Detection of Cognitive Performance Deterioration Due to Cold-Air Exposure in Females Using Wearable Electrodermal Activity and Electrocardiogram
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experiment Protocol
2.3. Cognitive Performance
2.3.1. Code Substitution (CDS)
2.3.2. Procedural Reaction Time (PRO)
2.3.3. Go/No-Go (GNG)
2.3.4. Spatial Discrimination (SPD)
2.3.5. Simple Reaction Time (SRT)
2.4. Definition of Deteriorated Performance
2.5. Physiological Features
2.6. Statistics and Machine Learning
3. Results
4. Discussion and Conclusions
Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sites | 8-Point Weights (ISO 9886:2004) | 3-Point Weights (Our Study) | |
---|---|---|---|
Forehead | 0.07 | ×3.125 | 0.21875 |
Right scapula | 0.175 | ||
Left upper chest | 0.175 | ||
Right arm in an upper location | 0.07 | ||
Left arm in a lower location | 0.07 | ||
Left hand | 0.05 | ×3.125 | 0.15625 |
Right anterior thigh | 0.19 | ||
Left calf | 0.2 | ×3.125 | 0.625 |
Summation | 1.00 | 1.00 |
References
- Pilcher, J.J.; Nadler, E.; Busch, C. Effects of Hot and Cold Temperature Exposure on Performance: A Meta-Analytic Review. Ergonomics 2002, 45, 682–698. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wu, J.; Hu, Z.; Gao, F.; Hu, X. Effects of Workload on Human Cognitive Performance of Exposure to Extremely Cold Environment. Physiol. Behav. 2021, 230, 113296. [Google Scholar] [CrossRef]
- Falla, M.; Micarelli, A.; Hüfner, K.; Strapazzon, G. The Effect of Cold Exposure on Cognitive Performance in Healthy Adults: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 9725. [Google Scholar] [CrossRef] [PubMed]
- Bredella, M.A. Sex Differences in Body Composition. In Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity; Springer: Berlin/Heidelberg, Germany, 2017; pp. 9–27. [Google Scholar]
- Koenig, J.; Thayer, J.F. Sex Differences in Healthy Human Heart Rate Variability: A Meta-Analysis. Neurosci. Biobehav. Rev. 2016, 64, 288–310. [Google Scholar] [CrossRef]
- Ramalho, E.S.; Souza-Junior, E.L.; Magnani, M.; Braga, V.A. Gender Differences in Heart Rate Variability among Individuals Undergoing Regular Resistance Training Preliminary Observations. Sultan Qaboos Univ. Med. J. 2017, 17, e209. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Hossain, M.B.; McNaboe, R.; Posada-Quintero, H.F.; Daley, M.; Diaz, K.; Chon, K.H.; Bolkhovsky, J. Sex Differences in Autonomic Functions and Cognitive Performance during Cold-Air Exposure and Cold-Water Partial Immersion. Front. Physiol. 2024, 15, 1463784. [Google Scholar] [CrossRef]
- Charkoudian, N.; Stachenfeld, N. Sex Hormone Effects on Autonomic Mechanisms of Thermoregulation in Humans. Auton. Neurosci. 2016, 196, 75–80. [Google Scholar] [CrossRef]
- Kaikaew, K.; van den Beukel, J.C.; Neggers, S.J.; Themmen, A.P.; Visser, J.A.; Grefhorst, A. Sex Difference in Cold Perception and Shivering Onset upon Gradual Cold Exposure. J. Therm. Biol. 2018, 77, 137–144. [Google Scholar] [CrossRef]
- Karjalainen, S. Thermal Comfort and Gender: A Literature Review. Indoor Air 2012, 22, 96–109. [Google Scholar] [CrossRef]
- Osilla, E.V.; Marsidi, J.L.; Sharma, S. Physiology, Temperature Regulation; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Kurz, A. Physiology of Thermoregulation. Best Pract. Res. Clin. Anaesthesiol. 2008, 22, 627–644. [Google Scholar] [CrossRef]
