Enzymatic Regulation of the Gut Microbiota: Mechanisms and Implications for Host Health
Abstract
:1. Introduction
2. Nutritional and Non-Nutritional Functions of Enzymes and Their Effects on Microbiota
2.1. Nutritional Functions of Enzymes and Their Effects on Microbiota
2.1.1. Enzymes Derived from the Microbiota
2.1.2. Enzymes Derived from the Host
2.1.3. Microbial Enzymes Interact with Microbial Communities and Hosts
2.1.4. Enzymes Derived from External Factors
2.2. Non-Nutritional Functions of Enzymes and Their Effects on Microbiota
2.2.1. Enzymes Derived from the Microbiota
2.2.2. Enzymes Derived from the Host
2.2.3. Microbial Enzymes Interact with Microbial Communities and Hosts
2.2.4. Enzymes Derived from External Factors
3. Mechanisms of Enzyme-Mediated Microbial Regulation
4. Application of Enzyme-Mediated Regulation of Gut Microbes
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mahowald, M.A.; Rey, F.E.; Seedorf, H.; Turnbaugh, P.J.; Fulton, R.S.; Wollam, A.; Shah, N.; Wang, C.; Magrini, V.; Wilson, R.K.; et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl. Acad. Sci. USA 2009, 106, 5859–5864. [Google Scholar] [CrossRef] [PubMed]
- McCallum, G.; Tropini, C. The gut microbiota and its biogeography. Nat. Rev. Microbiol. 2023, 22, 105–118. [Google Scholar] [CrossRef]
- Donald, K.; Finlay, B.B. Early-life interactions between the microbiota and immune system: Impact on immune system development and atopic disease. Nat. Rev. Immunol. 2023, 23, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yuan, W.; Yang, C.; Wang, Z.; Zhang, J.; Xu, D.; Sun, X.; Sun, W. Emerging role of gut microbiota in autoimmune diseases. Front. Immunol. 2024, 15, 1365554. [Google Scholar] [CrossRef] [PubMed]
- Mao, K.; Baptista, A.P.; Tamoutounour, S.; Zhuang, L.; Bouladoux, N.; Martins, A.J.; Huang, Y.; Gerner, M.Y.; Belkaid, Y.; Germain, R.N. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature 2018, 554, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Agirman, G.; Hsiao, E.Y. SnapShot: The microbiota-gut-brain axis. Cell 2021, 184, 2524–2524.E1. [Google Scholar] [CrossRef] [PubMed]
- Gentile, C.L.; Weir, T.L. The gut microbiota at the intersection of diet and human health. Science 2018, 362, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Zmora, N.; Suez, J.; Elinav, E. You are what you eat: Diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2018, 16, 35–56. [Google Scholar] [CrossRef]
- Wardman, J.F.; Bains, R.K.; Rahfeld, P.; Withers, S.G. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat. Rev. Microbiol. 2022, 20, 542–556. [Google Scholar] [CrossRef]
- Shi, Z.; Li, X.; Chen, J.; Dai, Z.; Zhu, Y.; Wu, T.; Liu, Q.; Qin, H.; Zhang, Y.; Chen, H. Enzyme-like biomimetic oral-agent enabling modulating gut microbiota and restoring redox homeostasis to treat inflammatory bowel disease. Bioact. Mater. 2024, 35, 167–180. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, K.; Tang, W.; Li, Y.; Pang, J.; Yuan, X.; Song, X.; Jiang, L.; Yu, X.; Zhu, H.; et al. Feed nutritional composition affects the intestinal microbiota and digestive enzyme activity of black soldier fly larvae. Front. Microbiol. 2023, 14, 1184139. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Liu, X.; Sun, L. Inconsistency between polyphenol-enzyme binding interactions and enzyme inhibition: Galloyl moiety decreases amyloglucosidase inhibition of catechins. Food Res. Int. 2023, 163, 112155. [Google Scholar] [CrossRef] [PubMed]
- Kundu, P.; Manna, B.; Majumder, S.; Ghosh, A. Species-wide Metabolic Interaction Network for Understanding Natural Lignocellulose Digestion in Termite Gut Microbiota. Sci. Rep. 2019, 9, 16329. [Google Scholar] [CrossRef] [PubMed]
- Mangini, V.; Rosini, E.; Caliandro, R.; Mangiatordi, G.F.; Delre, P.; Sciancalepore, A.G.; Pollegioni, L.; Haidukowski, M.; Mazzorana, M.; Sumarah, M.W.; et al. DypB peroxidase for aflatoxin removal: New insights into the toxin degradation process. Chemosphere 2024, 349, 140826. [Google Scholar] [CrossRef]
- Winzer, R.; Nguyen, D.H.; Schoppmeier, F.; Cortesi, F.; Gagliani, N.; Tolosa, E. Purinergic enzymes on extracellular vesicles: Immune modulation on the go. Front. Immunol. 2024, 15, 1362996. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, E.; Mosior, J.; Hartman, T.; Burns-Huang, K.; Gold, B.; Morris, R.; Goullieux, L.; Blanc, I.; Vaubourgeix, J.; Lagrange, F.; et al. Opposing reactions in coenzyme A metabolism sensitize Mycobacterium tuberculosis to enzyme inhibition. Science 2019, 363, eaau8959. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Chen, J.; Cui, L.; Fei, Q.; Wang, N.; Ma, Y. Development of oriented multi-enzyme strengthens waste activated sludge disintegration and anaerobic digestion: Performance, components transformation and microbial communities. J. Environ. Manag. 2024, 365, 121614. [Google Scholar] [CrossRef] [PubMed]
