Taxonomic and Functional Dynamics of Bacterial Communities During Drift Seaweed Vermicomposting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seaweeds, Vermicomposting Set-Up and Sampling Design
2.2. Amplification, Sequencing and Analysis of 16S rRNA Genes
2.3. Bioinformatic and Statistical Analysis
3. Results
3.1. Changes in the Composition of Bacterial Communities
3.2. Changes in the Diversity of Bacterial Communities
3.3. Changes in the Predicted Functional Composition of Bacterial Communities
4. Discussion
4.1. Changes in the Composition of Bacterial Communities
4.2. Changes in the Diversity of Bacterial Communities
4.3. Changes in the Predicted Functional Composition of Bacterial Communities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paine, E.R.; Schmid, M.; Boyd, P.W.; Diaz-Pulido, G.; Hurd, C.L. Rate and fate of dissolved organic carbon release by seaweeds: A missing link in the coastal ocean carbon cycle. J. Phycol. 2021, 57, 1375–1391. [Google Scholar] [CrossRef] [PubMed]
- Illera-Vives, M.; Seoane Labandeira, S.; Fernández-Labrada, M.; López-Mosquera, M.E. Chapter 19—Agricultural uses of seaweed. In Sustainable Seaweed Technologies; Torres, M.D., Kraan, S., Dominguez, H., Eds.; Advances in Green and Sustainable Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 591–612. ISBN 978-0-12-817943-7. [Google Scholar]
- Butt, K.R.; Méline, C.; Pérès, G. Marine macroalgae as food for earthworms: Growth and selection experiments across ecotypes. Environ. Sci. Pollut. Res. Int. 2020, 27, 33493–33499. [Google Scholar] [CrossRef] [PubMed]
- Pei, B.; Zhang, Y.; Liu, T.; Cao, J.; Ji, H.; Hu, Z.; Wu, X.; Wang, F.; Lu, Y.; Chen, N.; et al. Effects of seaweed fertilizer application on crops’ yield and quality in field conditions in China-a meta-analysis. PLoS ONE 2024, 19, e0307517. [Google Scholar] [CrossRef] [PubMed]
- Villares, R.; Fernández-Lema, E.; López-Mosquera, E. Seasonal variations in concentrations of macro- and micronutrients in three species of brown seaweed. Bot. Mar. 2013, 56, 49–61. [Google Scholar] [CrossRef]
- Xie, C.; Lee, Z.J.; Ye, S.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. A review on seaweeds and seaweed-derived polysaccharides: Nutrition, chemistry, bioactivities, and applications. Food Rev. Int. 2024, 40, 1312–1347. [Google Scholar] [CrossRef]
- Deolu-Ajayi, A.O.; van der Meer, I.M.; van der Werf, A.; Karlova, R. The power of seaweeds as plant biostimulants to boost crop production under abiotic stress. Plant Cell Environ. 2022, 45, 2537–2553. [Google Scholar] [CrossRef]
- Santinon, C.; Ochi, D.; Beppu, M.M.; Vieira, M.G.A. Chemical modifications in the structure of seaweed polysaccharides as a viable antimicrobial application: A current overview and future perspectives. Algal Res. 2022, 66, 102796. [Google Scholar] [CrossRef]
- Dang, B.-T.; Ramaraj, R.; Huynh, K.-P.-H.; Le, M.-V.; Tomoaki, I.; Pham, T.-T.; Hoang Luan, V.; Thi Le Na, P.; Tran, D.P.H. Current application of seaweed waste for composting and biochar: A review. Bioresour. Technol. 2023, 375, 128830. [Google Scholar] [CrossRef]
- Domínguez, J. State of the art and new perspectives on vermicomposting research. In Earthworm Ecology, 2nd ed.; Edwards, C.A., Ed.; CRC Press: Boca Ratón, FL, USA, 2004; pp. 401–442. [Google Scholar]
- Patón, D.; García-Gómez, J.C.; Loring, J.; Torres, A. Composting the invasive toxic seaweed Rugulopteryx okamurae using five invertebrate species, and a mini-review on composting macroalgae. Waste Biomass Valor. 2023, 14, 167–184. [Google Scholar] [CrossRef]