- Zoccoli, G.; Amici, R.; Silvani, A. The Hypothalamus and Its Functions. In Narcolepsy: Pathophysiology, Diagnosis, and Treatment; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; pp. 191–203. [Google Scholar]
- Campbell, I. Body Temperature and Its Regulation. Anaesth. Intensive Care Med. 2008, 9, 259–263. [Google Scholar] [CrossRef]
- Castellani, J.W.; Young, A.J. Human Physiological Responses to Cold Exposure: Acute Responses and Acclimatization to Prolonged Exposure. Auton. Neurosci. 2016, 196, 63–74. [Google Scholar] [CrossRef]
- Harinath, K.; Malhotra, A.S.; Pal, K.; Prasad, R.; Kumar, R.; Sawhney, R.C. Autonomic Nervous System and Adrenal Response to Cold in Man at Antarctica. Wilderness Environ. Med. 2005, 16, 81–91. [Google Scholar] [CrossRef]
- Mäkinen, T.M.; Mäntysaari, M.; Pääkkönen, T.; Jokelainen, J.; Palinkas, L.A.; Hassi, J.; Leppäluoto, J.; Tahvanainen, K.; Rintamäki, H. Autonomic Nervous Function during Whole-Body Cold Exposure before and after Cold Acclimation. Aviat. Space Environ. Med. 2008, 79, 875–882. [Google Scholar] [CrossRef]
- Lundell, R.V.; Räisänen-Sokolowski, A.K.; Wuorimaa, T.K.; Ojanen, T.; Parkkola, K.I. Diving in the Arctic: Cold Water Immersion’s Effects on Heart Rate Variability in Navy Divers. Front. Physiol. 2020, 10, 1600. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Matsumoto, T.; Miyawaki, T.; Ue, H.; Kanda, T.; Zenji, C.; Moritani, T. Autonomic Responsiveness to Acute Cold Exposure in Obese and Non-Obese Young Women. Int. J. Obes. 1999, 23, 793–800. [Google Scholar] [CrossRef]
- Luft, C.D.B.; Takase, E.; Darby, D. Heart Rate Variability and Cognitive Function: Effects of Physical Effort. Biol. Psychol. 2009, 82, 186–191. [Google Scholar] [CrossRef]
- Thayer, J.F.; Hansen, A.L.; Saus-Rose, E.; Johnsen, B.H. Heart Rate Variability, Prefrontal Neural Function, and Cognitive Performance: The Neurovisceral Integration Perspective on Self-Regulation, Adaptation, and Health. Ann. Behav. Med. 2009, 37, 141–153. [Google Scholar] [CrossRef]
- Prinsloo, G.E.; Rauch, H.L.; Lambert, M.I.; Muench, F.; Noakes, T.D.; Derman, W.E. The Effect of Short Duration Heart Rate Variability (HRV) Biofeedback on Cognitive Performance during Laboratory Induced Cognitive Stress. Appl. Cogn. Psychol. 2011, 25, 792–801. [Google Scholar] [CrossRef]
- Hoover, A.; Singh, A.; Fishel-Brown, S.; Muth, E. Real-Time Detection of Workload Changes Using Heart Rate Variability. Biomed. Signal Process. Control 2012, 7, 333–341. [Google Scholar] [CrossRef]
- Makivić, B.; Nikić Djordjević, M.; Willis, M.S. Heart Rate Variability (HRV) as a Tool for Diagnostic and Monitoring Performance in Sport and Physical Activities. J. Exerc. Physiol. Online 2013, 16, 103–131. [Google Scholar]
- Alharbi, E.; Alomainy, A. Machine Learning Approach to Predict Cognitive Performance Using HRV. In Proceedings of the 2022 2nd International Conference on Computing and Information Technology (ICCIT), Tabuk, Saudi Arabia, 25–27 January 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 379–382. [Google Scholar]
