Development of a Diagnostic Algorithm for Detecting Freezing Precipitation from ERA5 Dataset: An Adjustment to the Far East
Abstract
:1. Introduction
2. Materials and Methods
2.1. Weather Station Observations
2.2. ERA5 Reanalysis Dataset
3. Algorithm Development
3.1. Processing of Weather Stations Data
3.2. Algorithms and Calibration
- The use of ERA5 land skin temperature: Instead of , we calibrated ERA5 land skin temperature (), which exhibits a strong correlation with near-surface air temperature across various spatiotemporal scales [45,46] and is expected to be negative during glaze ice formation in FZRA. Additionally, the in ERA5 shows a less pronounced positive bias in coastal zones compared to observations. This version of the FZRA detection algorithm is denoted as SKTA.
- The inclusion of cold layer temperature: The thresholds of the environmental parameters were supplemented by the minimum temperature in the near-surface cold layer (). This modification is based on the traditional top-down approach commonly used in weather forecasting centers [47]. Here, the calibration of the minimum depth of the near-surface cold layer relies on both and thresholds. This modified algorithm is referred to as TCLA.
- Majority voting ensemble (MVE) technique: Finally, we applied the MVE technique to combine outputs from T2MA, SKTA, and TCLA, aiming to improve classification and enhance FZRA detection accuracy. In the MVE approach, the resulting prediction is determined by the FZRA label (True/False) that receives the most votes from the individual algorithms, effectively eliminating ties. The MVE approach has been utilized in various fields [48,49,50,51]. The MVE technique is referred to as ENSA.
3.3. Detection Skill Evaluation
4. Application of the Freezing Precipitation Detection Algorithm
4.1. Freezing Precipitation Events Activity
4.2. Case Study
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simonson, J. Extratropical Cyclones and Associated Climate Impacts in the Northeastern United States; The University of Maine: Orono, ME, USA, 2020. [Google Scholar]
- Huffman, G.J.; Norman, G.A., Jr. The supercooled warm rain process and the specification of freezing precipitation. Mon. Weather Rev. 1988, 116, 2172–2182. [Google Scholar] [CrossRef]
- Rauber, R.M.; Olthoff, L.S.; Ramamurthy, M.K.; Kunkel, K.E. The relative importance of warm rain and melting processes in freezing precipitation events. J. Appl. Meteorol. Climatol. 2000, 39, 1185–1195. [Google Scholar] [CrossRef]
- Matsushita, H.; Nishio, F. A simple method of discriminating between occurrences of freezing rain and ice pellets in the Kanto Plain, Japan. J. Meteorol. Soc. Jpn. Ser. II 2008, 86, 633–648. [Google Scholar] [CrossRef]
- Lu, Z.; Han, Y.; Liu, Y. Occurrence of warm freezing rain: Observation and modeling study. J. Geophys. Res. Atmos. 2022, 127, e2021JD036242. [Google Scholar] [CrossRef]
- Klima, K.; Morgan, M.G. Ice storm frequencies in a warmer climate. Clim. Chang. 2015, 133, 209–222. [Google Scholar] [CrossRef]
- Adhikari, A.; Liu, C. Remote sensing properties of freezing rain events from space. J. Geophys. Res. Atmos. 2019, 124, 10385–10400. [Google Scholar] [CrossRef]
