High Glucose Sensitizes Male and Female Rat Cardiomyocytes to Wnt/β-Catenin Signaling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Male and Female Neonatal Rat Ventricular Myocytes
2.2. Lipid-Rich Medium
2.3. Activation of Wnt/β-Catenin Signaling in NRVMs
2.4. RNA Extraction and Real-Time Quantitative PCR
2.5. Statistical Analysis
3. Results
3.1. Preparation of Male and Female Neonatal Rat Ventricular Myocytes (NRVMs)
3.2. Baseline Gene Expressions in Male and Female NRVMs in Glucose-Rich and Lipid-Rich Media
3.3. Axin2 mRNA Upregulation Is Sex-Independent, but Is Greater in Glucose-Rich Medium
3.4. Scn5a mRNA Downregulation Is Sex-Independent, but Is More Sensitive to CHIR in Glucose-Rich Medium
3.5. Tbx3 mRNA Upregulation Is Sex-Independent, but Is Greater in Glucose-Rich Medium
3.6. Non-Linear Correlation Between Axin2 mRNA Increases and Scn5a mRNA Reductions
3.7. Non-Linear Correlation Between Axin2 and Tbx3 mRNA Upregulations
3.8. Linear Correlation Between Tbx3 mRNA Increases and Scn5a mRNA Reductions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nusse, R.; Brown, A.; Papkoff, J.; Scambler, P.; Shackleford, G.; McMahon, A.; Moon, R.; Varmus, H. A new nomenclature for int-1 and related genes: The Wnt gene family. Cell 1991, 64, 231. [Google Scholar] [CrossRef] [PubMed]
- Cadigan, K.M.; Nusse, R. Wnt signaling: A common theme in animal development. Genes. Dev. 1997, 11, 3286–3305. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Han, P.; Kim, E.H.; Mak, J.; Zhang, R.; Torrente, A.G.; Goldhaber, J.I.; Marbán, E.; Cho, H.C. Canonical Wnt signaling promotes pacemaker cell specification of cardiac mesodermal cells derived from mouse and human embryonic stem cells. Stem Cells 2020, 38, 352–368. [Google Scholar] [CrossRef] [PubMed]
- Dawson, K.; Aflaki, M.; Nattel, S. Role of the Wnt-Frizzled system in cardiac pathophysiology: A rapidly developing, poorly understood area with enormous potential. J. Physiol. 2013, 591 Pt 6, 1409–1432. [Google Scholar] [CrossRef]
- Malekar, P.; Hagenmueller, M.; Anyanwu, A.; Buss, S.; Streit, M.R.; Weiss, C.S.; Wolf, D.; Riffel, J.; Bauer, A.; Katus, H.A.; et al. Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling. Hypertension 2010, 55, 939–945. [Google Scholar] [CrossRef]
- Hou, N.; Ye, B.; Li, X.; Margulies, K.B.; Xu, H.; Wang, X.; Li, F. Transcription Factor 7-like 2 Mediates Canonical Wnt/beta-Catenin Signaling and c-Myc Upregulation in Heart Failure. Circ. Heart Fail. 2016, 9, e003010. [Google Scholar] [CrossRef]
- Marban, E. Cardiac channelopathies. Nature 2002, 415, 213–218. [Google Scholar] [CrossRef]
- Pu, J.; Boyden, P.A. Alterations of Na+ currents in myocytes from epicardial border zone of the infarcted heart. A possible ionic mechanism for reduced excitability and postrepolarization refractoriness. Circ. Res. 1997, 81, 110–119. [Google Scholar] [CrossRef]
- Brugada, P.; Brugada, J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: A distinct clinical and electrocardiographic syndrome. A multicenter report. J. Am. Coll. Cardiol. 1992, 20, 1391–1396. [Google Scholar] [CrossRef]
- Kapplinger, J.D.; Tester, D.J.; Alders, M.; Benito, B.; Berthet, M.; Brugada, J.; Brugada, P.; Fressart, V.; Guerchicoff, A.; Harris-Kerr, C.; et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010, 7, 33–46. [Google Scholar] [CrossRef]