- McDonald, A.G.; Tipton, K.F. Enzyme nomenclature and classification: The state of the art. FEBS J. 2022, 290, 2214–2231. [Google Scholar] [CrossRef]
- Bedford, M.R. The Effect of Enzymes on Digestion. J. Appl. Poult. Res. 1996, 5, 370–378. [Google Scholar] [CrossRef]
- Plouhinec, L.; Neugnot, V.; Lafond, M.; Berrin, J.G. Carbohydrate-active enzymes in animal feed. Biotechnol. Adv. 2023, 65, 108145. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Sonnenburg, E.D.; Sonnenburg, J.L. Starving our Microbial Self: The Deleterious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates. Cell Metab. 2014, 20, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef]
- Ménard, D. Development of human intestinal and gastric enzymes. Acta Paediatr. 1994, 83, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, L.; Zhang, Y.; Chen, H.; Li, X.; Xu, Z.; Du, R.; Li, X.; Ma, J.; Liu, D. Review of yeast culture concerning the interactions between gut microbiota and young ruminant animals. Front. Vet. Sci. 2024, 11, 1335765. [Google Scholar] [CrossRef]
- El Kaoutari, A.; Armougom, F.; Gordon, J.I.; Raoult, D.; Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 2013, 11, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Rani, S. Study of Microbial Flora and Enzymes in the Gut of Clarias Batrachus Fed on Soybean as Protein Source. J. Int. Acad. Res. Multidiscip. 2015, 3. [Google Scholar]
- Kastrinou Lampou, V.; Poller, B.; Huth, F.; Fischer, A.; Kullak-Ublick, G.A.; Arand, M.; Schadt, H.S.; Camenisch, G. Novel insights into bile acid detoxification via CYP, UGT and SULT enzymes. Toxicol. Vitr. 2023, 87, 105533. [Google Scholar] [CrossRef] [PubMed]
- Robic, S.; Linscott, K.B.; Aseem, M.; Humphreys, E.A.; McCartha, S.R. Bile acids as modulators of enzyme activity and stability. Protein J. 2011, 30, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Cowley, E.S.; Wolf, P.G.; Doden, H.L.; Murai, T.; Caicedo, K.Y.O.; Ly, L.K.; Sun, F.; Takei, H.; Nittono, H.; et al. Formation of secondary allo-bile acids by novel enzymes from gut Firmicutes. Gut Microbes 2022, 14, 2132903. [Google Scholar] [CrossRef] [PubMed]
- McMillan, A.S.; Foley, M.H.; Perkins, C.E.; Theriot, C.M. Loss of Bacteroides thetaiotaomicron bile acid-altering enzymes impacts bacterial fitness and the global metabolic transcriptome. Microbiol. Spectr. 2023, 12, e0357623. [Google Scholar] [CrossRef]
- Prosser, D.E.; Jones, G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem. Sci. 2004, 29, 664–673. [Google Scholar] [CrossRef]
- Tie, J.K.; Stafford, D.W. Structural and functional insights into enzymes of the vitamin K cycle. J. Thromb. Haemost. 2016, 14, 236–247. [Google Scholar] [CrossRef] [PubMed]
- van Haaften, R.I.; Haenen, G.R.; Evelo, C.T.; Bast, A. Effect of vitamin E on glutathione-dependent enzymes. Drug Metab. Rev. 2003, 35, 215–253. [Google Scholar] [CrossRef] [PubMed]
- Jahan, A.A.; González Ortiz, G.; Moss, A.F.; Bhuiyan, M.M.; Morgan, N.K. Role of supplemental oligosaccharides in poultry diets. World’s Poult. Sci. J. 2022, 78, 615–639. [Google Scholar] [CrossRef]
- Lee, W.-M.; Song, Y.-B.; Han, K.-S.; Sim, W.-S.; Lee, B.-H. Hydrolysis of oligosaccharides in the gastrointestinal tract alters their prebiotic effects on probiotic strains. Food Sci. Biotechnol. 2023, 33, 2255–2260. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Hu, J.; Geng, F.; Nie, S. Bacteroides utilization for dietary polysaccharides and their beneficial effects on gut health. Food Sci. Hum. Wellness 2022, 11, 1101–1110. [Google Scholar] [CrossRef]
- Sebastià, C.; Folch, J.M.; Ballester, M.; Estellé, J.; Passols, M.; Muñoz, M.; García-Casco, J.M.; Fernández, A.I.; Castelló, A.; Sánchez, A.; et al. Interrelation between gut microbiota, SCFA, and fatty acid composition in pigs. mSystems 2023, 9, e0104923. [Google Scholar] [CrossRef] [PubMed]
- Amri, E.; Mamboya, F. Papain, a Plant Enzyme of Biological Importance: A Review. Am. J. Biochem. Biotechnol. 2012, 8, 99–104. [Google Scholar] [CrossRef]