- Bragg, D.C.; Shelton, M.G.; Zeide, B. Impacts and management implications of ice storms on forests in the southern United States. For. Ecol. Manag. 2003, 186, 99–123. [Google Scholar] [CrossRef]
- Klopčič, M.; Poljanec, A.; Dolinar, M.; Kastelec, D.; Bončina, A. Ice-storm damage to trees in mixed Central European forests: Damage patterns, predictors and susceptibility of tree species. For. Int. J. For. Res. 2020, 93, 430–443. [Google Scholar] [CrossRef]
- Ivanov, A.; Zamolodchikov, D.; Kravchenko, O.; Soloviev, I. Impact of Ice Rain on Forests of Russky Island. Russ. J. Ecol. 2024, 55, 71–78. [Google Scholar] [CrossRef]
- DeGaetano, A.T. Climatic perspective and impacts of the 1998 northern New York and New England ice storm. Bull. Am. Meteorol. Soc. 2000, 81, 237–254. [Google Scholar] [CrossRef]
- Cortinas, J. A climatology of freezing rain in the Great Lakes region of North America. Mon. Weather Rev. 2000, 128, 3574–3588. [Google Scholar] [CrossRef]
- Kämäräinen, M.; Hyvärinen, O.; Vajda, A.; Nikulin, G.; Meijgaard, E.v.; Teichmann, C.; Jacob, D.; Gregow, H.; Jylhä, K. Estimates of present-day and future climatologies of freezing rain in Europe based on CORDEX regional climate models. J. Geophys. Res. Atmos. 2018, 123, 13–291. [Google Scholar] [CrossRef]
- Leonov, I.; Sokolikhina, N. Ice storm formation conditions in Vladivostok in November 2020, Gidrometeorol. Issled. Prognozy 2021, 4, 69–83. [Google Scholar]
- Gurvich, I.; Pichugin, M.; Baranyuk, A.; Khazanova, E. Ice storm in Primorye on November 18–19, 2020. Curr. Probl. Remote Sens. Earth Space 2021, 18, 241–252. [Google Scholar] [CrossRef]
- Deng, D.; Gao, S.; Du, X.; Wu, W. A diagnostic study of freezing rain over Guizhou, China, in January 2011. Q. J. R. Meteorol. Soc. 2012, 138, 1233–1244. [Google Scholar] [CrossRef]
- Deng, D.; Gao, S.; Hu, L.; Du, X.; Wang, J.; Wang, C. The impact of Guizhou topography on the distribution of freezing rain in early January 2011. Q. J. R. Meteorol. Soc. 2015, 141, 3252–3267. [Google Scholar] [CrossRef]
- Zhou, Y.; Yue, Y.; Gao, Z.; Zhou, Y. Climatic characteristics and determination method for freezing rain in China. Adv. Meteorol. 2017, 2017, 4635280. [Google Scholar] [CrossRef]
- Kwon, H.N.; Byun, H.R.; Park, C.K. Case studies on freezing rain over the Korean Peninsula using KLAPS. Atmosphere 2015, 25, 389–405. [Google Scholar] [CrossRef]
- Park, C.K.; Byun, H.R. Three cases with the multiple occurrences of freezing rain in one day in Korea (12 January 2006; 11 January 2008; and 22 February 2009). Atmosphere 2015, 25, 31–49. [Google Scholar] [CrossRef]
- Matsushita, H.; Nishio, F. Climatological characteristics and local influences on occurrence of freezing precipitation in Japan. J. Jpn. Soc. Snow Ice 2004, 66, 541–552. [Google Scholar] [CrossRef]
- Wen, Q.H.; Wan, D.; Dong, Q.; Yan, Y.; Zhang, P. Improved freezing rain forecast using machine learning. Weather Clim. Extrem. 2024, 44, 100690. [Google Scholar] [CrossRef]
- Kwon, S.H.; Byun, H.R.; Park, C.K.; Kwon, H.N. On the freezing precipitation in korea and the basic schemes for its potential prediction. Asia-Pac. J. Atmos. Sci. 2016, 52, 35–50. [Google Scholar] [CrossRef]
- Robbins, C.C.; Cortinas, J.V. Local and synoptic environments associated with freezing rain in the contiguous United States. Weather Forecast. 2002, 17, 47–65. [Google Scholar] [CrossRef]