- Liang, W.; Cho, H.C.; Marban, E. Wnt signalling suppresses voltage-dependent Na(+) channel expression in postnatal rat cardiomyocytes. J. Physiol. 2015, 593, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.; Kamkar, M.; Chu, C.; Wang, J.; Gaudet, K.; Chen, Y.; Lin, L.; Liu, W.; Marban, E.; Liang, W. Direct and indirect suppression of Scn5a gene expression mediates cardiac Na+ channel inhibition by Wnt signalling. Can. J. Cardiol. 2020, 36, 564–576. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Huo, R.; Cai, B.; Lu, Y.; Ye, B.; Li, X.; Li, F.; Xu, H. Activation of Wnt/beta-catenin signaling by hydrogen peroxide transcriptionally inhibits NaV1.5 expression. Free Radic. Biol. Med. 2016, 96, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Sun, L.; Lu, Y.; Li, F.; Xu, H. A small-molecule LF3 abrogates beta-catenin/TCF4-mediated suppression of NaV1.5 expression in HL-1 cardiomyocytes. J. Mol. Cell Cardiol. 2019, 135, 90–96. [Google Scholar] [CrossRef]
- Lu, A.; Gu, R.; Chu, C.; Xia, Y.; Wang, J.; Davis, D.R.; Liang, W. Inhibition of Wnt/β-catenin signaling upregulates Na(v) 1.5 channels in Brugada syndrome iPSC-derived cardiomyocytes. Physiol. Rep. 2023, 11, e15696. [Google Scholar] [CrossRef]
- Gillers, B.S.; Chiplunkar, A.; Aly, H.; Valenta, T.; Basler, K.; Christoffels, V.M.; Efimov, I.R.; Boukens, B.J.; Rentschler, S. Canonical wnt signaling regulates atrioventricular junction programming and electrophysiological properties. Circ. Res. 2015, 116, 398–406. [Google Scholar] [CrossRef]
- Li, G.; Khandekar, A.; Yin, T.; Hicks, S.C.; Guo, Q.; Takahashi, K.; Lipovsky, C.E.; Brumback, B.D.; Rao, P.K.; Weinheimer, C.J.; et al. Differential Wnt-mediated programming and arrhythmogenesis in right versus left ventricles. J. Mol. Cell Cardiol. 2018, 123, 92–107. [Google Scholar] [CrossRef]
- Wang, J.; Xia, Y.; Lu, A.; Wang, H.; Davis, D.R.; Liu, P.; Beanlands, R.S.; Liang, W. Cardiomyocyte-specific deletion of β-catenin protects mouse hearts from ventricular arrhythmias after myocardial infarction. Sci. Rep. 2021, 11, 17722. [Google Scholar] [CrossRef]
- Jouven, X.; Lemaître, R.N.; Rea, T.D.; Sotoodehnia, N.; Empana, J.P.; Siscovick, D.S. Diabetes, glucose level, and risk of sudden cardiac death. Eur. Heart J. 2005, 26, 2142–2147. [Google Scholar] [CrossRef]
- Grisanti, L.A. Diabetes and Arrhythmias: Pathophysiology, Mechanisms and Therapeutic Outcomes. Front. Physiol. 2018, 9, 1669. [Google Scholar] [CrossRef]
- Laakso, M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 1999, 48, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Stables, C.L.; Musa, H.; Mitra, A.; Bhushal, S.; Deo, M.; Guerrero-Serna, G.; Mironov, S.; Zarzoso, M.; Vikstrom, K.L.; Cawthorn, W.; et al. Reduced Na+ current density underlies impaired propagation in the diabetic rabbit ventricle. J. Mol. Cell Cardiol. 2014, 69, 24–31. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, B.; Ramza, B.M.; Marban, E. Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science 1994, 265, 962–966. [Google Scholar] [CrossRef] [PubMed]
- Chocarro-Calvo, A.; García-Martínez, J.M.; Ardila-González, S.; De la Vieja, A.; García-Jiménez, C. Glucose-induced β-catenin acetylation enhances Wnt signaling in cancer. Mol. Cell 2013, 49, 474–486. [Google Scholar] [CrossRef]
- Chouhan, S.; Singh, S.; Athavale, D.; Ramteke, P.; Pandey, V.; Joseph, J.; Mohan, R.; Shetty, P.K.; Bhat, M.K. Glucose induced activation of canonical Wnt signaling pathway in hepatocellular carcinoma is regulated by DKK4. Sci. Rep. 2016, 6, 27558. [Google Scholar] [CrossRef]