- Pavan, R.; Jain, S.; Shraddha; Kumar, A. Properties and Therapeutic Application of Bromelain: A Review. Biotechnol. Res. Int. 2012, 2012, 976203. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; McGowan, E.M.; Ren, N.; Lal, S.; Nassif, N.; Shad-Kaneez, F.; Qu, X.; Lin, Y. Nattokinase: A Promising Alternative in Prevention and Treatment of Cardiovascular Diseases. Biomark. Insights 2018, 13, 1177271918785130. [Google Scholar] [CrossRef]
- Kiarie, E.G.; Steelman, S.; Martinez, M. Does supplementing β-mannanase modulate the feed-induced immune response and gastrointestinal ecology in poultry and pigs? An appraisal. Front. Anim. Sci. 2022, 3, 875095. [Google Scholar] [CrossRef]
- Nishiyama, H.; Nagai, T.; Kudo, M.; Okazaki, Y.; Azuma, Y.; Watanabe, T.; Goto, S.; Ogata, H.; Sakurai, T. Supplementation of pancreatic digestive enzymes alters the composition of intestinal microbiota in mice. Biochem. Biophys. Res. Commun. 2018, 495, 273–279. [Google Scholar] [CrossRef]
- Liang, Z.; Yan, Y.; Zhang, W.; Luo, H.; Yao, B.; Huang, H.; Tu, T. Review of glucose oxidase as a feed additive: Production, engineering, applications, growth-promoting mechanisms, and outlook. Crit. Rev. Biotechnol. 2023, 43, 698–715. [Google Scholar] [CrossRef]
- Macfarlane, S.; Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 2007, 62, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, G.; Chen, Z.; Zheng, A.; Cai, H.; Chang, W.; Li, C.; Chen, J.; Wu, Z. Effects of glucose oxidase on growth performance, immune function, and intestinal barrier of ducks infected with Escherichia coli O88. Poult. Sci. 2020, 99, 6549–6558. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Fu, J.; Li, P.; Chen, N.; Liu, Y.; Liu, D.; Guo, Y. Effects of dietary glucose oxidase on growth performance and intestinal health of AA broilers challenged by Clostridium perfringens. Poult. Sci. 2022, 101, 101553. [Google Scholar] [CrossRef]
- Kamrad, S.; Lindell, A.E.; Patil, K.R. Gut reaction: It’s not all about enzymes. Nat. Metab. 2022, 4, 1219–1220. [Google Scholar] [CrossRef]
- Heimesaat, M.M.; Chang, M.; Alsaigh, T.; Kistler, E.B.; Schmid-Schönbein, G.W. Breakdown of Mucin as Barrier to Digestive Enzymes in the Ischemic Rat Small Intestine. PLoS ONE 2012, 7, e40087. [Google Scholar] [CrossRef]
- Negishi, M.; Pedersen, L.G.; Petrotchenko, E.; Shevtsov, S.; Gorokhov, A.; Kakuta, Y.; Pedersen, L.C. Structure and Function of Sulfotransferases. Arch. Biochem. Biophys. 2001, 390, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.; Pratt, D.A.; Porter, N.A.; Brash, A.R. Control of Oxygenation in Lipoxygenase and Cyclooxygenase Catalysis. Chem. Biol. 2007, 14, 473–488. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Xie, X.; Yang, S.; Li, Y.; Jiang, T.; Yang, J.; Li, L.; Huang, Y.; Wu, Q.; Chen, W.; et al. Lysozyme-like Protein Produced by Bifidobacterium longum Regulates Human Gut Microbiota Using In Vitro Models. Molecules 2021, 26, 6480. [Google Scholar] [CrossRef] [PubMed]
- Larsen, I.S.; Jensen, B.A.H.; Bonazzi, E.; Choi, B.S.Y.; Kristensen, N.N.; Schmidt, E.G.W.; Suenderhauf, A.; Morin, L.; Olsen, P.B.; Hansen, L.B.S.; et al. Fungal lysozyme leverages the gut microbiota to curb DSS-induced colitis. Gut Microbes 2021, 13, 1988836. [Google Scholar] [CrossRef]
- Jiang, L.; Lv, J.; Liu, J.; Hao, X.; Ren, F.; Guo, H. Donkey milk lysozyme ameliorates dextran sulfate sodium-induced colitis by improving intestinal barrier function and gut microbiota composition. J. Funct. Foods 2018, 48, 144–152. [Google Scholar] [CrossRef]
- Yu, S.; Balasubramanian, I.; Laubitz, D.; Tong, K.; Bandyopadhyay, S.; Lin, X.; Flores, J.; Singh, R.; Liu, Y.; Macazana, C.; et al. Paneth Cell-Derived Lysozyme Defines the Composition of Mucolytic Microbiota and the Inflammatory Tone of the Intestine. Immunity 2020, 53, 398–416.e8. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, Y.; Zeng, B.; Zheng, X.; Wang, H.; Shen, X.; Li, H.; Jiang, Q.; Zhao, J.; Meng, Z.X.; et al. Intestinal lysozyme liberates Nod1 ligands from microbes to direct insulin trafficking in pancreatic beta cells. Cell Res. 2019, 29, 516–532. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Douard, V.; Edelblum, K.L.; Laubitz, D.; Zhao, Y.; Kiela, P.R.; Yap, G.S.; Gao, N. Paneth Cell Specific Lysozyme Regulates Intestinal Mucosal Immune Response by Shaping Gut Microbiota Landscape. J. Immunol. 2017, 198, 218.213. [Google Scholar] [CrossRef]