- Posada-Quintero, H.F.; Chon, K.H. Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review. Sensors 2020, 20, 479. [Google Scholar] [CrossRef]
- Kong, Y.; Chon, K.H. Electrodermal Activity in Pain Assessment and Its Clinical Applications. Appl. Phys. Rev. 2024, 11, 031316. [Google Scholar] [CrossRef]
- Klimek, A.; Mannheim, I.; Schouten, G.; Wouters, E.J.; Peeters, M.W. Wearables Measuring Electrodermal Activity to Assess Perceived Stress in Care: A Scoping Review. In Acta Neuropsychiatrica; Cambridge University Press: Cambridge, UK, 2023; pp. 1–11. [Google Scholar]
- Turpin, G.; Grandfield, T. Electrodermal Activity. In Encyclopedia of Stress (Second Edition); Fink, G., Ed.; Academic Press: New York, NY, USA, 2007; pp. 899–902. ISBN 978-0-12-373947-6. [Google Scholar]
- Shields, S.A.; MacDowell, K.A.; Fairchild, S.B.; Campbell, M.L. Is Mediation of Sweating Cholinergic, Adrenergic, or Both? A Comment on the Literature. Psychophysiology 1987, 24, 312–319. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Florian, J.P.; Orjuela-Cañón, Á.D.; Chon, K.H. Highly Sensitive Index of Sympathetic Activity Based on Time-Frequency Spectral Analysis of Electrodermal Activity. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2016, 311, R582–R591. [Google Scholar] [CrossRef]
- Kong, Y.; Posada-Quintero, H.F.; Chon, K.H. Real-Time High-Level Acute Pain Detection Using a Smartphone and a Wrist-Worn Electrodermal Activity Sensor. Sensors 2021, 21, 3956. [Google Scholar] [CrossRef]
- Tran, H.; Kong, Y.; Talati, A.; Posada-Quintero, H.; Chon, K.; Chen, I.-P. The Use of Electrodermal Activity in Pulpal Diagnosis and Dental Pain Assessment. Int. Endod. J. 2022, 56, 356–368. [Google Scholar] [CrossRef]
- Kong, Y.; Posada-Quintero, H.F.; Tran, H.; Talati, A.; Acquista, T.J.; Chen, I.-P.; Chon, K.H. Differentiating between Stress-and EPT-Induced Electrodermal Activity during Dental Examination. Comput. Biol. Med. 2023, 155, 106695. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Bolkhovsky, J.B.; Qin, M.; Chon, K.H. Chon Human Performance Deterioration Due to Prolonged Wakefulness Can Be Accurately Detected Using Time-Varying Spectral Analysis of Electrodermal Activity. Hum. Factors 2018, 60, 1035–1047. [Google Scholar] [CrossRef]
- Seitz, M.; Daun, T.J.; Zimmermann, A.; Lienkamp, M. Measurement of Electrodermal Activity to Evaluate the Impact of Environmental Complexity on Driver Workload. In Proceedings of the FISITA 2012 World Automotive Congress: Volume 12: Intelligent Transport System (ITS) & Internet of Vehicles; Springer: Berlin/Heidelberg, Germany, 2013; pp. 245–256. [Google Scholar]
- ISO 9886:2004(En); Ergonomics—Evaluation of Thermal Strain by Physiological Measurements. International Organization for Standardization: Geneva, Switzerland, 2004. Available online: https://www.iso.org/obp/ui/#iso:std:iso:9886:ed-2:v1:en (accessed on 5 March 2023).
- Burton, A.C. The Average Temperature of the Body Tissues. J. Nutr. 1935, 9, 261–280. [Google Scholar] [CrossRef]
- Lenhardt, R.; Sessler, D.I. Estimation of Mean Body Temperature from Mean Skin and Core Temperature. J. Am. Soc. Anesthesiol. 2006, 105, 1117–1121. [Google Scholar] [CrossRef]
