Spermine Enhances the Peroxidase Activities of Multimeric Antiparallel G-quadruplex DNAzymes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and DNA Oligonucleotides
2.2. Preparation of DNAzyme (G4–Hemin Complex)
2.3. Measurement of Peroxidase Activity
3. Results
3.1. Experimental Approach
3.2. Catalytic Activities of Bcl-2 Constructs
3.3. Catalytic Activities of PS2.M Construct
3.4. Catalytic Activities of PS5.M Construct
3.5. Catalytic Activities of c-MYC Construct
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, M.; Xie, Y.; Zhu, L.; Li, X.; Xu, W. Functional Nucleic Acid Enzymes: Nucleic Acid-Based Catalytic Factories. ACS Catal. 2024, 14, 16392–16422. [Google Scholar] [CrossRef]
- Silverman, S.K. Catalytic DNA: Scope, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci. 2016, 41, 595–609. [Google Scholar] [CrossRef]
- Tang, Y.; Ge, B.; Sen, D.; Yu, H.Z. Functional DNA switches: Rational design and electrochemical signaling. Chem. Soc. Rev. 2014, 43, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.; Gong, H.; Ding, P.; Liu, X.; Li, W.; Bing, T.; Cao, Z.; Shangguan, D. Activity Enhancement of G-Quadruplex/Hemin DNAzyme by Flanking d (CCC). Chem.—A Eur. J. 2016, 22, 4015–4021. [Google Scholar] [CrossRef] [PubMed]
- Cadoni, E.; De Paepe, L.; Manicardi, A.; Madder, A. Beyond small molecules: Targeting G-quadruplex structures with oligonucleotides and their analogues. Nucleic Acids Res. 2021, 49, 6638–6659. [Google Scholar] [CrossRef] [PubMed]
- Travascio, P.; Li, Y.; Sen, D. DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem. Biol. 1998, 5, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Lai, R.; Cheng, Y.; Bao, Y.; Miao, W.; Cao, X.; Jia, G.; Li, G.; Li, C. Insights into How NH4+ Ions Enhance the Activity of Dimeric G-Quadruplex/Hemin DNAzyme. ACS Catal. 2023, 13, 4330–4338. [Google Scholar] [CrossRef]
- Shu, H.; Zhang, R.; Xiao, K.; Yang, J.; Sun, X. G-quadruplex-binding proteins: Promising targets for drug design. Biomolecules 2022, 12, 648. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, S.; Saxena, S.; Srivastava, P.; Sharma, T.; Kundu, N.; Kaur, S.; Shankaraswamy, J. Screening the binding potential of quercetin with parallel, antiparallel and mixed G-quadruplexes of human telomere and cancer protooncogenes using molecular docking approach. SN Appl. Sci. 2020, 2, 490. [Google Scholar] [CrossRef]
- Adeoye, R.I.; Osalaye, D.S.; Ralebitso-Senior, T.K.; Boddis, A.; Reid, A.J.; Fatokun, A.A.; Powell, A.K.; Malomo, S.O.; Olorunniji, F.J. Catalytic activities of multimeric G-quadruplex dnazymes. Catalysts 2019, 9, 613. [Google Scholar] [CrossRef]
- Kong, D.M.; Xu, J.; Shen, H.X. Positive effects of ATP on G-quadruplex-hemin DNAzyme-mediated reactions. Anal. Chem. 2010, 82, 6148–6153. [Google Scholar] [CrossRef] [PubMed]
- Stefan, L.; Denat, F.; Monchaud, D. Insights into how nucleotide supplements enhance the peroxidase-mimicking DNAzyme activity of the G-quadruplex/hemin system. Nucleic Acids Res. 2012, 40, 8759–8772. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Zhang, N.; Yan, J.; Liu, X.; Bing, T.; Mei, H.; Shangguan, D. Activity enhancement of G-quadruplex/hemin DNAzyme by spermine. RSC Adv. 2014, 4, 1441–1448. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Liu, Z.; Lin, B.; Yi, H.; Xu, F.; Nie, Z.; Yao, S. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: Adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity. Nucleic Acids Res. 2016, 44, 7373–7384. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, Y.; Cheng, M.; Guo, Y.; Šponer, J.; Monchaud, D.; Mergny, J.-L.; Ju, H.; Zhou, J. How proximal nucleobases regulate the catalytic activity of G-quadruplex/hemin DNAzymes. ACS Catal. 2018, 8, 11352–11361. [Google Scholar] [CrossRef]