- Bel, S.; Pendse, M.; Wang, Y.; Li, Y.; Ruhn, K.A.; Hassell, B.; Leal, T.; Winter, S.E.; Xavier, R.J.; Hooper, L.V. Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science 2017, 357, 1047–1052. [Google Scholar] [CrossRef]
- Fukatsu, K.; Kudsk, K.A. Nutrition and Gut Immunity. Surg. Clin. N. Am. 2011, 91, 755–770. [Google Scholar] [CrossRef] [PubMed]
- Firrman, J.; Liu, L.; Mahalak, K.; Tanes, C.; Bittinger, K.; Tu, V.; Bobokalonov, J.; Mattei, L.; Zhang, H.; Van den Abbeele, P. The impact of environmental pH on the gut microbiota community structure and short chain fatty acid production. FEMS Microbiol. Ecol. 2022, 98, fiac038. [Google Scholar] [CrossRef] [PubMed]
- Estaki, M. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity. World J. Gastroenterol. 2014, 20, 15650–15656. [Google Scholar] [CrossRef] [PubMed]
- Mahapatro, M.; Erkert, L.; Becker, C. Cytokine-Mediated Crosstalk between Immune Cells and Epithelial Cells in the Gut. Cells 2021, 10, 111. [Google Scholar] [CrossRef] [PubMed]
- Solaymani-Mohammadi, S.; Singer, S.M. Host Immunity and Pathogen Strain Contribute to Intestinal Disaccharidase Impairment following Gut Infection. J. Immunol. 2011, 187, 3769–3775. [Google Scholar] [CrossRef]
- Ha, E.-M.; Oh, C.-T.; Bae, Y.S.; Lee, W.-J. A Direct Role for Dual Oxidase in Drosophila Gut Immunity. Science 2005, 310, 847–850. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Ji, Q.; Song, J.; Wang, L.; Liu, B.; Wang, J.; Li, C. The function of Apostichopus japonicas catalase in sea cucumber intestinal immunity. Aquaculture 2020, 521, 735103. [Google Scholar] [CrossRef]
- Tomusiak-Plebanek, A.; Heczko, P.; Skowron, B.; Baranowska, A.; Okoń, K.; Thor, P.J.; Strus, M. Lactobacilli with superoxide dismutase-like or catalase activity are more effective in alleviating inflammation in an inflammatory bowel disease mouse model. Drug Des. Dev. Ther. 2018, 12, 3221–3233. [Google Scholar] [CrossRef]
- Sellami, K.; Couvert, A.; Nasrallah, N.; Maachi, R.; Abouseoud, M.; Amrane, A. Peroxidase enzymes as green catalysts for bioremediation and biotechnological applications: A review. Sci. Total Environ. 2022, 806, 150500. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; He, Z.; Xiong, D.; Long, M. Mechanisms by which microbial enzymes degrade four mycotoxins and application in animal production: A review. Anim. Nutr. 2023, 15, 256–274. [Google Scholar] [CrossRef] [PubMed]
- Kanwar, J.R.; Kanwar, R.K. Gut health immunomodulatory and anti-inflammatory functions of gut enzyme digested high protein micro-nutrient dietary supplement-Enprocal. BMC Immunol. 2009, 10, 7. [Google Scholar] [CrossRef]
- Wu, S.; Li, T.; Niu, H.; Zhu, Y.; Liu, Y.; Duan, Y.; Sun, Q.; Yang, X. Effects of glucose oxidase on growth performance, gut function, and cecal microbiota of broiler chickens. Poult. Sci. 2019, 98, 828–841. [Google Scholar] [CrossRef] [PubMed]
- Mamone, G.; Picariello, G. Optimized extraction and large-scale proteomics of pig jejunum brush border membranes for use in in vitro digestion models. Food Res. Int. 2023, 164, 112326. [Google Scholar] [CrossRef] [PubMed]
- Bedford, M.R. The evolution and application of enzymes in the animal feed industry: The role of data interpretation. Br. Poult. Sci. 2018, 59, 486–493. [Google Scholar] [CrossRef]
- McKee, L.S.; La Rosa, S.L.; Westereng, B.; Eijsink, V.G.; Pope, P.B.; Larsbrink, J. Polysaccharide degradation by the Bacteroidetes: Mechanisms and nomenclature. Environ. Microbiol. Rep. 2021, 13, 559–581. [Google Scholar] [CrossRef]
- Zhang, S.M.; Hung, J.H.; Yen, T.N.; Huang, S.L. Mutualistic interactions of lactate-producing lactobacilli and lactate-utilizing Veillonella dispar: Lactate and glutamate cross-feeding for the enhanced growth and short-chain fatty acid production. Microb. Biotechnol. 2024, 17, e14484. [Google Scholar] [CrossRef]
- Markowiak-Kopeć, P.; Śliżewska, K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020, 12, 1107. [Google Scholar] [CrossRef]
- Lu, Z.; Imlay, J.A. When anaerobes encounter oxygen: Mechanisms of oxygen toxicity, tolerance and defence. Nat. Rev. Microbiol. 2021, 19, 774–785. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, Y.; Bi, Q.; Qin, D.; Du, Q.; Jin, P. Enhanced antibacterial activity of eugenol-entrapped casein nanoparticles amended with lysozyme against gram-positive pathogens. Food Chem. 2021, 360, 130036. [Google Scholar] [CrossRef] [PubMed]
