A Review of Current Developments in Functionalized Mesoporous Silica Nanoparticles: From Synthesis to Biosensing Applications
Abstract
:1. Introduction
2. Synthesis of Mesoporous Silica
2.1. Sol-Gel Method
2.2. Hydrothermal Method
2.3. Template Method
3. Biosensing Applications of Mesoporous Silica Nanoparticles
3.1. Mesoporous Silica-Based Colorimetric Biosensors
3.2. Mesoporous Silica-Based Fluorescent Biosensors
3.3. Mesoporous Silica-Based Electrochemical Biosensors
3.4. Mesoporous Silica-Based Electrochemiluminescent Biosensors
3.5. Mesoporous Silica-Based SERS Biosensors
3.6. Mesoporous Silica-Based Chemiluminescence Biosensors
4. Summary and Outlook
- (I)
- In terms of preparation methods, more controllable strategies should be explored with a desirable structure/composition.
- (II)
- In terms of diagnostics, MSNs act as nanocarriers without orientation, so research efforts should be made to improve their ability to combine with other substances and enhance detection accuracy [93]. Meanwhile, their specificity cannot be ignored in the performance evaluation of biosensors.
- (III)
- In terms of safety, although the toxicity of MSNs is probably low, their long-term toxicity is still unknown. Sufficient attention should be paid to decreasing their toxicity and accelerating their degradability in biological systems.
- (IV)
- In terms of application research, in-depth studies on other biosensing applications of MSN nanomaterials are urgently needed. There is still room for the development of biosensing applications based on MSNs, and these may provide references for related researchers.
- (V)
- Currently, most detection systems are still in their infancy, and their practical application remains a challenge. Future studies should focus on their practical application, especially the development of portable instruments [94].
- (VI)
- MSNs have garnered much attention due to their merits, including high stability and ease of loading, which make them possible for clinical translation. The preparation of highly homogeneous MSNs with a low molecular weight is a prerequisite for promoting their clinical application.
- (VII)
- The multifaceted capabilities of MSNs provide possibilities in terms of simultaneously detecting multiple targets. Thus, the design of sensing arrays, combined with microfluidic technology, may expand the frontiers of their applicability. Furthermore, integrating colorimetry with smartphones is promising for improving the portability of biosensing.
Funding
Acknowledgments
Conflicts of Interest
References
- Manzano, M.; Vallet-Regí, M. Mesoporous Silica Nanoparticles for Drug Delivery. Adv. Funct. Mater. 2019, 30, 1902634. [Google Scholar] [CrossRef]
- Hench, L.L. The story of Bioglass. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Croissant, J.G.; Fatieiev, Y.; Khashab, N.M. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Adv. Mater. 2017, 29, 1604634. [Google Scholar] [CrossRef] [PubMed]
- Knežević, N.Ž.; Durand, J.-O. Large pore mesoporous silica nanomaterials for application in delivery of biomolecules. Nanoscale 2015, 7, 2199–2209. [Google Scholar] [CrossRef]
- Egger, S.M.; Hurley, K.R.; Datt, A.; Swindlehurst, G.; Haynes, C.L. Ultraporous Mesostructured Silica Nanoparticles. Chem. Mater. 2015, 27, 3193–3196. [Google Scholar] [CrossRef]