- Lathan, C.; Spira, J.L.; Bleiberg, J.; Vice, J.; Tsao, J.W. Defense Automated Neurobehavioral Assessment (DANA)—Psychometric Properties of a New Field-Deployable Neurocognitive Assessment Tool. Mil. Med. 2013, 178, 365–371. [Google Scholar] [CrossRef]
- Greco, A.; Valenza, G.; Lanata, A.; Scilingo, E.P.; Citi, L. cvxEDA: A Convex Optimization Approach to Electrodermal Activity Processing. IEEE Trans. Biomed. Eng. 2015, 63, 797–804. [Google Scholar] [CrossRef]
- Wang, H.; Siu, K.; Ju, K.; Chon, K.H. A High Resolution Approach to Estimating Time-Frequency Spectra and Their Amplitudes. Ann. Biomed. Eng. 2006, 34, 326–338. [Google Scholar] [CrossRef]
- King, F.W. Hilbert Transforms: Volume 2; Cambridge University Press: Cambridge, UK, 2009; Volume 2. [Google Scholar]
- Mcmullen, R.L.; Gillece, T.; Lu, G.; Laura, D.; Chen, S. Influence of Various Environmental Parameters on Sweat Gland Activity. J. Cosmet. Sci. 2013, 64, 243–260. [Google Scholar]
- Hossain, M.B.; Bashar, S.K.; Walkey, A.J.; McManus, D.D.; Chon, K.H. An Accurate QRS Complex and P Wave Detection in ECG Signals Using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Approach. IEEE Access 2019, 7, 128869–128880. [Google Scholar] [CrossRef]
- Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A Complete Ensemble Empirical Mode Decomposition with Adaptive Noise. In Proceedings of the 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 4144–4147. [Google Scholar]
- Malik, M.; Camm, A.J. Heart Rate Variability. Clin. Cardiol. 1990, 13, 570–576. [Google Scholar] [CrossRef]
- Bates, D. Fitting Linear Mixed Models in R. R News 2005, 5, 27–30. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Haque, Y.; Zawad, R.S.; Rony, C.S.A.; Al Banna, H.; Ghosh, T.; Kaiser, M.S.; Mahmud, M. State-of-the-Art of Stress Prediction from Heart Rate Variability Using Artificial Intelligence. Cogn. Comput. 2024, 16, 455–481. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Arnold, C.; Biedebach, L.; Küpfer, A.; Neunhoeffer, M. The Role of Hyperparameters in Machine Learning Models and How to Tune Them. Political Sci. Res. Methods 2023, 12, 841–848. [Google Scholar] [CrossRef]
- Bradley, A.P. The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern Recogn. 1997, 30, 1145–1159. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30, pp. 4765–4774. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From Local Explanations to Global Understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Daanen, H.A.M. Finger Cold-Induced Vasodilation: A Review. Eur. J. Appl. Physiol. 2003, 89, 411–426. [Google Scholar] [CrossRef]
- Kudlak, M.; Tadi, P. Physiology, Muscarinic Receptor. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Charkoudian, N. Mechanisms and Modifiers of Reflex Induced Cutaneous Vasodilation and Vasoconstriction in Humans. J. Appl. Physiol. 2010, 109, 1221–1228. [Google Scholar] [CrossRef]
- Stillman, M.J.; Shukitt-Hale, B.; Coffey, B.P.; Levy, A.; Lieberman, H.R. In Vivo Hippocampal Acetylcholine Release During Exposure to Acute Stress. Stress 1997, 1, 191–199. [Google Scholar] [CrossRef]
- Kong, Y.; Posada-Quintero, H.F.; Chon, K.H. Sensitive Physiological Indices of Pain Based on Differential Characteristics of Electrodermal Activity. Trans. Biomed. Eng. 2021, 68, 3122–3130. [Google Scholar] [CrossRef]