- Cheng, Y.; Cheng, M.; Hao, J.; Miao, W.; Zhou, W.; Jia, G.; Li, C. Highly selective detection of K+ based on a dimerized G-quadruplex DNAzyme. Anal. Chem. 2021, 93, 6907–6912. [Google Scholar] [CrossRef]
- Xiao, L.; Zhou, Z.; Feng, M.; Tong, A.; Xiang, Y. Cationic peptide conjugation enhances the activity of peroxidase-mimicking DNAzymes. Bioconjug. Chem. 2016, 27, 621–627. [Google Scholar] [CrossRef]
- Liu, Y.; Lai, P.; Wang, J.; Xing, X.; Xu, L. A superior G-quadruplex DNAzyme through functionalized modification of the hemin cofactor. Chem. Commun. 2020, 56, 2427–2430. [Google Scholar] [CrossRef]
- Nakayama, S.; Wang, J.; Sintim, H.O. DNA-Based Peroxidation Catalyst—What Is the Exact Role of Topology on Catalysis and Is There a Special Binding Site for Catalysis? Chem.—A Eur. J. 2011, 17, 5691–5698. [Google Scholar] [CrossRef] [PubMed]
- Sagar, N.A.; Tarafdar, S.; Agarwal, S.; Tarafdar, A.; Sharma, S. Polyamines: Functions, metabolism, and role in human disease management. Med. Sci. 2021, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Basundra, R.; Maiti, S. Elevated polyamines induce c-MYC overexpression by perturbing quadruplex–WC duplex equilibrium. Nucleic Acids Res. 2009, 37, 3321–3331. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.N.; Xie, M.X. Evidence of different G-quadruplex DNA binding with biogenic polyamines probed by electrospray ionization-quadrupole time of flight mass spectrometry, circular dichroism and atomic force microscopy. Biochimie 2013, 95, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Stefan, L.; Denat, F.; Monchaud, D. Deciphering the DNAzyme activity of multimeric quadruplexes: Insights into their actual role in the telomerase activity evaluation assay. J. Am. Chem. Soc. 2011, 133, 20405–20415. [Google Scholar] [CrossRef]
- Cao, Y.; Li, W.; Pei, R. Exploring the catalytic mechanism of multivalent G-quadruplex/hemin DNAzymes by modulating the position and spatial orientation of connected G-quadruplexes. Anal. Chim. Acta 2022, 1221, 340105. [Google Scholar] [CrossRef] [PubMed]
- Monsen, R.C.; Chakravarthy, S.; Dean, W.L.; Chaires, J.B.; Trent, J.O. The solution structures of higher-order human telomere G-quadruplex multimers. Nucleic Acids Res. 2021, 49, 1749–1768. [Google Scholar] [CrossRef]
- Kunac, N.; Filipović, N.; Kostić, S.; Vukojević, K. The expression pattern of Bcl-2 and Bax in the tumor and stromal cells in colorectal carcinoma. Medicina 2022, 58, 1135. [Google Scholar] [CrossRef]
- Mokgautsi, N.; Kuo, Y.C.; Chen, C.H.; Huang, Y.J.; Wu, A.T.H.; Huang, H.S. Multiomics Study of a Novel Naturally Derived Small Molecule, NSC772864, as a Potential Inhibitor of Proto-Oncogenes Regulating Cell Cycle Progression in Colorectal Cancer. Cells 2023, 12, 340. [Google Scholar] [CrossRef] [PubMed]
- Stadlbauer, P.; Islam, B.; Otyepka, M.; Chen, J.; Monchaud, D.; Zhou, J.; Mergny, J.-L.; Šponer, J. Insights into G-quadruplex–hemin dynamics using atomistic simulations: Implications for reactivity and folding. J. Chem. Theory Comput. 2021, 17, 1883–1899. [Google Scholar] [CrossRef] [PubMed]
- Biver, T. Discriminating between parallel, anti-parallel and hybrid G-quadruplexes: Mechanistic details on their binding to small molecules. Molecules 2022, 27, 4165. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Dong, S.; Wang, E. G-Quadruplex aptamers with peroxidase-like DNAzyme functions: Which is the best and how does it work? Chem.—Asian J. 2009, 4, 918–922. [Google Scholar] [CrossRef]