- Grayton, Q.E.; Phan, T.T.; Kussatz, C.C.; Schoenfisch, M.H. Hyaluronic Acid-Coated Silica Nanoparticles for Targeted Delivery of Nitric Oxide to Cancer Cells. ACS Appl. Bio Mater. 2024, 7, 3796–3809. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Tao, M.; Xu, L.; Fan, N.; Shu, Y.; Xiao, Z.; Wang, Z. Silica-Based Nanodelivery Systems Loaded with Matrine for the Brown Planthopper Green Control and Rice Growth Promotion. ACS Sustain. Chem. Eng. 2023, 11, 17299–17309. [Google Scholar] [CrossRef]
- Liu, J.; Liu, T.; Pan, J.; Liu, S.; Lu, G. Advances in Multicompartment Mesoporous Silica Micro/Nanoparticles for Theranostic Applications. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 389–411. [Google Scholar] [CrossRef]
- Porrang, S.; Davaran, S.; Rahemi, N.; Allahyari, S.; Mostafavi, E. How Advancing are Mesoporous Silica Nanoparticles? A Comprehensive Review of the Literature. Int. J. Nanomed. 2022, 17, 1803–1827. [Google Scholar] [CrossRef]
- Clemente, N.; Miletto, I.; Gianotti, E.; Sabbatini, M.; Invernizzi, M.; Marchese, L.; Dianzani, U.; Renò, F. Verteporfin-Loaded Mesoporous Silica Nanoparticles’ Topical Applications Inhibit Mouse Melanoma Lymphangiogenesis and Micrometastasis In Vivo. Int. J. Mol. Sci. 2021, 22, 13443. [Google Scholar] [CrossRef]
- Li, J.; Sun, R.; Xu, H.; Wang, G. Integrative Metabolomics, Proteomics and Transcriptomics Analysis Reveals Liver Toxicity of Mesoporous Silica Nanoparticles. Front. Pharmacol. 2022, 13, 835359. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhou, R.-Y.; Yao, L.; Wang, Y.; Yue, Q.; Yu, L.; Yu, J.-X.; Yin, W. Selective capture of Pd(II) from aqueous media by ion-imprinted dendritic mesoporous silica nanoparticles and re-utilization of the spent adsorbent for Suzuki reaction in water. J. Hazard. Mater. 2022, 436, 129249. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, Y.; Zhang, M.; Chen, X.; Lei, L.; Hu, T. Antisense vicR-Loaded Dendritic Mesoporous Silica Nanoparticles Regulate the Biofilm Organization and Cariogenicity of Streptococcus mutans. Int. J. Nanomed. 2022, 17, 1255–1272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wu, M.; Fang, Y.; Deng, C.; Shen, H.-H.; Tang, Y.; Wang, Y. Dendritic Mesoporous Silica Hollow Spheres for Nano-Bioreactor Application. Nanomaterials 2022, 12, 1940. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Lv, H.; Feng, J.; Guselnikova, O.; Wang, Y.; Yamauchi, Y.; Liu, B. Noble-Metal-Based Hollow Mesoporous Nanoparticles: Synthesis Strategies and Applications. Adv. Mater. 2022, 34, 2201954. [Google Scholar] [CrossRef]
- Li, J.; Cai, X.; Jiang, P.; Wang, H.; Zhang, S.; Sun, T.; Chen, C.; Fan, K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. Adv. Mater. 2024, 36, 2307337. [Google Scholar] [CrossRef]
- Werner, S.; Arthur, F.; Ernst, B. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid. Interface Sci. 1968, 26, 62–69. [Google Scholar]
- Siddiqui, B.; Rehman, A.; Haq, I.-U.; Al-Dossary, A.A.; Elaissari, A.; Ahmed, N. Exploiting recent trends for the synthesis and surface functionalization of mesoporous silica nanoparticles towards biomedical applications. Int. J. Pharm. X 2022, 4, 100116. [Google Scholar] [CrossRef]
- Ribeiro, T.; Rodrigues, A.S.; Calderon, S.; Fidalgo, A.; Gonçalves, J.; André, V.; Duarte, M.T.; Ferreira, P.J.; Farinha, J.P.S.; Baleizão, C. Silica nanocarriers with user-defined precise diameters by controlled template self-assembly. J. Colloid. Interface Sci. 2020, 561, 609–619. [Google Scholar] [CrossRef]
