, Y.; Xu, H.; Yang, X. Thermosensitive phase behavior and drug release of in situ gelable poly(n-isopropylacrylamide-co-acrylamide) microgels. Colloid Polym. Sci. 2007, 285, 515–521. [Google Scholar] [CrossRef]
- Qin, W.; Yanbing, Z.; Huibi, X.; Xiangliang, Y.; Yajiang, Y. Thermosensitive phase transition kinetics of poly(n-isopropylacryl amide-co-acrylamide) microgel aqueous dispersions. J. Appl. Polym. Sci. 2009, 113, 321–326. [Google Scholar]
- Ward, M.A.; Georgiou, T.K. Thermoresponsive polymers for biomedical applications. Polymers 2011, 3, 1215–1242. [Google Scholar] [CrossRef]
- Mehta, G.D.; Loeb, S. Internal polarization in the porous substructure of a semipermeable membrane under pressure-retarded osmosis. J. Membr. Sci. 1978, 4, 261–265. [Google Scholar] [CrossRef]
- Mishra, T.; Ramola, S.; Shankhwar, A.K.; Srivastava, R.K. Use of synthesized hydrophilic magnetic nanoparticles (hmnps) in forward osmosis for water reuse. Water Sci. Technol. 2016, 16, 229–236. [Google Scholar] [CrossRef]
- Motsa, M.M.; Mamba, B.B.; D’Haese, A.; Hoek, E.M.V.; Verliefde, A.R.D. Organic fouling in forward osmosis membranes: The role of feed solution chemistry and membrane structural properties. J. Membr. Sci. 2014, 460, 99–109. [Google Scholar] [CrossRef]
Categories | Draw Solutes | Recovery Methods | Ref. |
---|---|---|---|
Inorganic compounds | NaCl | reverse osmosis (RO) | [33] |
inorganic fertilizer | direct use | [45] | |
potassium sulfate (K2SO4) | RO | [33] | |
sodium nitrate (NaNO3) | direct use | [46] | |
aluminum sulfate (Al2(SO4)3) | precipitation | [47] | |
magnesium sulfate (MgSO4), copper sulfate (CuSO4) | precipitation | [48,49] | |
Organic compounds | Switchable polarity solvent (SPS) | RO | [50] |
sodium polyacrylate (PAA-Na) | ultrafiltration (UF), membrane distillation (MD) | [51,52] | |
CO2-responsive polymers (PDMAEMA) | UF | [53] | |
poly(sodium styrene-4-sulfonate-co-N-isopropylacrylamide) (PSSS-PNIPAM) | MD | [54] | |
poly (aspartic acid sodium salt) | MD | [55] | |
N,N-dimethylcyclohexylamine (N(Me)2Cy) | heating | [56] | |
1-Cyclohexylpiperidine (CHP) | heating | [57] | |
Micellar solution | UF | [58] | |
oxalic acid complexes with Fe/Cr/Na | nanofiltration (NF) | [59] | |
2-Methylimidazole compounds | MD | [60] | |
trimethylamine–carbon dioxide | heating | [61] | |
glucose, fructose | RO | [62,63,64] | |
polyelectrolyte incorporated with triton-x114 | MD | [65] | |
dimethyl ether | heating with solar energy | [66] | |
poly(4-styrenesulfonic acid-co-maleic acid) | NF | [67] | |
Functional nanoparticles | Super hydrophilic nanoparticles | UF | [40] |
hydrophilic superparamagnetic nanoparticles | magnetic separation | [68] | |
magnetic core-hydrophilic shell nanosphere | magnetic separation | [69] | |
thermoresponsive Magnetic Nanoparticle | magnetic separation | [42] | |
dextran-coated MNPs | magnetic separation | [36] | |
hyperbranched polyglycerol coated MNPs | magnetic separation | [70] |
Categories | Recovery Methods | Draw Solutes |
---|---|---|
Direct use | Without recovery | Saccharides (glucose, fructose) [72,73], fertilizer [20,46], liquid fertilizer [74], sodium lignin sulfonate (NaLS) [75] |
Chemical energy | Precipitation | Al2(SO4)3 [47,76], MgSO4 [49], CuSO4 [77] |
Waste heat | Heating | Sulfur dioxide (SO2) [78], ammonia and carbon dioxide (NH3-CO2) [79] |