- Feyen, D.A.M.; McKeithan, W.L.; Bruyneel, A.A.N.; Spiering, S.; Hörmann, L.; Ulmer, B.; Zhang, H.; Briganti, F.; Schweizer, M.; Hegyi, B.; et al. Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes. Cell Rep. 2020, 32, 107925. [Google Scholar] [CrossRef]
- Ritchie, R.H.; Abel, E.D. Basic Mechanisms of Diabetic Heart Disease. Circ. Res. 2020, 126, 1501–1525. [Google Scholar] [CrossRef]
- McCarthy, M.M. Incorporating Sex as a Variable in Preclinical Neuropsychiatric Research. Schizophr. Bull. 2015, 41, 1016–1020. [Google Scholar] [CrossRef]
- Jho, E.H.; Zhang, T.; Domon, C.; Joo, C.K.; Freund, J.N.; Costantini, F. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell Biol. 2002, 22, 1172–1183. [Google Scholar] [CrossRef]
- Martin, T.G.; Leinwand, L.A. Hearts apart: Sex differences in cardiac remodeling in health and disease. J. Clin. Investig. 2024, 134, e180074. [Google Scholar] [CrossRef]
- Bachtrog, D. Y-chromosome evolution: Emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 2013, 14, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Tukiainen, T.; Villani, A.C.; Yen, A.; Rivas, M.A.; Marshall, J.L.; Satija, R.; Aguirre, M.; Gauthier, L.; Fleharty, M.; Kirby, A.; et al. Landscape of X chromosome inactivation across human tissues. Nature 2017, 550, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Wainer Katsir, K.; Linial, M. Human genes escaping X-inactivation revealed by single cell expression data. BMC Genom. 2019, 20, 201. [Google Scholar] [CrossRef] [PubMed]
- Willert, K.; Brown, J.D.; Danenberg, E.; Duncan, A.W.; Weissman, I.L.; Reya, T.; Yates, J.R., 3rd; Nusse, R. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003, 423, 448–452. [Google Scholar] [CrossRef]
- Burridge, P.W.; Matsa, E.; Shukla, P.; Lin, Z.C.; Churko, J.M.; Ebert, A.D.; Lan, F.; Diecke, S.; Huber, B.; Mordwinkin, N.M.; et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 2014, 11, 855–860. [Google Scholar] [CrossRef]
Genes | Forward (5′ to 3′) | Reverse (5′ to 3′) | Amplicon Size (bp) | Target Exon (s) |
---|---|---|---|---|
Axin2 | TCCTTACCGCATGGGGAGTA | GTGGGTTCTCGGGAAGTGAG | 100 | 3–4 |
Scn5a | TATGTTGAGTACACCTTCACTGC | GCCCAGGTCCACAAATTCAG | 165 | 5–6 |
Sry | GCTGCAATGGGACAACAACC | TTCTTGGAGGACTGGTGTGC | 78 | 1 |
Tbx3 | AGACGTAGAAGACGACCCCA | AGGGAACATTCGCCTTCCTG | 112 | 1–2 |
Hprt1 | ACAGGCCAGACTTTGTTGGA | TGCCGCTGTCTTTTAGGCTT | 149 | 7–8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, R.; Wang, J.; Morin, J.; Lu, A.; Liang, W. High Glucose Sensitizes Male and Female Rat Cardiomyocytes to Wnt/β-Catenin Signaling. Biomolecules 2024, 14, 1639. https://doi.org/10.3390/biom14121639
Gu R, Wang J, Morin J, Lu A, Liang W. High Glucose Sensitizes Male and Female Rat Cardiomyocytes to Wnt/β-Catenin Signaling. Biomolecules. 2024; 14(12):1639. https://doi.org/10.3390/biom14121639
Chicago/Turabian StyleGu, Ruonan, Jerry Wang, Julianne Morin, Aizhu Lu, and Wenbin Liang. 2024. "High Glucose Sensitizes Male and Female Rat Cardiomyocytes to Wnt/β-Catenin Signaling" Biomolecules 14, no. 12: 1639. https://doi.org/10.3390/biom14121639
APA StyleGu, R., Wang, J., Morin, J., Lu, A., & Liang, W. (2024). High Glucose Sensitizes Male and Female Rat Cardiomyocytes to Wnt/β-Catenin Signaling. Biomolecules, 14(12), 1639. https://doi.org/10.3390/biom14121639