- Pan, L.; He, Q.; Liu, J.; Chen, Y.; Ma, M.; Zhang, L.; Shi, J. Nuclear-Targeted Drug Delivery of TAT Peptide-Conjugated Monodisperse Mesoporous Silica Nanoparticles. J. Am. Chem. Soc. 2012, 134, 5722–5725. [Google Scholar] [CrossRef]
- Ang, C.W.; Tan, L.; Qu, Z.; West, N.P.; Cooper, M.A.; Popat, A.; Blaskovich, M.A. Mesoporous Silica Nanoparticles Improve Oral Delivery of Antitubercular Bicyclic Nitroimidazoles. ACS Biomater. Sci. Eng. 2022, 8, 4196–4206. [Google Scholar] [CrossRef] [PubMed]
- Tella, J.O.; Adekoya, J.A.; Ajanaku, K.O. Mesoporous silica nanocarriers as drug delivery systems for anti-tubercular agents: A review. R. Soc. Open Sci. 2022, 9, 220013. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Hui, J.; Wang, P.; Xu, B.; Zhuang, J.; Wang, X. Hydrothermal synthesis of mesoporous silica spheres: Effect of the cooling process. Nanoscale 2012, 4, 7114–7120. [Google Scholar] [CrossRef] [PubMed]
- Farjadian, F.; Roointan, A.; Mohammadi-Samani, S.; Hosseini, M. Mesoporous silica nanoparticles: Synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chem. Eng. J. 2019, 359, 684–705. [Google Scholar] [CrossRef]
- Dou, J.; Zeng, H.C. Targeted Synthesis of Silicomolybdic Acid (Keggin Acid) inside Mesoporous Silica Hollow Spheres for Friedel-Crafts Alkylation. J. Am. Chem. Soc. 2012, 134, 16235–16246. [Google Scholar] [CrossRef]
- Zhou, Z.; Gao, Y.; Chen, X.; Li, Y.; Tian, Y.; Wang, H.; Li, X.; Yu, X.; Cao, Y. One-Pot Facile Synthesis of Double-Shelled Mesoporous Silica Microcapsules with an Improved Soft-Template Method for Sustainable Pest Management. ACS Appl. Mater. Interfaces 2021, 13, 39066–39075. [Google Scholar] [CrossRef]
- Tang, F.; Li, L.; Chen, D. Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Adv. Mater. 2012, 24, 1504–1534. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, M.; Wang, Y.; Liu, J. Nanozyme and aptamer- based immunosorbent assay for aflatoxin B1. J. Hazard. Mater. 2020, 399, 123154. [Google Scholar] [CrossRef]
- Norton, A.E.; Sharma, M.; Cashen, C.; Dourges, M.-A.; Toupance, T.; Krause, J.A.; Motkuri, R.K.; Connick, W.B.; Chatterjee, S.C. pH-Mediated Colorimetric and Luminescent Sensing of Aqueous Nitrate Anions by a Platinum(II) Luminophore@Mesoporous Silica Composite. ACS Appl. Mater. Interfaces 2021, 13, 16197–16209. [Google Scholar] [CrossRef]
- Radwan, A.; El-Sewify, I.M.; Shahat, A.; El-Shahat, M.; Khalil, M.M. Decorated nanosphere mesoporous silica chemosensors for rapid screening and removal of toxic cadmium ions in well water samples. Microchem. J. 2020, 156, 104806. [Google Scholar] [CrossRef]
- Ji, C.-H.; Li, J.-J.; Hou, C.-J.; Huo, D.-Q.; Yang, M.; Zhang, L. Mesoporous hollow silica shells modified with functional diamine groups show high-performance absorption capacity and selective colorimetric response to copper ions in aqueous solutions. Sens. Actuators B Chem. 2017, 240, 718–725. [Google Scholar] [CrossRef]
- Zhou, J.; Zhu, W.; Lv, X.; Du, X.; He, J.; Cai, J. Dendritic Silica Nanospheres with Au–Pt Nanoparticles as Nanozymes for Label-Free Colorimetric Hg2+ Detection. ACS Appl. Nano Mater. 2022, 5, 18885–18893. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Liu, Y.; Tan, L.; Wu, J.; Wu, Z.; Zhong, M.; Liang, Y. Colorimetric nanozyme sensor array for the pattern recognition of monoamine neurotransmitters using dendritic mesoporous silica embedded with metal nanoparticles. Sens. Actuators B Chem. 2022, 369, 132287. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, W.; Li, X.; Wang, D.; Shuang, S.; Dong, C. Dendritic Mesoporous Silica Nanoparticle-Tuned High-Affinity MnO2 Nanozyme for Multisignal GSH Sensing and Target Cancer Cell Detection. ACS Sustain. Chem. Eng. 2022, 10, 5911–5921. [Google Scholar] [CrossRef]