- Premetis, G.E.; Stathi, A.; Papageorgiou, A.C.; Labrou, N.E. Characterization of a glycoside hydrolase endolysin from Acinetobacter baumannii phage AbTZA1 with high antibacterial potency and novel structural features. FEBS J. 2022, 290, 2146–2164. [Google Scholar] [CrossRef]
- Angelopoulou, A.; Warda, A.K.; Hill, C.; Ross, R.P. Non-antibiotic microbial solutions for bovine mastitis—Live biotherapeutics, bacteriophage, and phage lysins. Crit. Rev. Microbiol. 2019, 45, 564–580. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhang, A.; Yin, H.; Chu, W. Bacillus sp. QSI-1 Modulate Quorum Sensing Signals Reduce Aeromonas hydrophila Level and Alter Gut Microbial Community Structure in Fish. Front. Cell. Infect. Microbiol. 2016, 6, 184. [Google Scholar] [CrossRef]
- Sikdar, R.; Elias, M. Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: A review of recent advances. Expert. Rev. Anti-Infect. Ther. 2020, 18, 1221–1233. [Google Scholar] [CrossRef]
- Fong, J.; Zhang, C.; Yang, R.; Boo, Z.Z.; Tan, S.K.; Nielsen, T.E.; Givskov, M.; Liu, X.W.; Bin, W.; Su, H.; et al. Combination Therapy Strategy of Quorum Quenching Enzyme and Quorum Sensing Inhibitor in Suppressing Multiple Quorum Sensing Pathways of P. aeruginosa. Sci. Rep. 2018, 8, 1155. [Google Scholar] [CrossRef] [PubMed]
- Urvoy, M.; Lami, R.; Dreanno, C.; Daude, D.; Rodrigues, A.M.S.; Gourmelon, M.; L’Helguen, S.; Labry, C. Quorum sensing disruption regulates hydrolytic enzyme and biofilm production in estuarine bacteria. Environ. Microbiol. 2021, 23, 7183–7200. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Yao, B. Exploiting enzymes as a powerful tool to modulate the gut microbiota. Trends Microbiol. 2022, 30, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Vega, K.; Kalkum, M. Chitin, Chitinase Responses, and Invasive Fungal Infections. Int. J. Microbiol. 2012, 2012, 920459. [Google Scholar] [CrossRef]
- Ballal, S.A.; Veiga, P.; Fenn, K.; Michaud, M.; Kim, J.H.; Gallini, C.A.; Glickman, J.N.; Quéré, G.; Garault, P.; Béal, C.; et al. Host lysozyme-mediated lysis of Lactococcus lactis facilitates delivery of colitis-attenuating superoxide dismutase to inflamed colons. Proc. Natl. Acad. Sci. USA 2015, 112, 7803–7808. [Google Scholar] [CrossRef] [PubMed]
- Rangan, K.J.; Pedicord, V.A.; Wang, Y.-C.; Kim, B.; Lu, Y.; Shaham, S.; Mucida, D.; Hang, H.C. A secreted bacterial peptidoglycan hydrolase enhances tolerance to enteric pathogens. Science 2016, 353, 1434–1437. [Google Scholar] [CrossRef]
- Ferraboschi, P.; Ciceri, S.; Grisenti, P. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics 2021, 10, 1534. [Google Scholar] [CrossRef]
- Opal, S.M. Non-antibiotic treatments for bacterial diseases in an era of progressive antibiotic resistance. Crit. Care 2016, 20, 397. [Google Scholar] [CrossRef] [PubMed]
- Premetis, G.E.; Georgakis, N.D.; Stathi, A.; Labrou, N.E. Metaviromics analysis of marine biofilm reveals a glycoside hydrolase endolysin with high specificity towards Acinetobacter baumannii. Biochim. Biophys. Acta BBA—Proteins Proteom. 2023, 1871, 140918. [Google Scholar] [CrossRef] [PubMed]
- Barr, J.J.; Oechslin, F.; Zhu, X.; Dion, M.B.; Shi, R.; Moineau, S. Phage endolysins are adapted to specific hosts and are evolutionarily dynamic. PLoS Biol. 2022, 20, e3001740. [Google Scholar] [CrossRef]
- Nakonieczna, A.; Topolska-Woś, A.; Łobocka, M. New bacteriophage-derived lysins, LysJ and LysF, with the potential to control Bacillus anthracis. Appl. Microbiol. Biotechnol. 2024, 108, 76. [Google Scholar] [CrossRef] [PubMed]
- Fetzner, S. Quorum quenching enzymes. J. Biotechnol. 2015, 201, 2–14. [Google Scholar] [CrossRef]
- Maslovskaya, A.; Kuttler, C.; Chebotarev, A.; Kovtanyuk, A. Optimal multiplicative control of bacterial quorum sensing under external enzyme impact. Math. Model. Nat. Phenom. 2022, 17, 29. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, N.; Zhang, H.; Yang, H.; Ma, Y.; Song, Y.; Zhang, H. An effective strategy for rapid nitrite accumulation related to quorum sensing and the impact of quorum quenching enzyme. Chem. Eng. J. 2024, 479, 147904. [Google Scholar] [CrossRef]
- Cao, F.; Jin, L.; Gao, Y.; Ding, Y.; Wen, H.; Qian, Z.; Zhang, C.; Hong, L.; Yang, H.; Zhang, J.; et al. Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. Nat. Nanotechnol. 2023, 18, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Penninger, J.M.; Grant, M.B.; Sung, J.J.Y. The Role of Angiotensin Converting Enzyme 2 in Modulating Gut Microbiota, Intestinal Inflammation, and Coronavirus Infection. Gastroenterology 2021, 160, 39–46. [Google Scholar] [CrossRef]