- Zhong, X.; Hilton, H.J.; Gates, G.J.; Jelic, S.; Stern, Y.; Bartels, M.N.; DeMeersman, R.E.; Basner, R.C. Increased Sympathetic and Decreased Parasympathetic Cardiovascular Modulation in Normal Humans with Acute Sleep Deprivation. J. Appl. Physiol. 2005, 98, 2024–2032. [Google Scholar] [CrossRef]
- Kong, Y.; Posada-Quintero, H.F.; Daley, M.S.; Chon, K.H.; Bolkhovsky, J. Facial Features and Head Movements Obtained with a Webcam Correlate with Performance Deterioration during Prolonged Wakefulness. Atten. Percept. Psychophys. 2021, 83, 525–540. [Google Scholar] [CrossRef] [PubMed]
- Daley, M.S.; Gever, D.; Posada-Quintero, H.F.; Kong, Y.; Chon, K.; Bolkhovsky, J.B. Machine Learning Models for the Classification of Sleep Deprivation Induced Performance Impairment during a Psychomotor Vigilance Task Using Indices of Eye and Face Tracking. Front. Artif. Intell. 2020, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Nikolic-Popovic, J.; Goubran, R. Impact of Motion Artifacts on Heart Rate Variability Measurements and Classification Performance. In Proceedings of the 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Gatineau, QC, Canada, 4–5 May 2013; pp. 156–159. [Google Scholar]
- Boucsein, W. Electrodermal Activity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Hossain, M.-B.; Bashar, S.K.; Lazaro, J.; Reljin, N.; Noh, Y.; Chon, K.H. A Robust ECG Denoising Technique Using Variable Frequency Complex Demodulation. Comput. Methods Programs Biomed. 2021, 200, 105856. [Google Scholar] [CrossRef]
- Hossain, M.-B.; Posada-Quintero, H.F.; Chon, K.H. A Deep Convolutional Autoencoder for Automatic Motion Artifact Removal in Electrodermal Activity. IEEE Trans. Biomed. Eng. 2022, 69, 3601–3611. [Google Scholar] [CrossRef]
- Hossain, M.-B.; Posada-Quintero, H.F.; Kong, Y.; McNaboe, R.; Chon, K.H. Automatic Motion Artifact Detection in Electrodermal Activity Data Using Machine Learning. Biomed. Signal Process. Control. 2022, 74, 103483. [Google Scholar] [CrossRef]
- Berwal, D.; Vandana, C.R.; Dewan, S.; Jiji, C.V.; Baghini, M.S. Motion Artifact Removal in Ambulatory ECG Signal for Heart Rate Variability Analysis. IEEE Sens. J. 2019, 19, 12432–12442. [Google Scholar] [CrossRef]
- Zhang, Y.; Haghdan, M.; Xu, K.S. Unsupervised Motion Artifact Detection in Wrist-Measured Electrodermal Activity Data. In Proceedings of the 2017 ACM International Symposium on Wearable Computers, Maui, HI, USA, 11–15 September 2017; pp. 54–57. [Google Scholar]
- Kong, Y.; Hossain, M.B.; Peitzsch, A.; Posada-Quintero, H.F.; Chon, K.H. Automatic Motion Artifact Detection in Electrodermal Activity Signals Using 1D U-Net Architecture. Comput. Biol. Med. 2024, 182, 109139. [Google Scholar] [CrossRef]
- Rizzo, A.A.; Stamps, L.E.; Fehr, L.A. Effects of Caffeine Withdrawal on Motor Performance and Heart Rate Changes. Int. J. Psychophysiol. 1988, 6, 9–14. [Google Scholar] [CrossRef]
- Jarvis, M.J. Does Caffeine Intake Enhance Absolute Levels of Cognitive Performance? Psychopharmacology 1993, 110, 45–52. [Google Scholar] [CrossRef]
- Zahn, T.P.; Rapoport, J.L. Autonomic Nervous System Effects of Acute Doses of Caffeine in Caffeine Users and Abstainers. Int. J. Psychophysiol. 1987, 5, 33–41. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal Component Analysis. WIREs Comput. Stats 2010, 2, 433–459. [Google Scholar] [CrossRef]