- Amatatongchai, M.; Thimoonnee, S.; Somnet, K.; Chairam, S.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P.A. Origami 3D-microfluidic paper-based analytical device for detecting carbaryl using mesoporous silica-platinum nanoparticles with a molecularly imprinted polymer shell. Talanta 2023, 254, 124202. [Google Scholar] [CrossRef]
- Huang, L.; Liao, T.; Wang, J.; Ao, L.; Su, W.; Hu, J. Brilliant Pitaya-Type Silica Colloids with Central–Radial and High-Density Quantum Dots Incorporation for Ultrasensitive Fluorescence Immunoassays. Adv. Funct. Mater. 2018, 28, 1705380. [Google Scholar] [CrossRef]
- Zhou, J.; Ren, M.; Wang, W.; Huang, L.; Lu, Z.; Song, Z.; Foda, M.F.; Zhao, L.; Han, H. Pomegranate-Inspired Silica Nanotags Enable Sensitive Dual-Modal Detection of Rabies Virus Nucleoprotein. Anal. Chem. 2020, 92, 8802–8809. [Google Scholar] [CrossRef]
- Zhou, J.; Lv, X.; Gui, Y.; He, J.; Xie, F.; Cai, J. Passion fruit-inspired dendritic mesoporous silica nanospheres-enriched quantum dots coupled with magnetism-controllable aptasensor enable sensitive detection of ochratoxin A in food products. Food Chem. 2023, 425, 136445. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, Y.; Wang, C.; Hussain, M.; Ettayri, K.; Chen, Y.; Wang, K.; Long, L.; Qian, J. Ultrastable NAC-Capped CdZnTe Quantum Dots Encapsulated within Dendritic Mesoporous Silica As an Exceptional Tag for Anti Interference Fluorescence Aptasensor with Signal Amplification. Anal. Chem. 2024, 96, 14550–14559. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Dai, Z.; Miao, R.; Chen, H. One-Pot Synthesis of Silicon Quantum Dots-Based FluorescentNanomaterial and Its Application. ACS Appl. Mater. Interfaces 2024, 16, 37513–37520. [Google Scholar] [CrossRef]
- Yadav, S.; Choudhary, N.; Dash, M.R.; Paital, A.R. High surface area dendritic silica pairing with anthraquinone derivative: A promising single platform for dual applications of detection and remediation of nitroaromatics and copper ion. Chem. Eng. J. 2022, 450, 138042. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, N.; Wang, S.; Li, Z.; Sun, W.; Zhou, M.; Zhang, Y.; Wu, L.; Ma, J. Turn on fluorescent detection of biogenic amines in fish based on MnO2-coated and rhodamine 6G-loaded mesoporous silica nanospheres. Microchem. J. 2023, 190, 108664. [Google Scholar] [CrossRef]
- Domínguez-Renedo, O.; Navarro-Cuñado, A.M.; Meléndez-Álvarez, M.E.; Alonso-Lomillo, M.A. Current state of electrochemical sensors in wine analysis for early diagnosis. TrAC Trends Anal. Chem. 2023, 168, 117349. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Yang, N.; You, M.; Hao, J.; Wang, J.; Li, J.; Zhang, M. Electrochemical sensors of neonicotinoid insecticides residues in food samples: From structure to analysis. Talanta 2024, 267, 125254. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Guan, J. Single-atom nanozyme-based electrochemical sensors for health and food safety monitoring. Food Chem. 2023, 425, 136518. [Google Scholar] [CrossRef]