- Ananthavalli, R.; Ramadas, V.; John Paul, J.A.J.; Karunai Selvi, B.; Karmegam, N. Seaweeds as bioresources for vermicompost production using the earthworm, Perionyx excavatus (Perrier). Bioresour. Technol. 2019, 275, 394–401. [Google Scholar] [CrossRef]
- Ananthavalli, R.; Ramadas, V.; John Paul, J.A.J.; Karunai Selvi, B.; Karmegam, N. Vermistabilization of seaweeds using an indigenous earthworm species, Perionyx excavatus (Perrier). Ecol. Eng. 2019, 130, 23–31. [Google Scholar] [CrossRef]
- Biruntha, M.; Karmegam, N.; Archana, J.; Karunai Selvi, B.; John Paul, J.A.J.; Balamuralikrishnan, B.; Chang, S.W.; Ravindran, B. Vermiconversion of biowastes with low-to-high C/N ratio into value added vermicompost. Bioresour. Technol. 2020, 297, 122398. [Google Scholar] [CrossRef]
- Yatoo, A.M.; Bhat, S.A.; Ali, M.N.; Baba, Z.A.; Zaheen, Z. Production of nutrient-enriched vermicompost from aquatic macrophytes supplemented with kitchen waste: Assessment of nutrient changes, phytotoxicity, and earthworm biodynamics. Agronomy 2022, 12, 1303. [Google Scholar] [CrossRef]
- Gómez Brandón, M.; Aira, M.; Kolbe, A.R.; de Andrade, N.; Pérez-Losada, M.; Domínguez, J. Rapid bacterial community changes during vermicomposting of grape marc derived from red winemaking. Microorganisms 2019, 7, 473. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Aira, M.; Santana, N.; Pérez-Losada, M.; Domínguez, J. Temporal dynamics of bacterial communities in a pilot-scale vermireactor fed with distilled grape marc. Microorganisms 2020, 8, 642. [Google Scholar] [CrossRef]
- Kolbe, A.R.; Aira, M.; Gómez-Brandón, M.; Pérez-Losada, M.; Domínguez, J. Bacterial succession and functional diversity during vermicomposting of the white grape marc Vitis vinifera v. Albariño. Sci. Rep. 2019, 9, 7472. [Google Scholar] [CrossRef]
- Domínguez, J.; Aira, M.; Kolbe, A.R.; Gómez-Brandón, M.; Pérez-Losada, M. Changes in the composition and function of bacterial communities during vermicomposting may explain beneficial properties of vermicompost. Sci. Rep. 2019, 9, 9657. [Google Scholar] [CrossRef]
- Rosado, D.; Ramos-Tapia, I.; Crandall, K.A.; Pérez-Losada, M.; Domínguez, J. Grapevine treatment with bagasse vermicompost changes the microbiome of Albariño must and wine and improves wine quality. OENO One 2022, 56, 219–230. [Google Scholar] [CrossRef]
- Blouin, M.; Barrere, J.; Meyer, N.; Lartigue, S.; Barot, S.; Mathieu, J. Vermicompost significantly affects plant growth. a meta-analysis. Agron. Sustain. Dev. 2019, 39, 34. [Google Scholar] [CrossRef]
- Saha, M.; Dittami, S.M.; Chan, C.X.; Raina, J.-B.; Stock, W.; Ghaderiardakani, F.; Valathuparambil Baby John, A.M.; Corr, S.; Schleyer, G.; Todd, J.; et al. Progress and future directions for seaweed holobiont research. New Phytol. 2024, 244, 364–376. [Google Scholar] [CrossRef]
- Cremades, J.; Bárbara, I.; Veiga, A.J. Intertidal vegetation and its commercial potential on the shores of Galicia (NW Iberian Peninsula). Thalasas 2004, 20, 69–80. [Google Scholar]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An r package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. JOSS 2019, 4, 1686. [Google Scholar] [CrossRef]
- Neuwirth, E. RColorBrewer: Colorbrewer Palettes, version 1.1-3; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Pedersen, T.L. Patchwork: The Composer of Plots, version 1.3.0; R Core Team: Vienna, Austria, 2024. [Google Scholar]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package, version 2.6.8; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Krassowski, M.; Arts, M.; Lagger, C. Max Complex-Upset, version 1.3.3; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests, version 0.7.2; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Gómez-Roel, A.; Aira, M.; Domínguez, J. Vermicomposting enhances microbial detoxification of sewage sludge, enabling potential application of the treated product in agroecosystems. Appl. Sci. 2024, 14, 7894. [Google Scholar] [CrossRef]