- Hamarneh, S.R.; Kim, B.-M.; Kaliannan, K.; Morrison, S.A.; Tantillo, T.J.; Tao, Q.; Mohamed, M.M.R.; Ramirez, J.M.; Karas, A.; Liu, W.; et al. Intestinal Alkaline Phosphatase Attenuates Alcohol-Induced Hepatosteatosis in Mice. Dig. Dis. Sci. 2017, 62, 2021–2034. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, S.; Gide, M.; Zhu, D.; Lamabadu Warnakulasuriya Patabendige, H.M.; Li, C.; Cai, J.; Sun, X. A Novel Bacteriophage Lysin-Human Defensin Fusion Protein Is Effective in Treatment of Clostridioides difficile Infection in Mice. Front. Microbiol. 2019, 9, 3234. [Google Scholar] [CrossRef] [PubMed]
- Sasabe, J.; Miyoshi, Y.; Rakoff-Nahoum, S.; Zhang, T.; Mita, M.; Davis, B.M.; Hamase, K.; Waldor, M.K. Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota. Nat. Microbiol. 2016, 1, 16125. [Google Scholar] [CrossRef]
- Tanihiro, R.; Sakano, K.; Oba, S.; Nakamura, C.; Ohki, K.; Hirota, T.; Sugiyama, H.; Ebihara, S.; Nakamura, Y. Effects of Yeast Mannan Which Promotes Beneficial Bacteroides on the Intestinal Environment and Skin Condition: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2020, 12, 3673. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Lv, Z.; Zhou, L.; Guo, Y. Analysis of the effects of β-mannanase on immune function and intestinal flora in broilers fed the low energy diet based on 16S rRNA sequencing and metagenomic sequencing. Poult. Sci. 2024, 103, 103581. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ma, X.; Zhuo, Y.; Xu, S.; Hua, L.; Li, J.; Feng, B.; Fang, Z.; Jiang, X.; Che, L.; et al. The Effects of Bacillus subtilis QST713 and β-mannanase on growth performance, intestinal barrier function, and the gut microbiota in weaned piglets. J. Anim. Sci. 2023, 101, skad257. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.-Y.; Xia, R.; Yang, Y.-L.; Gao, C.-C.; Zhang, F.-L.; Hao, Q.; Ran, C.; Zhang, Z.; Zhou, Z.-G. Dietary quenching enzyme AiiO-AIO6 promotes fish growth through intestinal microbiota: Zebrafish as a model. Aquac. Rep. 2022, 22, 100947. [Google Scholar] [CrossRef]
- Qu, W.; Liu, J. Effects of Glucose Oxidase Supplementation on the Growth Performance, Antioxidative and Inflammatory Status, Gut Function, and Microbiota Composition of Broilers Fed Moldy Corn. Front. Physiol. 2021, 12, 646393. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Chen, X.; Li, T.; Ren, H.; Zheng, L.; Yang, X. Changes in the gut microbiota mediate the differential regulatory effects of two glucose oxidases produced by Aspergillus niger and Penicillium amagasakiense on the meat quality and growth performance of broilers. J. Anim. Sci. Biotechnol. 2020, 11, 73. [Google Scholar] [CrossRef] [PubMed]
Function | Type of Enzyme | Origin of the Enzyme | Treatment | Gut Microbiota Influence | Reference |
---|---|---|---|---|---|
Stimulation of Microbial Growth | Xylanases | Fungi | Breakdown of dietary xylan into oligosaccharides | Promotes the growth of beneficial bacteria such as Bacteroides, Bifidobacterium, and Lactobacillus | [73] |
Direct Microbial Killing | Lysozyme | From hen egg white; Paneth cells | Hydrolyzes β-1,4-glycosidic bonds in peptidoglycans of Gram-positive bacteria | Enhances inhibitory ability against Staphylococcus aureus | [78] |
Direct Microbial Killing | Glycoside Hydrolase Endolysin | Phage AbTZA1 | High antibacterial potency against Acinetobacter baumannii | Effective against multidrug-resistant (MDR) bacteria | [79] |
Direct Microbial Killing | Bacteriophage Lysins | Phage enzymes | Serve as potent tools against multidrug-resistant (MDR) bacteria | Utilized to prevent or treat bovine mastitis, reducing the inflammatory response and pathogen population | [80] |
Disruption of Microbial Networks | Acyl-Homoserine Lactone (AHL) Lactonases | Bacillus sp.QSI-1 | Degrades QS signal molecules | Reduces communication in pathogenic bacteria, leading to decreased pathogenicity | [81] |
Disruption of Microbial Networks | Acyl-Homoserine Lactone (AHL) Lactonases | Gram-negative, Gram-positive bacteria and archaea | Cleaves AHLs to prevent biofilm formation and attenuate virulence | Elevates the abundance of Proteobacteria and reduces pathogenic Aeromonas hydrophila in the gut | [82] |
Disruption of Microbial Networks | Quorum Inhibitors and Quenching Enzymes | Bacillus species | Combination treatment blocks the QS system of Pseudomonas aeruginosa | Effectively inhibits Pseudomonas aeruginosa proliferation and suppresses multiple QS pathways | [83] |