- Castle, L.M.; Schuh, D.A.; Reynolds, E.E.; Furst, A.L. Electrochemical Sensors to Detect Bacterial Foodborne Pathogens. ACS Sens. 2021, 6, 1717–1730. [Google Scholar] [CrossRef]
- Ghaani, M.; Azimzadeh, M.; Büyüktaş, D.; Carullo, D.; Farris, S. Electrochemical Sensors in the Food Sector: A Review. J. Agric. Food Chem. 2024, 72, 24170–24190. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhu, Z.; Huang, X.; Wang, X.; Zhang, L.; Peng, Y.; Wan, R.; Han, L.; Li, L.; Qin, X.; et al. Recent Advances in Developing Optical and Electrochemical Sensors for Monitoring Thiram and Future Perspectives. J. Agric. Food Chem. 2024, 72, 23024–23038. [Google Scholar] [CrossRef]
- Yang, X.; Ying, S.-M.; Zhang, S.; Dai, J.; Gao, W.; Wang, T.-Q.; Qiao, J.-Q.; Lian, H.-Z.; Mao, L. CoFe2O4 decorated graphene/C18-functionalized mesoporous silica nanocomposites prepared for magnetic enrichment and electrochemical detection of promethazine in beef. Chin. Chem. Lett. 2024, 35, 108674. [Google Scholar] [CrossRef]
- Li, J.; Xi, M.; Hu, L.; Sun, H.; Zhu, C.; Gu, W. A Controlled Release Aptasensor Utilizing AIE-Active MOFs as High-Efficiency ECL Nanoprobe for the Sensitive Detection of Adenosine Triphosphate. Anal. Chem. 2024, 96, 2100–2106. [Google Scholar] [CrossRef]
- Asadpour, F.; Mazloum-Ardakani, M.; Hoseynidokht, F.; Moshtaghioun, S.M. In situ monitoring of gating approach on mesoporous silica nanoparticles thin-film generated by the EASA method for electrochemical detection of insulin. Biosens. Bioelectron. 2021, 180, 113124. [Google Scholar] [CrossRef] [PubMed]
- Hormsombut, T.; Mekjinda, N.; Kalasin, S.; Surareungchai, W.; Rijiravanich, P. Mesoporous Silica Nanoparticles-Enhanced Microarray Technology for Highly Sensitive Simultaneous Detection of Multiplex Foodborne Pathogens. ACS Appl. Bio Mater. 2024, 7, 2367–2377. [Google Scholar] [CrossRef]
- Ma, N.; Ren, X.; Wang, H.; Kuang, X.; Fan, D.; Wu, D.; Wei, Q. Ultrasensitive Controlled Release Aptasensor Using Thymine–Hg2+–Thymine Mismatch as a Molecular Switch for Hg2+ Detection. Anal. Chem. 2020, 92, 14069–14075. [Google Scholar] [CrossRef]
- Du, M.; Chen, Y.; Tu, J.; Liufu, C.; Yu, J.; Yuan, Z.; Gong, X.; Chen, Z. Ultrasound Responsive Magnetic Mesoporous Silica Nanoparticle-Loaded Microbubbles for Efficient Gene Delivery. ACS Biomater. Sci. Eng. 2020, 6, 2904–2912. [Google Scholar] [CrossRef]
- Guo, P.; Luan, X.; Wang, T.; Hu, L.; Zhang, W. Biodegradable Manganese-Containing Mesoporous Silica Nanoparticles for Precisely Controlled Quercetin Delivery. ACS Appl. Nano Mater. 2024, 7, 10016–10028. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, D.; Wang, X.; Zhang, X.; Li, Z.; Meng, X.; Yu, L.; Yan, X.; He, Z. Biomimetic Trypsin-Responsive Structure-Bridged Mesoporous Organosilica Nanomedicine for Precise Treatment of Acute Pancreatitis. ACS Nano 2024, 18, 19283–19302. [Google Scholar] [CrossRef]
- Shinoda, H.; Higano, R.; Oizumi, T.; Nakamura, A.J.; Kamijo, T.; Takahashi, M.; Nagaoka, M.; Sato, Y.; Yamaguchi, A. Albumin Hydrogel–Coated Mesoporous Silica Nanoparticle as a Carrier of Cationic Porphyrin and Ratiometric Fluorescence pH Sensor. ACS Appl. Bio Mater. 2024, 7, 1204–1213. [Google Scholar] [CrossRef]
- Sun, X.; Wang, X.; Fu, L.; Wang, X.; Chen, L.; Huang, Y. A Nanofluorescent Probe for Evaluating the Fluctuation of Aminopeptidase N in Nonalcoholic Fatty Liver Disease and Hepatic Fibrosis. Anal. Chem. 2024, 96, 14639–14649. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Yin, Y.; Li, X.; Yuan, J. Signal-Boosted Electrochemical Lateral Flow Immunoassay for Early Point-of-Care Detection of Liver Cancer Biomarker. ACS Sens. 2024, 9, 5293–5301. [Google Scholar] [CrossRef]