Day 1 | Day 2 | Cumulative exposure time | |
---|---|---|---|
Demographic questionnaire | O | ||
Two practice sets of the cognitive task battery | O | ||
Baseline | 5 min | 5 min | 5 min |
Session1 | 15 min | 15 min | 20 min |
Break | 15 min | 15 min | 35 min |
Session 2 | 15 min | 15 min | 50 min |
Break | 15 min | 15 min | 65 min |
Session 3 | 15 min | 15 min | 80 min |
Break | 15 min | 15 min | 95 min |
Session 4 | 15 min | 15 min | 110 min |
Break | 15 min | 15 min | 125 min |
Session 5 | 15 min | 15 min | 140 min |
Task | Duration (min) | Evaluation |
---|---|---|
Code substitution (CDS) | 2 | Short-term memory and attention |
Procedural reaction time (PRO) | 1.5 | Ability to accurately respond while inhibiting premature responses |
Go/No-go (GNG) | 2.5 | Omission and commission |
Spatial discrimination (SPD) | 3 | Spatial manipulation |
Simple reaction time (SRT) | 1.5 | Attention |
Features | Description | Remarks |
---|---|---|
EDA | ||
PhEDA | Phasic component of EDA obtained using the cvxEDA decomposition method | Mean, S.D. |
TonEDA | Tonic component of EDA obtained using the cvxEDA decomposition method | Mean, S.D. |
TVSymp | Reconstructed EDA signals in the frequency range between 0.08 and 0.24 Hz | Mean, S.D. |
NSSCR 0.05 | The number of skin conductance response greater than 0.05 µS | |
NSSCR 0.01 | The number of skin conductance response greater than 0.01 µS | |
HRV | ||
HF | Absolute power of the high-frequency band (0.15–0.4 Hz) | |
HR | The number of heart beats per minute | |
RMSSD | The root mean square of successive differences between normal heartbeats |
Task | Subjects | Normal | Deteriorated |
---|---|---|---|
CDS | 16 | 36 | 38 |
PRO | 19 | 33 | 54 |
GNG | 19 | 45 | 44 |
SPD | 17 | 37 | 42 |
CDS | PRO | GNG | SPD | |||||
---|---|---|---|---|---|---|---|---|
Normal | Det. | Normal | Det. | Normal | Det. | Normal | Det. | |
EDA | ||||||||
PhEDA Mean | 0.01 ± 0.02 (0.00–0.01) | 0.06 ± 0.10 * (0.03–0.10) | 0.04 ± 0.12 (−0.00–0.08) | 0.03 ± 0.06 (0.02–0.05) | 0.01 ± 0.02 (0.00–0.02) | 0.03 ± 0.08 * (0.01–0.06) | 0.06 ± 0.20 (−0.01–0.12) | 0.05 ± 0.13 (0.01–0.09) |
PhEDA S.D. | 0.01 ± 0.03 (0.00–0.02) | 0.06 ± 0.09 * (0.03–0.09) | 0.03 ± 0.06 (0.01–0.05) | 0.03 ± 0.06 (0.02–0.05) | 0.01 ± 0.03 (0.01–0.02) | 0.04 ± 0.08 * (0.02–0.06) | 0.06 ± 0.21 (−0.01–0.13) | 0.05 ± 0.10 (0.02–0.09) |
TonEDA Mean | 6.23 ± 4.62 (4.67–7.79) | 8.39 ± 5.19 (6.69–10.10) | 8.01 ± 5.34 (6.12–9.90) | 7.37 ± 5.45 (5.89–8.86) | 6.97 ± 4.97 (5.48–8.47) | 8.15 ± 5.45 (6.49–9.80) | 8.77 ± 5.07 (7.08–10.46) | 7.16 ± 5.01 (5.60–8.72) |
TonEDA S.D. | 0.09 ± 0.10 (0.06–0.13) | 0.14 ± 0.13 (0.10–0.18) | 0.13 ± 0.13 (0.08–0.18) | 0.13 ± 0.15 (0.09–0.17) | 0.14 ± 0.14 (0.10–0.18) | 0.18 ± 0.18 (0.13–0.24) | 0.22 ± 0.48 (0.06–0.38) | 0.13 ± 0.12 (0.09–0.17) |
TVSymp Mean | 0.10 ± 0.12 (0.06–0.14) | 0.27 ± 0.41 * (0.13–0.40) | 0.22 ± 0.31 (0.11–0.33) | 0.30 ± 0.57 (0.15–0.46) | 0.11 ± 0.12 (0.08–0.15) | 0.19 ± 0.27 (0.11–0.28) | 0.25 ± 0.54 (0.07–0.43) | 0.31 ± 0.52 (0.14–0.47) |
TVSymp S.D. | 0.08 ± 0.14 (0.03–0.12) | 0.19 ± 0.27 * (0.10–0.28) | 0.17 ± 0.23 (0.09–0.25) | 0.22 ± 0.39 (0.11–0.32) | 0.08 ± 0.10 (0.05–0.11) | 0.18 ± 0.27 * (0.09–0.26) | 0.23 ± 0.44 (0.08–0.38) | 0.28 ± 0.46 (0.14–0.42) |