- Tenenbaum, D. KEGGREST: Client-Side REST Access to the Kyoto Encyclopedia of Genes and Genomes (KEGG), version 1.44.0; R Core Team: Vienna, Austria, 2024. [Google Scholar]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef]
- Douglas, G.M.; Kim, S.; Langille, M.G.I.; Shapiro, B.J. Efficient computation of contributional diversity metrics from microbiome data with FuncDiv. Bioinformatics 2023, 39, btac809. [Google Scholar] [CrossRef]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-Plus; Statistics and Computing; Springer: New York, NY, USA, 2000; ISBN 978-0-387-98957-0. [Google Scholar]
- Lenth, R.V.; Banfai, B.; Bolker, B.; Buerkner, P.; Giné-Vázquez, I.; Herve, M.; Jung, M.; Love, J.; Miguez, F.; Piaskowski, J.; et al. Emmeans: Estimated Marginal Means, Aka Least-Squares Means, version 1.10.6; R Core Team: Vienna, Austria, 2024. [Google Scholar]
- Liebeke, M.; Strittmatter, N.; Fearn, S.; Morgan, A.J.; Kille, P.; Fuchser, J.; Wallis, D.; Palchykov, V.; Robertson, J.; Lahive, E.; et al. Unique metabolites protect earthworms against plant polyphenols. Nat. Commun. 2015, 6, 7869. [Google Scholar] [CrossRef]
- Gopal, M.; Bhute, S.S.; Gupta, A.; Prabhu, S.R.; Thomas, G.V.; Whitman, W.B.; Jangid, K. Changes in structure and function of bacterial communities during coconut leaf vermicomposting. Antonie Leeuwenhoek 2017, 110, 1339–1355. [Google Scholar] [CrossRef]
- Cai, L.; Gong, X.; Sun, X.; Li, S.; Yu, X. Comparison of chemical and microbiological changes during the aerobic composting and vermicomposting of green waste. PLoS ONE 2018, 13, e0207494. [Google Scholar] [CrossRef]
- Chen, J.; Zang, Y.; Yang, Z.; Qu, T.; Sun, T.; Liang, S.; Zhu, M.; Wang, Y.; Tang, X. Composition and functional diversity of epiphytic bacterial and fungal communities on marine macrophytes in an intertidal zone. Front. Microbiol. 2022, 13, 839465. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Fornasier, F.; de Andrade, N.; Domínguez, J. Influence of earthworms on the microbial properties and extracellular enzyme activities during vermicomposting of raw and distilled grape marc. J. Environ. Manag. 2022, 319, 115654. [Google Scholar] [CrossRef]
- Banerjee, S.; van der Heijden, M.G.A. Soil microbiomes and one health. Nat. Rev. Microbiol. 2023, 21, 6–20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aira, M.; Gómez-Roel, A.; Domínguez, J. Taxonomic and Functional Dynamics of Bacterial Communities During Drift Seaweed Vermicomposting. Microorganisms 2025, 13, 30. https://doi.org/10.3390/microorganisms13010030
Aira M, Gómez-Roel A, Domínguez J. Taxonomic and Functional Dynamics of Bacterial Communities During Drift Seaweed Vermicomposting. Microorganisms. 2025; 13(1):30. https://doi.org/10.3390/microorganisms13010030
Chicago/Turabian StyleAira, Manuel, Ana Gómez-Roel, and Jorge Domínguez. 2025. "Taxonomic and Functional Dynamics of Bacterial Communities During Drift Seaweed Vermicomposting" Microorganisms 13, no. 1: 30. https://doi.org/10.3390/microorganisms13010030
APA StyleAira, M., Gómez-Roel, A., & Domínguez, J. (2025). Taxonomic and Functional Dynamics of Bacterial Communities During Drift Seaweed Vermicomposting. Microorganisms, 13(1), 30. https://doi.org/10.3390/microorganisms13010030