- Li, J.; Gao, Z.; Jia, C.; Cai, G.; Feng, S.; Wu, M.; Zhao, H.; Yu, J.; Bao, F.; Cong, H.; et al. Simultaneous Detection of Multiple Respiratory Pathogens Using an Integrated Microfluidic Chip. Anal. Chem. 2024, 96, 13768–13776. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, B.; Chen, W. Electrochemical immunosensors based on different Au modified dendritic mesoporous silica nanoparticles tag for simultaneous detection of eggs and milk proteinaceous binders used in ancient wall paintings. Microchem. J. 2023, 191, 108814. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, J.; Ma, W.; Duan, S.; Huang, J.; He, X.; Wang, K. Low Background Cascade Signal Amplification Electrochemical Sensing Platform for Tumor-Related mRNA Quantification by Target-Activated Hybridization Chain Reaction and Electroactive Cargo Release. Anal. Chem. 2018, 90, 12544–12552. [Google Scholar] [CrossRef]
- Cheng, H.; Li, W.; Duan, S.; Peng, J.; Liu, J.; Ma, W.; Wang, H.; He, X.; Wang, K. Mesoporous Silica Containers and Programmed Catalytic Hairpin Assembly/Hybridization Chain Reaction Based Electrochemical Sensing Platform for MicroRNA Ultrasensitive Detection with Low Background. Anal. Chem. 2019, 91, 10672–10678. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, Y.; Wang, W.; Tan, X.; Lu, Z.; Han, H. Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosens. Bioelectron. 2020, 164, 112332. [Google Scholar] [CrossRef]
- Climent, E.; Rurack, K. Combining Electrochemiluminescence Detection with Aptamer-Gated Indicator Releasing Mesoporous Nanoparticles Enables ppt Sensitivity for Strip-Based Rapid Tests. Angew. Chem. Int. Ed. Engl. 2021, 60, 26287–26297. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Wei, J.; Jiao, T.; Chen, Q.; Oyama, M.; Chen, Q.; Chen, X. Screening-Capture-Integrated Electrochemiluminescent Aptasensor Based on Mesoporous Silica Nanochannels for the Ultrasensitive Detection of Deoxynivalenol in Wheat. J. Agric. Food Chem. 2023, 71, 12052–12060. [Google Scholar] [CrossRef]
- Hong, D.; Jo, E.; Kim, K.; Song, M.; Kim, M. Ru(bpy)32+-Loaded Mesoporous Silica Nanoparticles as Electrochemiluminescent Probes of a Lateral Flow Immunosensor for Highly Sensitive and Quantitative Detection of Troponin I. Small 2020, 16, e2004535. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, C.; Wang, W.; Zhao, L.; Han, H. Dual-Mode Immunosensor for Electrochemiluminescence Resonance Energy Transfer and Electrochemical Detection of Rabies Virus Glycoprotein Based on Ru(bpy)32+-Loaded Dendritic Mesoporous Silica Nanoparticles. Anal. Chem. 2022, 94, 7655–7664. [Google Scholar] [CrossRef]
- Wang, W.; Feng, D.; Wang, Y.; Kan, X. Ruthenium Poly(ethylenimine)/Gold Nanoparticles Immobilized on Dendritic Mesoporous Silica Nanoparticles for a CA15-3 Electrochemiluminescence Immunosensor via Cu2O@PDA Dual Quenching. ACS Appl. Nano Mater. 2023, 6, 19271–19278. [Google Scholar] [CrossRef]
- Jia, Y.; Du, Y.; Ru, Z.; Fan, D.; Yang, L.; Ren, X.; Wei, Q. Aggregation-Induced Electrochemiluminescence Frame of Silica-Confined Tetraphenylethylene Derivative Matrixes for CD44 Detection via Peptide Recognition. Anal. Chem. 2023, 95, 6725–6731. [Google Scholar] [CrossRef]