- Gribas, A.V.; Zatsepin, T.S.; Korolev, S.P.; Gottikh, M.B.; Sakharov, I.Y. Suicide inactivation of covalent peroxidase-mimicking DNAzyme with hydrogen peroxide and its protection by a reductant substrate. Talanta 2016, 155, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zandieh, M.; Zheng, J.; Liu, J. Comparison of the peroxidase activities of iron oxide nanozyme with DNAzyme and horseradish peroxidase. Nanoscale 2023, 15, 8189–8196. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Maiti, S. Effect of loop orientation on quadruplex−TMPyP4 interaction. J. Phys. Chem. B 2008, 112, 8151–8159. [Google Scholar] [CrossRef] [PubMed]
Oligonucleotides | Sequence |
---|---|
Bcl-2 | 5′GGGCGCGGGAGGAAGGGGGCGGG3′ |
PS2.M | 5′GTGGGTAGGGCGGGTTGG3′ |
PS5.M | 5′GTGGGTCATTGTGGGTGGGTGTGG3′ |
c-MYC | 5′GAGGGTGGGGAGGGTGGGGAAG3′ |
Bcl2 | (Bcl2)2 | (Bcl2)3 | ||||
---|---|---|---|---|---|---|
Vo | [ABTS•] | Vo | [ABTS•] | Vo | [ABTS•] | |
DNAzyme alone | 21.3 ± 1.3 | 5.24 ± 0.1 | 86.1 ± 1.3 | 19.1 ± 0.7 | 129.6 ± 1.3 | 26.7 ± 1.3 |
DNAzyme + ATP | 21.3 ± 3.9 | 5.17 ± 0.1 | 71.3 ± 2.6 | 17.1 ± 0.4 | 117.6 ± 2.3 | 26.2 ± 0.5 |
DNAzyme + Spermine | 22.7 ± 5.7 | 4.61 ± 0.1 | 100.6 ± 3.5 | 22.1 ± 0.6 | 170.4 ± 2.6 | 35.4 ± 0.2 |
PS2.M | (PS2.M)2 | (PS2.M)3 | ||||
Vo | [ABTS•] | Vo | [ABTS•] | Vo | [ABTS•] | |
DNAzyme alone | 72.3 ± 7.9 | 17.2 ± 1.9 | 69.4 ± 2.3 | 15.9 ± 0.5 | 98.1 ± 8.6 | 21.2 ± 1.3 |
DNAzyme + ATP | 86.1 ± 8.2 | 21.7 ± 1.2 | 75.0 ± 6.8 | 18.1 ± 1.1 | 100.0 ± 2.3 | 23.1 ± 0.7 |
DNAzyme + Spermine | 122.2 ± 6.0 | 26.7 ± 0.8 | 135.1 ± 4.7 | 29.3 ± 1.3 | 173.0 ± 8.0 | 36.2 ± 1.0 |
PS5.M | (PS5.M)2 | (PS5.M)3 | ||||
Vo | [ABTS•] | Vo | [ABTS•] | Vo | [ABTS•] | |
DNAzyme alone | 262 ± 7.3 | 68.0 ± 5.7 | 142 ± 2.3 | 31.0 ± 0.3 | 145 ± 2.6 | 31.0 ± 1.3 |
DNAzyme + ATP | 253 ± 8.2 | 67.0 ± 5.4 | 119 ± 5.7 | 27.0 ± 0.6 | 133 ± 12.0 | 28.0 ± 0.7 |
DNAzyme + Spermine | 348 ± 11.6 | 89.0 ± 4.9 | 176 ± 4.7 | 37.0 ± 0.4 | 155 ± 6.9 | 31.0 ± 1.0 |
c-MYC | (c-MYC)2 | (c-MYC)3 | ||||
Vo | [ABTS•] | Vo | [ABTS•] | Vo | [ABTS•] | |
DNAzyme alone | 23.1 ± 1.3 | 5.4 ± 0.2 | 61.1 ± 2.3 | 13.9 ± 0.1 | 106.5 ± 5.7 | 23.9 ± 0.9 |
DNAzyme + ATP | 24.1 ± 1.3 | 5.8 ± 0.5 | 55.6 ± 9.9 | 13.4 ± 1.9 | 105.6 ± 1.4 | 24.8 ± 2.3 |
DNAzyme + Spermine | 31.5 ± 1.3 | 6.5 ± 0.1 | 68.0 ± 8.6 | 14.9 ± 1.7 | 114.8 ± 1.3 | 23.7 ± 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeoye, R.I.; Ralebitso-Senior, T.K.; Boddis, A.; Reid, A.J.; Giuntini, F.; Fatokun, A.A.; Powell, A.K.; Ihekwaba-Ndibe, A.; Malomo, S.O.; Olorunniji, F.J. Spermine Enhances the Peroxidase Activities of Multimeric Antiparallel G-quadruplex DNAzymes. Biosensors 2025, 15, 12. https://doi.org/10.3390/bios15010012
Adeoye RI, Ralebitso-Senior TK, Boddis A, Reid AJ, Giuntini F, Fatokun AA, Powell AK, Ihekwaba-Ndibe A, Malomo SO, Olorunniji FJ. Spermine Enhances the Peroxidase Activities of Multimeric Antiparallel G-quadruplex DNAzymes. Biosensors. 2025; 15(1):12. https://doi.org/10.3390/bios15010012
Chicago/Turabian StyleAdeoye, Raphael I., Theresia K. Ralebitso-Senior, Amanda Boddis, Amanda J. Reid, Francesca Giuntini, Amos A. Fatokun, Andrew K. Powell, Adaoha Ihekwaba-Ndibe, Sylvia O. Malomo, and Femi J. Olorunniji. 2025. "Spermine Enhances the Peroxidase Activities of Multimeric Antiparallel G-quadruplex DNAzymes" Biosensors 15, no. 1: 12. https://doi.org/10.3390/bios15010012
APA StyleAdeoye, R. I., Ralebitso-Senior, T. K., Boddis, A., Reid, A. J., Giuntini, F., Fatokun, A. A., Powell, A. K., Ihekwaba-Ndibe, A., Malomo, S. O., & Olorunniji, F. J. (2025). Spermine Enhances the Peroxidase Activities of Multimeric Antiparallel G-quadruplex DNAzymes. Biosensors, 15(1), 12. https://doi.org/10.3390/bios15010012