- Changnon, S.A. Characteristics of ice storms in the United States. J. Appl. Meteorol. 2003, 42, 630–639. [Google Scholar] [CrossRef]
- Chen, B.; Hu, W.; Pu, J. Characteristics of the raindrop size distribution for freezing precipitation observed in southern China. J. Geophys. Res. Atmos. 2011, 116, D06201. [Google Scholar] [CrossRef]
- Zhang, C.y.; Zhang, Y.c. The features of East Asian jet stream in persistent snowstorm and freezing rain processes over southern China in early 2008. J. Trop. Meteorol. 2014, 20, 349. [Google Scholar]
- Kämäräinen, M.; Hyvärinen, O.; Jylha, K.; Vajda, A.; Neiglick, S.; Nuottokari, J.; Gregow, H. A method to estimate freezing rain climatology from ERA-Interim reanalysis over Europe. Nat. Hazards Earth Syst. Sci. 2017, 17, 243–259. [Google Scholar] [CrossRef]
- Chartrand, J.; Thériault, J.M.; Marinier, S. Freezing rain events that impacted the province of New Brunswick, Canada, and their evolution in a warmer climate. Atmosphere-Ocean 2023, 61, 40–56. [Google Scholar] [CrossRef]
- McCray, C.D.; Atallah, E.H.; Gyakum, J.R. Long-duration freezing rain events over North America: Regional climatology and thermodynamic evolution. Weather Forecast. 2019, 34, 665–681. [Google Scholar] [CrossRef]
- Matte, D.; Thériault, J.M.; Laprise, R. Mixed precipitation occurrences over southern Québec, Canada, under warmer climate conditions using a regional climate model. Clim. Dyn. 2019, 53, 1125–1141. [Google Scholar] [CrossRef]
- Reeves, H.D.; Elmore, K.L.; Ryzhkov, A.; Schuur, T.; Krause, J. Sources of uncertainty in precipitation-type forecasting. Weather Forecast. 2014, 29, 936–953. [Google Scholar] [CrossRef]
- Cantin, A.; Bachand, D. Synoptic Pattern Recognition and Partial Thickness Techniques as a Tool for Precipitation Types Forecasting Associated with a Winter Storm; Service de l’Environnement Atmospherique, Region du Quebec, Centre Météorologique du Québec: Quebec, QC, Canada, 1993. [Google Scholar]
- Baldwin, M.; Contorno, S. Development of a weather-type prediction system for NMC’s mesoscale Eta model. In Proceedings of the 13th Conference on On Weather Analysis And Forecasting, Vienna, VA, USA, 2–6 August 1993. [Google Scholar]
- Ramer, J. An empirical technique for diagnosing precipitation type from model output. In Proceedings of the International Conference on Aviation Weather Systems, Vienna, VA, USA, 1–6 August 1993; pp. 227–230. [Google Scholar]
- Czys, R.R.; Scott, R.W.; Tang, K.; Przybylinski, R.W.; Sabones, M.E. A physically based, nondimensional parameter for discriminating between locations of freezing rain and ice pellets. Weather Forecast. 1996, 11, 591–598. [Google Scholar] [CrossRef]
- Bourgouin, P. A method to determine precipitation types. Weather Forecast. 2000, 15, 583–592. [Google Scholar] [CrossRef]
- Morrison, H.; Grabowski, W.W. A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci. 2008, 65, 1528–1548. [Google Scholar] [CrossRef]
- Ikeda, K.; Steiner, M.; Pinto, J.; Alexander, C. Evaluation of cold-season precipitation forecasts generated by the hourly updating High-Resolution Rapid Refresh model. Weather Forecast. 2013, 28, 921–939. [Google Scholar] [CrossRef]
- Benjamin, S.G.; Brown, J.M.; Smirnova, T.G. Explicit precipitation-type diagnosis from a model using a mixed-phase bulk cloud–precipitation microphysics parameterization. Weather Forecast. 2016, 31, 609–619. [Google Scholar] [CrossRef]