- Schlücker, S. Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew. Chem. Int. Ed. 2014, 53, 4756–4795. [Google Scholar] [CrossRef] [PubMed]
- Kutsanedzie, F.Y.; Agyekum, A.A.; Annavaram, V.; Chen, Q. Signal-enhanced SERS-sensors of CAR-PLS and GA-PLS coupled AgNPs for ochratoxin A and aflatoxin B1 detection. Food Chem. 2020, 315, 126231. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.S.; Church, J.S. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. J. Food Drug Anal. 2014, 22, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q.; Huang, L. Stable, Flexible, and High-Performance SERS Chip Enabled by a Ternary Film-Packaged Plasmonic Nanoparticle Array. ACS Appl. Mater. Interfaces 2019, 11, 29177–29186. [Google Scholar] [CrossRef]
- Li, M.; Paidi, S.K.; Sakowski, E.; Preheim, S.; Barman, I. Ultrasensitive Detection of Hepatotoxic Microcystin Production from Cyanobacteria Using Surface-Enhanced Raman Scattering Immunosensor. ACS Sens. 2019, 4, 1203–1210. [Google Scholar] [CrossRef]
- Zhang, C.; Paria, D.; Semancik, S.; Barman, I. Composite-Scattering Plasmonic Nanoprobes for Label-Free, Quantitative Biomolecular Sensing. Small 2019, 15, 1901165. [Google Scholar] [CrossRef]
- Guo, Z.; Gao, L.; Yin, L.; Arslan, M.; El-Seedi, H.R.; Zou, X. Novel mesoporous silica surface loaded gold nanocomposites SERS aptasensor for sensitive detection of zearalenone. Food Chem. 2023, 403, 134384. [Google Scholar] [CrossRef]
- Zhu, A.; Jiao, T.; Ali, S.; Xu, Y.; Ouyang, Q.; Chen, Q. SERS Sensors Based on Aptamer-Gated Mesoporous Silica Nanoparticles for Quantitative Detection of Staphylococcus aureus with Signal Molecular Release. Anal. Chem. 2021, 93, 9788–9796. [Google Scholar] [CrossRef]
- Li, N.; Zong, S.; Zhang, Y.; Wang, Z.; Wang, Y.; Zhu, K.; Yang, K.; Wang, Z.; Chen, B.; Cui, Y. A SERS-colorimetric dual-mode aptasensor for the detection of cancer biomarker MUC1. Anal. Bioanal. Chem. 2020, 412, 5707–5718. [Google Scholar] [CrossRef]
- He, H.; Sun, D.-W.; Pu, H.; Wu, Z. A SERS-Fluorescence dual-signal aptasensor for sensitive and robust determination of AFB1 in nut samples based on Apt-Cy5 and MNP@Ag-PEI. Talanta 2023, 253, 123962. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, D.-W.; Pu, H.; Wei, Q. A dual signal-on biosensor based on dual-gated locked mesoporous silica nanoparticles for the detection of Aflatoxin B1. Talanta 2023, 253, 124027. [Google Scholar] [CrossRef]
- Zhang, K.; Song, H.; Su, Y.; Li, Q.; Sun, M.; Lv, Y. Flower-like Gold Nanoparticles for In Situ Tailoring Luminescent Molecules for Synergistic Enhanced Chemiluminescence. Anal. Chem. 2022, 94, 8947–8957. [Google Scholar] [CrossRef]
- Yang, M.; Huang, J.; Fan, J.; Du, J.; Pu, K.; Peng, X. Chemiluminescence for bioimaging and therapeutics: Recent advances and challenges. Chem. Soc. Rev. 2020, 49, 6800–6815. [Google Scholar] [CrossRef]
- Zheng, T.; Nie, W.; Yu, L.; Shu, J.; Li, Y.; Tian, C.; Wang, W.; Cui, H. A chemical timer approach to delayed chemiluminescence. Proc. Natl. Acad. Sci. USA 2022, 119, e2207693119. [Google Scholar] [CrossRef] [PubMed]
- Huertas-Pérez, J.F.; Moreno-González, D.; Airado-Rodríguez, D.; Lara, F.J.; García-Campaña, A.M. Advances in the application of chemiluminescence detection in liquid chromatography. TrAC Trends Anal. Chem. 2016, 75, 35–48. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, P.; Han, R.; Luo, C.; Wei, Q. A target-triggered signal chemiluminescence sensor for prostate specific antigen detection based on hollow porous silica encapsulated luminol by aptamers. Sens. Actuators B Chem. 2021, 333, 129543. [Google Scholar] [CrossRef]