NSSCR 0.05 | 0.33 ± 1.20 (−0.07–0.74) | 2.61 ± 3.97 * (1.30–3.91) | 2.24 ± 4.06 (0.81–3.68) | 1.76 ± 2.97 (0.95–2.57) | 1.00 ± 2.32 (0.30–1.70) | 1.96 ± 3.20 (0.98–2.93) | 1.81 ± 3.37 (0.69–2.93) | 1.83 ± 3.08 (0.87–2.79) |
NSSCR 0.01 | 1.72 ± 2.91 (0.74–2.71) | 4.95 ± 4.05 * (3.62–6.28) | 4.36 ± 4.54 (2.75–5.97) | 3.24 ± 3.41 (2.31–4.17) | 2.53 ± 3.71 (1.42–3.65) | 3.84 ± 4.15 (2.58–5.10) | 4.57 ± 4.22 (3.16–5.98) | 3.67 ± 3.85 (2.47–4.87) |
HRV | ||||||||
HR | 70.4 ± 6.5 (68.2–72.6) | 82.3 ± 10.9 * (78.8–85.9) | 75.2 ± 10.4 (71.5–78.9) | 77.4 ± 8.4 (75.1–79.6) | 71.7 ± 8.4 (69.2–74.2) | 77.9 ± 9.4 * (75.1–80.8) | 71.4 ± 7.9 (68.8–74.1) | 79.6 ± 10.0 * (76.5–82.7) |
RMSSD | 47.1 ± 12.1 (43.0–51.2) | 43.7 ± 20.3 (37.0–50.4) | 45.3 ± 16.2 (39.6–51.1) | 42.3 ± 17.8 (37.5–47.2) | 49.2 ± 18.1 (43.7–54.7) | 49.5 ± 16.8 (44.4–54.7) | 51.5 ± 14.5 (46.7–56.4) | 44.2 ± 15.2 * (39.4–48.9) |
HF | 648 ± 469 (490–807) | 894 ± 1029 (556–1232) | 702 ± 656 (469–934) | 595 ± 560 (442–747) | 867 ± 749 (642–1092) | 832 ± 602 (649–1014) | 874 ± 612 (670–1079) | 797 ± 702 (578–1015) |
CDS | PRO | GNG | SPD | |||||
---|---|---|---|---|---|---|---|---|
p-Value | Cohen’s d (95%CI) | p-Value | Cohen’s d (95%CI) | p-Value | Cohen’s d (95%CI) | p-Value | Cohen’s d (95%CI) | |
PhEDA Mean | 0.002 * | 0.74 (0.27–1.21) | 0.685 | −0.09 (−0.52–0.34) | 0.047 * | 0.43 (0.01–0.85) | 0.911 | −0.03 (−0.47–0.42) |
PhEDA S.D. | 0.004 * | 0.70 (0.23–1.17) | 0.976 | 0.01 (−0.43–0.44) | 0.028 * | 0.47 (0.05–0.89) | 0.826 | −0.05 (−0.49–0.39) |
TonEDA Mean | 0.063 | 0.44 (−0.02–0.90) | 0.594 | −0.12 (−0.55–0.32) | 0.292 | 0.23 (−0.19–0.64) | 0.161 | −0.32 (−0.76–0.13) |
TonEDA S.D. | 0.07 | 0.43 (−0.03–0.89) | 0.938 | 0.02 (−0.42–0.45) | 0.254 | 0.24 (−0.17–0.66) | 0.226 | −0.28 (−0.72–0.17) |
TVSymp Mean | 0.024 * | 0.54 (0.07–1.00) | 0.419 | 0.18 (−0.26–0.61) | 0.075 | 0.38 (−0.04–0.80) | 0.657 | 0.1 (−0.34–0.54) |
TVSymp S.D. | 0.025 * | 0.53 (0.07–1) | 0.49 | 0.15 (−0.28–0.59) | 0.022 * | 0.49 (0.07–0.92) | 0.621 | 0.11 (−0.33–0.55) |
NSSCR 0.05 | 0.002 * | 0.77 (0.29–1.24) | 0.524 | −0.14 (−0.58–0.29) | 0.11 | 0.34 (−0.08–0.76) | 0.975 | 0.01 (−0.44–0.45) |
NSSCR 0.01 | <0.001 | 0.91 (0.43–1.39) | 0.193 | −0.29 (−0.73–0.15) | 0.12 | 0.33 (−0.09–0.75) | 0.324 | −0.22 (−0.67–0.22) |
HR | <0.001 | 1.328 (0.83–1.83) | 0.292 | 0.23 (−0.20–0.67) | 0.001 | 0.70 (0.27–1.13) | <0.001 * | 0.9 (0.44–1.36) |
RMSSD | 0.383 | −0.20 (−0.66–0.25) | 0.435 | −0.17 (−0.61–0.26) | 0.927 | 0.02 (−0.40–0.44) | 0.031 * | −0.50 (−0.94–−0.05) |
HF | 0.195 | 0.30 (−0.15–0.76) | 0.421 | −0.18 (−0.61–0.26) | 0.806 | −0.05 (−0.47–0.36) | 0.603 | −0.12 (−0.56–0.32) |
Features | LR | SVM | RF | MLP | |
---|---|---|---|---|---|
CDS | EDA | 0.579 (0.480–0.790) | 0.546 (0.385–705) | 0.621 (0.465–778) | 0.635 (0.480–790) |
HRV | 0.784 (0.619–0.895) | 0.824 (0.701–946) | 0.743 (0.603–884) | 0.757 (0.619–895) | |
Both | 0.729 (0.540–0.838) | 0.742 (0.601–883) | 0.647 (0.492–801) | 0.689 (0.540–838) | |
PRO | EDA | 0.402 (0.231–0.548) | 0.424 (0.260–577) | 0.52 (0.357–674) | 0.396 (0.231–548) |
HRV | 0.318 (0.136–0.446) | 0.379 (0.211–530) | 0.437 (0.276–591) | 0.302 (0.136–446) | |