- Wandishin, M.S.; Baldwin, M.E.; Mullen, S.L.; Cortinas, J.V. Short-range ensemble forecasts of precipitation type. Weather Forecast. 2005, 20, 609–626. [Google Scholar] [CrossRef]
- WMO. Manual on Codes-International Codes, Volume I. 1, Annex II to the WMO Technical Regulations: Part A-Alphanumeric Codes; WMO: Geneva, Switzerland, 2018. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Amjad, M.; Yilmaz, M.T.; Yucel, I.; Yilmaz, K.K. Performance evaluation of satellite-and model-based precipitation products over varying climate and complex topography. J. Hydrol. 2020, 584, 124707. [Google Scholar] [CrossRef]
- Chen, F.; Liu, Y.; Liu, Q.; Qin, F. A statistical method based on remote sensing for the estimation of air temperature in China. Int. J. Climatol. 2015, 35, 2131. [Google Scholar] [CrossRef]
- Good, E.J.; Ghent, D.J.; Bulgin, C.E.; Remedios, J.J. A spatiotemporal analysis of the relationship between near-surface air temperature and satellite land surface temperatures using 17 years of data from the ATSR series. J. Geophys. Res. Atmos. 2017, 122, 9185–9210. [Google Scholar] [CrossRef]
- Birk, K.; Lenning, E.; Donofrio, K.; Friedlein, M.T. A revised Bourgouin precipitation-type algorithm. Weather Forecast. 2021, 36, 425–438. [Google Scholar] [CrossRef]
- Aburomman, A.A.; Reaz, M.B.I. A survey of intrusion detection systems based on ensemble and hybrid classifiers. Comput. Secur. 2017, 65, 135–152. [Google Scholar] [CrossRef]
- Sultan Zia, M.; Hussain, M.; Arfan Jaffar, M. A novel spontaneous facial expression recognition using dynamically weighted majority voting based ensemble classifier. Multimed. Tools Appl. 2018, 77, 25537–25567. [Google Scholar] [CrossRef]
- Dogan, A.; Birant, D. A weighted majority voting ensemble approach for classification. In Proceedings of the 2019 4th International Conference on Computer Science and Engineering (UBMK), Samsun, Turkey, 11–15 September 2019; pp. 1–6. [Google Scholar]
- Rojarath, A.; Songpan, W.; Pong-inwong, C. Improved ensemble learning for classification techniques based on majority voting. In Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 26–28 August 2016; pp. 107–110. [Google Scholar]
- Zerr, R.J. Freezing rain: An observational and theoretical study. J. Appl. Meteorol. 1997, 36, 1647–1661. [Google Scholar] [CrossRef]
- Bernstein, B.C. Regional and local influences on freezing drizzle, freezing rain, and ice pellet events. Weather Forecast. 2000, 15, 485–508. [Google Scholar] [CrossRef]
- Carrière, J.M.; Lainard, C.; Le Bot, C.; Robart, F. A climatological study of surface freezing precipitation in Europe. Meteorol. Appl. 2000, 7, 229–238. [Google Scholar] [CrossRef]
- Roberts, E.; Stewart, R.E. On the occurrence of freezing rain and ice pellets over the eastern Canadian Arctic. Atmos. Res. 2008, 89, 93–109. [Google Scholar] [CrossRef]
- Roebber, P.J. Visualizing multiple measures of forecast quality. Weather Forecast. 2009, 24, 601–608. [Google Scholar] [CrossRef]
- Heidke, P. Berechnung des Erfolges und der Güte der Windstärkevorhersagen im Sturmwarnungsdienst. Geogr. Ann. 1926, 8, 301–349. [Google Scholar]