heating | N,N-dimethylcyclohexylamine (N(Me)2Cy) [56], 1-Cyclohexylpiperidine (CHP) [57], trimethylamine-carbon dioxide (N(CH3)2-CO2) [61], switchable polarity solvents [50], ionic polymer hydrogels with thermal responsive units [80] | |
phase separation | Upper critical solution temperature (UCST) ionic liquid [81], ammonium iodide salts [82], lower critical solution temperature (LCST) ionic liquid [83], thermally responsive polyionic liquid hydrogels [84,85,86], thermosensitive copolymer [54], ionic hydrogels [34], thermo-sensitive polyelectrolyte [87], phase transition materials [88], CO2 switchable dual responsive polymers [89,90], thermosensitive polymer coated magnetic nanoparticles [38], gas-responsive cationic microgels [91] | |
MD | 2-Methylimidazole salt [60], Na+-functionalized carbon quantum dots (Na-CQDs) [92], dendrimer [93], poly (aspartic acid sodium salt) [55], multi-charged oxalic acid complexes [94] | |
Electric energy | RO | Inorganic salt (NaCl [95,96], MgCl2 [95], KNO3 [33]), organic ionic salts [97], glucose and sucrose miscible liquids [63] |
NF | divalent metal salt (Na2SO4, MgSO4) [98], EDTA sodium salt [21], metal complexes [27,59,99], poly (4-styrenesulfonic acid-co-maleic acid) [69], novel carboxyethyl amine sodium salts [100], organic phosphonate salts [101] | |
UF | Thermosensitive polyelectrolyte [102], surface modified MNPs [37,39], phosphatic surfactant [103], micellar solution [58,104], sodium polyacrylate [52], carboxylate polyelectrolyte [105], natural polymer-based cationic polyelectrolyte [106] | |
MF | Thermo-responsive copolymers [107] | |
Solar energy | Irradiating | Bifunctional polymer hydrogel layers [108], graphene gels [109], thermo-responsive nanoparticles [110], composite hydrogel monoliths containing thermoplastic polyurethane microfibers [111], composite hydrogels (carbon particles and sodium acrylate-isopropylacrylamide) (SA-NIPAM) [112,113], composite hydrogels based on graphene and SA-NIPAM [114], dimethyl ether [66] |
Magnetic field energy | Magnetic separation | Functionalized MNPs [37], citrate-coated MNPs [115], PAA-Na coated-MNPs [34,116], thermosensitive magnetic nanogels [38,42], dextran coated Fe3O4 magnetic nanoparticles [36], triethylene glycol-coated magnetic nanoparticles, polyacrylic acid-coated magnetic nanoparticles [37], poly(oxy-1,2-ethanediyl)-coated magnetic nanoparticles [39], poly(ethylene glycol) diacid-coated (PEG-(COOH)2-coated) MNPs [39], hyperbranched polyglycerol coated MNPs [70], polyacrylic acid-coated MNPs [37,40,41] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Q.; Jia, Y.; Li, J.; Yang, J.; Liu, F.; Zheng, J.; Yu, B. Recent Advance on Draw Solutes Development in Forward Osmosis. Processes 2018, 6, 165. https://doi.org/10.3390/pr6090165
Long Q, Jia Y, Li J, Yang J, Liu F, Zheng J, Yu B. Recent Advance on Draw Solutes Development in Forward Osmosis. Processes. 2018; 6(9):165. https://doi.org/10.3390/pr6090165
Chicago/Turabian StyleLong, Qingwu, Yongmei Jia, Jinping Li, Jiawei Yang, Fangmei Liu, Jian Zheng, and Biao Yu. 2018. "Recent Advance on Draw Solutes Development in Forward Osmosis" Processes 6, no. 9: 165. https://doi.org/10.3390/pr6090165
APA StyleLong, Q., Jia, Y., Li, J., Yang, J., Liu, F., Zheng, J., & Yu, B. (2018). Recent Advance on Draw Solutes Development in Forward Osmosis. Processes, 6(9), 165. https://doi.org/10.3390/pr6090165