- Gu, Z.; Fu, A.; Ye, L.; Kuerban, K.; Wang, Y.; Cao, Z. Ultrasensitive Chemiluminescence Biosensor for Nuclease and Bacterial Determination Based on Hemin-Encapsulated Mesoporous Silica Nanoparticles. ACS Sens. 2019, 4, 2922–2929. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, X.; Liu, H.; Dai, Y.; Han, R.; Gao, D.; Luo, C.; Wang, X.; Wei, Q. Novel Chemiluminescence Sensor for Thrombin Detection Based on Dual-Aptamer Biorecognition and Mesoporous Silica Encapsulated with Iron Porphyrin. ACS Appl. Mater. Interfaces 2020, 12, 5569–5577. [Google Scholar] [CrossRef]
- Qian, S.; Zhang, H.; Sun, X.; Tan, D.; Tian, F.; Zhang, T.; Cui, Y.; Chen, X.; Liang, X.; Cai, Z.; et al. Mesoporous silica-encapsulated Co-doped ceria nanodots with enhanced peroxidase-like activity enable intensive and long-lasting chemiluminescence for glutathione detection. Sens. Actuators B Chem. 2023, 383, 133609. [Google Scholar] [CrossRef]
- Huang, X.; Li, L.; Qian, H.; Dong, C.; Ren, J. A Resonance Energy Transfer between Chemiluminescent Donors and Luminescent Quantum-Dots as Acceptors (CRET). Angew. Chem. Int. Ed. 2006, 45, 5140–5143. [Google Scholar] [CrossRef]
- Tu, D.; Liu, L.; Ju, Q.; Liu, Y.; Zhu, H.; Li, R.; Chen, X. Time-Resolved FRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF4 Nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 6306–6310. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Xu, W.; Guo, J.; Ouyang, J.; Na, N. Chemiluminescence Resonance Energy Transfer-Based Mesoporous Silica Nanosensors for the Detection of miRNA. ACS Sens. 2020, 5, 2800–2805. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ye, S.; Liu, Q.; Li, Y.; Li, Y.; Wang, P. Ternary electrochemiluminescence biosensor based on Ce2Sn2O7@MSN luminophore and Au@NiO-CeO2 as a co-reaction accelerator for the detection of prostate specific antigen. Microchem. J. 2024, 205, 111258. [Google Scholar] [CrossRef]
- Qiu, Z.; Shu, J.; Tang, D. Bioresponsive Release System for Visual Fluorescence Detection of Carcinoembryonic Antigen from Mesoporous Silica Nanocontainers Mediated Optical Color on Quantum Dot-Enzyme-Impregnated Paper. Anal. Chem. 2017, 89, 5152–5160. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Liu, C.; Zhong, Y.; Luo, Z.; Wu, L. A Review of Current Developments in Functionalized Mesoporous Silica Nanoparticles: From Synthesis to Biosensing Applications. Biosensors 2024, 14, 575. https://doi.org/10.3390/bios14120575
Zhou J, Liu C, Zhong Y, Luo Z, Wu L. A Review of Current Developments in Functionalized Mesoporous Silica Nanoparticles: From Synthesis to Biosensing Applications. Biosensors. 2024; 14(12):575. https://doi.org/10.3390/bios14120575
Chicago/Turabian StyleZhou, Jiaojiao, Chen Liu, Yujun Zhong, Zhihui Luo, and Long Wu. 2024. "A Review of Current Developments in Functionalized Mesoporous Silica Nanoparticles: From Synthesis to Biosensing Applications" Biosensors 14, no. 12: 575. https://doi.org/10.3390/bios14120575
APA StyleZhou, J., Liu, C., Zhong, Y., Luo, Z., & Wu, L. (2024). A Review of Current Developments in Functionalized Mesoporous Silica Nanoparticles: From Synthesis to Biosensing Applications. Biosensors, 14(12), 575. https://doi.org/10.3390/bios14120575