Disruption of Microbial Networks | Broad-Spectrum Lactonase Preparation | Estuarine bacteria | Inhibits QS system in 28 strains | Exhibits alternative antimicrobial ability and interferes with microbial community behavior | [84] |
Mitigation of Immune Stress | Antigen degradation enzymes | Bacteria | Degradation of substances resembling immunogenic agents | Reduces unnecessary intestinal stress and prevents immune system depletion and microbiota imbalances | [85] |
Mitigation of Immune Stress | β-Mannanase | Fungi | Breaks down β-mannans, reducing false immune responses | Improves nutrient absorption and helps maintain the balance of the microbiota | [86] |
Type of Enzyme | Origin of the Enzyme | Treatment | Host Health Influence | Reference |
---|---|---|---|---|
GOD | Penicillium notatum | A total of 525 one-day-old healthy AA broiler chickens were randomly divided into five groups: a control group, an antibiotic growth promoter (AGP) supplementation group, and three groups supplemented with different concentrations of GOD at 40 U/kg, 50 U/kg, and 60 U/kg, respectively. | The GOD supplementation significantly increased the abundance of Faecalibacterium prausnitzii, Ruminococcaceae, and Firmicutes in the cecum and decreased the abundance of Rikenellaceae. Compared to the AGP group, the GOD-supplemented groups significantly enhanced gut bacterial diversity. | [71] |
GOD | Aspergillus niger | Supplementation with GOD at a dosage of 150 U/kg was used to prevent and mitigate necrotic enteritis (NE) caused by Clostridium perfringens (Cp) in broiler chickens. | Infection with Cp alters the structure of the ileal microbiota, and supplementation with GOD can partially reverse these changes. There was a trend towards an increased relative abundance of Helicobacter and a decrease in Streptococcus with GOD supplementation. | [48] |
Superoxide dismutase (SodA) | Lactococcus lactis | The impact on intestinal inflammation was investigated in mouse models treated with DSS and lacking T-bet, Rag-2, or Il-10 genes. | Following bacterial lysis, SodA is released into the colonic lumen. SodA converts superoxide anions (O2-) into H2O2, reducing oxidative stress. The released SodA reacts with superoxide anions, decreasing superoxide levels in colonic epithelial cells and alleviating symptoms of colitis. | [87] |
The artificial enzyme FeSA (mimic SOD and CAT function) | Artificial-enzymes-armed Bifidobacterium longum | Ulcerative colitis (UC) and Crohn’s disease (CD) models were established in mice and beagle dogs to assess the therapeutic efficacy of BL@B-SA. In the mouse model, UC was induced by administering water containing 3% DSS. In the beagle dog model, UC was induced by the intracolonic injection of 7% acetic acid. | BL@B-SA significantly increased the relative abundance of beneficial bacteria, such as those from the Lachnospiraceae family, while reducing the relative abundance of harmful bacteria, such as those from the Enterobacteriaceae family, thereby regulating dysbiosis in the gut microbiota. | [97] |
Angiotensin-converting enzyme 2 (ACE2) | Type II pneumocytes in the lungs, | Retrospective studies and systematic reviews have collected data on gastrointestinal symptoms and viral loads in COVID-19 patients. The role of ACE2 in inflammatory bowel disease (IBD) is highlighted by findings that show a 60% lower expression of ACE2 in inflamed areas of CD patients compared to healthy individuals, yet an increased expression in the colon. | SARS-CoV-2 downregulates ACE2 in the gut via its spike protein, leading to increased intestinal permeability and inflammatory responses. This disruption can destabilize the equilibrium of the gut microbiota, reducing the abundance of beneficial bacterial species such as Faecalibacterium prausnitzii, while increasing the levels of harmful species like Coprobacillus and Clostridium ramosum. | [98] |
Alkaline Phosphatase | Hepatocytes (liver)-Osteoblasts (bone)- Enterocytes (intestinal epithelium) | IAP was incorporated into the liquid diet at a dose of 200 U/mL and administered orally to mice for 10 consecutive days. | Pretreatment with IAP significantly reduced the levels of TNF-α and IL-1β in intestinal tissue, indicating its potential to prevent alcohol-induced intestinal inflammation. | [99] |