- Jolliffe, I.T.; Stephenson, D.B. Forecast Verification: A Practitioner’s Guide in Atmospheric Science; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Lei, H.; Zhao, H.; Ao, T. A two-step merging strategy for incorporating multi-source precipitation products and gauge observations using machine learning classification and regression over China. Hydrol. Earth Syst. Sci. 2022, 26, 2969–2995. [Google Scholar] [CrossRef]
- Sohn, K.T.; Lee, J.H.; Lee, S.H.; Ryu, C.S. Statistical prediction of heavy rain in South Korea. Adv. Atmos. Sci. 2005, 22, 703–710. [Google Scholar] [CrossRef]
FZRA Observed | |||
---|---|---|---|
True | False | ||
FZRA Detection Algorithm | True | a | b |
False | c | d |
Algorithms | (°C) | (°C) | (hPa) | / (°C) | (mm/h) | (%) |
---|---|---|---|---|---|---|
T2MA | 1.4 | – | 108 | 0.33 | 0.02 | 85 |
SKTA | 1.3 | – | 112 | −0.16 | 0.01 | 88 |
TCLA | 1.3 | −1.4 | 27 | – | 0.02 | 84 |
FMIK | −0.64 | – | 69 | 0.09 | 0.065 | 89 |
Quality Measures | T2MA | SKTA | TCLA | ENSA | FMIK | ERA5 |
---|---|---|---|---|---|---|
CSI | 0.132 ± 0.032 | 0.117 ± 0.023 | 0.133 ± 0.029 | 0.133 ± 0.030 | 0.104 ± 0.024 | 0.084 ± 0.020 |
POD (%) | 22 ± 5 | 21 ± 4 | 22 ± 4 | 22 ± 5 | 25 ± 6 | 23 ± 4 |
SR | 0.247 ± 0.054 | 0.209 ± 0.042 | 0.256 ± 0.052 | 0.262 ± 0.055 | 0.152 ±0.036 | 0.116 ± 0.031 |
Bias | 0.90 ± 0.15 | 1.02 ± 0.17 | 0.85 ± 0.12 | 0.82 ± 0.14 | 1.66 ± 0.36 | 2.11 ± 0.46 |
HSS | 0.232 ± 0.050 | 0.208 ± 0.037 | 0.234 ± 0.045 | 0.234 ± 0.047 | 0.186 ± 0.040 | 0.154 ± 0.035 |
Area 1 | Area 2 | Area 3 | Area 4 | Area 5 | All Areas | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | R | R | R | R | R | ||||||||
T2MA | 0.95 | 0.70 | 0.64 | 0.18 | 0.86 | 0.29 | 0.49 | 0.63 | 0.38 | 0.53 | 0.93 | 0.72 | 0.24 |
SKTA | 0.96 | 0.58 | 0.30 | 0.19 | 0.89 | 0.25 | 0.51 | 0.47 | 0.41 | 0.41 | 0.95 | 0.80 | 0.20 |
TCLA | 0.95 | 0.73 | 0.37 | 0.21 | 0.85 | 0.28 | 0.51 | 0.68 | 0.27 | 0.62 | 0.92 | 0.72 | 0.24 |
ENSA | 0.95 | 0.63 | 0.44 | 0.20 | 0.86 | 0.27 | 0.47 | 0.65 | 0.37 | 0.56 | 0.93 | 0.70 | 0.25 |
FMIK | 0.90 | 1.14 | 0.70 | 0.15 | 0.81 | 0.71 | 0.43 | 0.55 | 0.28 | 0.47 | 0.86 | 0.23 | 0.40 |
ERA5 | 0.92 | 1.28 | 0.28 | 0.61 | 0.74 | 0.61 | 0.36 | 0.47 | 0.27 | 0.41 | 0.89 | −0.30 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pichugin, M.; Gurvich, I.; Baranyuk, A.; Kuleshov, V.; Khazanova, E. Development of a Diagnostic Algorithm for Detecting Freezing Precipitation from ERA5 Dataset: An Adjustment to the Far East. Climate 2024, 12, 224. https://doi.org/10.3390/cli12120224
Pichugin M, Gurvich I, Baranyuk A, Kuleshov V, Khazanova E. Development of a Diagnostic Algorithm for Detecting Freezing Precipitation from ERA5 Dataset: An Adjustment to the Far East. Climate. 2024; 12(12):224. https://doi.org/10.3390/cli12120224
Chicago/Turabian StylePichugin, Mikhail, Irina Gurvich, Anastasiya Baranyuk, Vladimir Kuleshov, and Elena Khazanova. 2024. "Development of a Diagnostic Algorithm for Detecting Freezing Precipitation from ERA5 Dataset: An Adjustment to the Far East" Climate 12, no. 12: 224. https://doi.org/10.3390/cli12120224
APA StylePichugin, M., Gurvich, I., Baranyuk, A., Kuleshov, V., & Khazanova, E. (2024). Development of a Diagnostic Algorithm for Detecting Freezing Precipitation from ERA5 Dataset: An Adjustment to the Far East. Climate, 12(12), 224. https://doi.org/10.3390/cli12120224