Both | 0.355 (0.246–0.568) | 0.452 (0.296–605) | 0.568 (0.406–720) | 0.414 (0.246–568) | |
GNG | EDA | 0.516 (0.475–0.761) | 0.525 (0.378–672) | 0.558 (0.411–703) | 0.618 (0.475–761) |
HRV | 0.685 (0.533–0.808) | 0.662 (0.523–801) | 0.58 (0.435–725) | 0.671 (0.533–808) | |
Both | 0.651 (0.485–0.770) | 0.696 (0.561–831) | 0.584 (0.439–729) | 0.628 (0.485–770) | |
SPD | EDA | 0.45 (0.388–0.700) | 0.481 (0.323–638) | 0.414 (0.259–568) | 0.544 (0.388–700) |
HRV | 0.62 (0.415–0.724) | 0.583 (0.429–737) | 0.479 (0.323–635) | 0.569 (0.415–724) | |
Both | 0.559 (0.342–0.657) | 0.553 (0.397–708) | 0.532 (0.376–688) | 0.501 (0.342–657) |
Features | LR | SVM | RF | MLP | |
---|---|---|---|---|---|
CDS | EDA | 0.6 (0.469–0.730) | 0.673 (0.551–0.796) | 0.645 (0.517–0.760) | 0.677 (0.548–0.793) |
HRV | 0.871 (0.781–0.941) | 0.857 (0.767–0.934) | 0.781 (0.673–0.877) | 0.848 (0.754–0.928) | |
Both | 0.789 (0.676–0.886) | 0.779 (0.663–0.875) | 0.744 (0.623–0.848) | 0.753 (0.623–0.857) | |
PRO | EDA | 0.424 (0.303–0.549) | 0.443 (0.321–0.572) | 0.513 (0.382–0.646) | 0.338 (0.224–0.457) |
HRV | 0.246 (0.139–0.362) | 0.311 (0.178–0.446) | 0.422 (0.304–0.545) | 0.253 (0.157–0.365) | |
Both | 0.375 (0.260–0.500) | 0.275 (0.154–0.393) | 0.546 (0.412–0.677) | 0.395 (0.275–0.530) | |
GNG | EDA | 0.589 (0.469–0.706) | 0.517 (0.387–0.635) | 0.567 (0.446–0.678) | 0.609 (0.487–0.725) |
HRV | 0.715 (0.602–0.826) | 0.7 (0.586–0.807) | 0.587 (0.466–0.699) | 0.724 (0.617–0.825) | |
Both | 0.663 (0.542–0.777) | 0.727 (0.612–0.827) | 0.542 (0.417–0.656) | 0.652 (0.526–0.764) | |
SPD | EDA | 0.335 (0.208–0.460) | 0.406 (0.268–0.526) | 0.426 (0.304–0.560) | 0.620 (0.489–0.746) |
HRV | 0.633 (0.501–0.757) | 0.573 (0.443–0.708) | 0.551 (0.418–0.682) | 0.616 (0.487–0.744) | |
Both | 0.606 (0.485–0.736) | 0.495 (0.366–0.627) | 0.546 (0.422–0.671) | 0.532 (0.409–0.658) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Y.; McNaboe, R.; Hossain, M.B.; Posada-Quintero, H.F.; Diaz, K.; Chon, K.H.; Bolkhovsky, J. Detection of Cognitive Performance Deterioration Due to Cold-Air Exposure in Females Using Wearable Electrodermal Activity and Electrocardiogram. Biosensors 2025, 15, 78. https://doi.org/10.3390/bios15020078
Kong Y, McNaboe R, Hossain MB, Posada-Quintero HF, Diaz K, Chon KH, Bolkhovsky J. Detection of Cognitive Performance Deterioration Due to Cold-Air Exposure in Females Using Wearable Electrodermal Activity and Electrocardiogram. Biosensors. 2025; 15(2):78. https://doi.org/10.3390/bios15020078
Chicago/Turabian StyleKong, Youngsun, Riley McNaboe, Md Billal Hossain, Hugo F. Posada-Quintero, Krystina Diaz, Ki H. Chon, and Jeffrey Bolkhovsky. 2025. "Detection of Cognitive Performance Deterioration Due to Cold-Air Exposure in Females Using Wearable Electrodermal Activity and Electrocardiogram" Biosensors 15, no. 2: 78. https://doi.org/10.3390/bios15020078
APA StyleKong, Y., McNaboe, R., Hossain, M. B., Posada-Quintero, H. F., Diaz, K., Chon, K. H., & Bolkhovsky, J. (2025). Detection of Cognitive Performance Deterioration Due to Cold-Air Exposure in Females Using Wearable Electrodermal Activity and Electrocardiogram. Biosensors, 15(2), 78. https://doi.org/10.3390/bios15020078