Phage lysozyme | Intestinal brush-border enzyme | A novel phage lysin–human defensin fusion protein (LHD), integrating the functional domains of phage lysin and human α-defensin 5 (HD5), and demonstrating potent bacteriolytic activity. | In a mouse model, administration of the LHD protein significantly alleviated symptoms of Clostridioides difficile infection (CDI), reduced mortality, and markedly decreased the number of C. difficile spores and toxin levels in feces. | [100] |
D-amino acid oxidase (DAO) | Enterocytes of the small intestine | Specific pathogen-free (SPF) and germ-free (GF) mice were selected for the quantification of D-amino acids in cecal contents. Samples of small intestinal epithelial cells from SPF and GF mice were analyzed for DAO expression and functionality. | DAO can modulate the composition of the gut microbiota, increasing the abundance of probiotics such as lactobacilli and decreasing the abundance of harmful bacteria like Bacteroides. The absence of DAO leads to elevated sIgA levels, which affects the balance of the gut microbiota. | [101] |
Oligosaccharide degrading enzyme | Saccharomyces cerevisiae | The prebiotic effects of YM in humans, as well as its impact on the gut microbiota and skin condition, were also evaluated. | Through the action of enzymes, Bacteroides thetaiotaomicron and Bacteroides ovatus can use YM as a carbon and energy source, increasing their abundance in the gut improving the intestinal environment, and positively impacting host health. | [102] |
β-mannanase | Bacillus lentus | The control group (NC) was fed a low-energy diet with a reduction of 50 kcal/kg, while the experimental group (NC+BM) received the same low-energy diet supplemented with 100 mg/kg of β-mannanase. | β-mannanase can promote the proliferation of probiotics such as Lachnospiraceae and inhibit the colonization of Pseudomonas in the gut. It also suppresses microbial fatty acid degradation by reducing the activity of glutaryl-CoA dehydrogenase. | [103] |
β-mannanase | Bacillus subtilis | β-mannanase (150 mg/kg for 42 days) was used to enhance the growth performance, intestinal barrier function, and gut microbiota of weaned piglets. | The fecal microbial community structure in the β-mannanase group significantly differed from that of the control group. Specifically, the β-mannanase group had lower proportions of Desulfobacterota, Lachnospiraceae_NK4B4_group, and Chlamydia, while having a higher proportion of Paludicola in their feces. | [104] |
Quenching enzyme | Bacillus sp. QSI-1 | A method was employed to regulate the AHL (N-acyl homoserine lactone) signaling molecules in the fish gut by using the probiotic Bacillus QSI-1, which produces a quenching quorum enzyme. These enzymes were mixed with a basic diet to create QSI-1-supplemented feed. | Counts of total bacteria, lactic acid bacteria (LAB), Bacillus spp., E. coli, and Aeromonas spp. in the fish gut revealed a significant reduction in Aeromonas spp. in the QSI-1 treatment group. | [81] |
Quenching enzyme | Ochrobactrum sp. M231 | To investigate the impact of the enzyme AiiO-AIO6 on fish growth, focusing on the modulation of the gut microbiota. A control group was fed a basic diet, while the AiiO-AIO6 treatment group was fed the same diet supplemented with AiiO-AIO6 (5 U/g). | At the genus level, the AiiO-AIO6 treatment led to a significant increase in the abundance of Ralstonia, Rhodococcus, and Lactobacillus. Conversely, the relative abundance of bacteria such as Legionella, Pseudorhodoplanes, and Gemmobacter was significantly reduced. | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Mei, L.; Li, Y.; Guo, Y.; Yang, B.; Huang, Z.; Li, Y. Enzymatic Regulation of the Gut Microbiota: Mechanisms and Implications for Host Health. Biomolecules 2024, 14, 1638. https://doi.org/10.3390/biom14121638
Jiang Z, Mei L, Li Y, Guo Y, Yang B, Huang Z, Li Y. Enzymatic Regulation of the Gut Microbiota: Mechanisms and Implications for Host Health. Biomolecules. 2024; 14(12):1638. https://doi.org/10.3390/biom14121638
Chicago/Turabian StyleJiang, Zipeng, Liang Mei, Yuqi Li, Yuguang Guo, Bo Yang, Zhiyi Huang, and Yangyuan Li. 2024. "Enzymatic Regulation of the Gut Microbiota: Mechanisms and Implications for Host Health" Biomolecules 14, no. 12: 1638. https://doi.org/10.3390/biom14121638
APA StyleJiang, Z., Mei, L., Li, Y., Guo, Y., Yang, B., Huang, Z., & Li, Y. (2024). Enzymatic Regulation of the Gut Microbiota: Mechanisms and Implications for Host Health. Biomolecules, 14(12), 1638. https://doi.org/10.3390/biom14121638