Landscape Transformations (1987–2022): Analyzing Spatial Changes Driven by Mining Activities in Ayapel, Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
- Base cartography from the Agustín Codazzi Geographic Institute (IGAC);
- Geological and geomorphological units from the Colombian Geological Service (SGC);
- Land cover data from the Institute of Hydrology, Meteorology, and Environmental Studies (IDEAM);
- Mining title status from the National Mining Agency (ANM).
- “National Legend of Land Cover. CORINE Land Cover Methodology Adapted for Colombia, 1:100,000 scale” (2010);
- “Land Cover Pattern Catalog of Colombia” (2012a);
- The book “Visual Interpretation of Remote Sensor Images and its Application in Land Cover and Use Surveys” from IGAC (2005).
- Segmentation, which involves grouping neighboring pixels with similar characteristics;
- Training using representative samples for each type of cover;
- Supervised classification based on prior training.
- 0–3%: level;
- 3–7%: slightly inclined;
- 7–12%: moderately inclined;
- 12–25%: strongly inclined;
- 25–50%: slightly steep or slightly escarped;
- 50–75%: moderately steep or moderately escarped;
- >75%: strongly escarped or strongly steep.
- The first level is the most general and is based on the geomorphological component (morphostructural, morphodynamic) and climatological aspects;
- The second level is a subdivision that groups relief according to altitude ranges and slope percentages;
- The third level further subdivides the units according to geological and lithological criteria.
3. Results
3.1. Spatial Delimitation of Landscape Units
- Denudational environment: This environment is composed of mounds, hills, and denuded plains resulting from weathering and intense water erosion. The terrain has a maximum relief of less than 200 m.
- Fluvial environment: This environment follows the longitudinal flow of the region’s main watercourses. It is characterized by the presence of alluvial terraces, which are bordered by floodplains and a radially shaped alluvial fan. The fan is associated with the accumulation of torrential and fluvial flows from the Cauca River, which overflows or breaches levees, causing water to be diverted toward the Ayapel Swamp basin (Figure 3).
3.2. Identification of Mining Coverages
3.3. Spatial Alterations in Landscape Units Affected by Mining
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Monsalve Friedman, L.M. Conflicto sociopolítico e impacto territorial del extractivismo minero. Bitácora Urbano Territ. 2022, 32, 59–72. [Google Scholar] [CrossRef]
- Damonte, G.H.; Godfrid, J.; Minchán, A.P.L.; Quispe, E.A. The Surge for Local Innovative Institutions for Transformation: Community-Based Monitoring in the Andes. Glob. Sustain. 2024, 7, e34. [Google Scholar] [CrossRef]
- Kumi, S.; Addo-Fordjour, P.; Fei-Baffoe, B. Mining-Induced Changes in Ecosystem Services Value and Implications of Their Economic and Relational Cost in a Mining Landscape, Ghana. Heliyon 2023, 9, e21156. [Google Scholar] [CrossRef]
- Mathioudakis, S.; Xiroudakis, G.; Petrakis, E.; Manoutsoglou, E. Alluvial Gold Mining Technologies from Ancient Times to the Present. Mining 2023, 3, 618–644. [Google Scholar] [CrossRef]
- Trench, A.; Baur, D.; Ulrich, S.; Sykes, J.P. Gold Production and the Global Energy Transition—A Perspective. Sustainability 2024, 16, 5951. [Google Scholar] [CrossRef]
- Machado-Mosquera, M. Re-existencias de comunidades negras del Norte del Cauca-Colombia por la permanencia en el territorio, y haciéndole frente al extractivismo minero. Gestión Ambiente 2021, 24 (Suppl. 1), 225–247. [Google Scholar] [CrossRef]
- Fotie, B.M.; Boukari, H.; Daou, I.E.; Momegni, C.K.; Eta, M.A.E.; Tchuikoua, L.B.; Ngueyep, L.L.M. Physicochemical Characterisation of Water and Sediment of the Semimechanized Artisanal Gold Mining Environment of the Béké Locality. Appl. Environ. Soil. Sci. 2024, 2024, 1–12. [Google Scholar] [CrossRef]
- Cheepurupalli, N.R.; Abraha, H.; Belay, M.; Anuradha, B. Impacts of Artisanal Gold Mining on Miners and the Environment in the Asgede Tsimbila Woreda of Northern Tigray, Ethiopia. NeuroQuantology 2022, 20, 981–992. [Google Scholar] [CrossRef]
- Fashya, I.; Suseno, B.D. Illegal gold mining grandil: Empirical trail in south citorek lebak regency, indonesia. Int. J. Inf. Bus. Manag. 2023, 15, 7–21. Available online: https://ijibm.elitehall.com/index4.htm (accessed on 4 January 2024).
- Teixeira, B.M.; Nicoson, C.J. Transforming Environmental Peacebuilding: Addressing Extractivism in Building Climate Resilient Peace. Ecol. Soc. 2024, 29, 2. [Google Scholar] [CrossRef]
- Wang, X.; Han, J.; Lin, J. Response of Land Use and Net Primary Productivity to Coal Mining: A Case Study of Huainan City and Its Mining Areas. Land 2022, 11, 973. [Google Scholar] [CrossRef]
- Capparelli, M.V.; Cabrera, M.; Rico, A.; Lucas-Solis, O.; Alvear-S, D.; Vasco, S.; Galarza, E.; Shiguango, L.; Pinos-Velez, V.; Pérez-González, A.; et al. An Integrative Approach to Assess the Environmental Impacts of Gold Mining Contamination in the Amazon. Toxics 2021, 9, 149. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Dong, Z.; Bian, Z.; Zhang, X.; Wei, Z. Spatiotemporal Variations in the Impacts of Small-to Medium-Scale Mines Agglomeration Scale on Landscape Pattern and Ecological Risk in the Watershed in a Semi-Arid Ecologically Fragile Area. Ecol. Indic. 2024, 166, 112319. [Google Scholar] [CrossRef]
- Daipan, B.P.O.; Tinio, C.E.; Pampolina, N.M. Biodiversity Conservation in Mining Landscapes: A Systematic Review of Assessment Approaches in the Philippines. Philipp. J. Sci. 2023, 152, 1455–1474. [Google Scholar] [CrossRef]
- Salgado-Almeida, B.; Briones-Escalante, A.; Falquez-Torres, D.; Filián-Haz, K.; Guzmán-Martínez, F.; Escobar-Segovia, K.; Peña-Carpio, E.; Jiménez-Oyola, S. Assessment of Environmental Pollution and Risks Associated with Tailing Dams in a Historical Gold Mining Area of Ecuador. Resources 2024, 13, 105. [Google Scholar] [CrossRef]
- Mensah, A.K.; Tuokuu, F.X.D. Polluting Our Rivers in Search of Gold: How Sustainable Are Reforms to Stop Informal Miners from Returning to Mining Sites in Ghana? Front. Environ. Sci. 2023, 11, 1154091. [Google Scholar] [CrossRef]
- Ngom, N.M.; Baratoux, D.; Bolay, M.; Dessertine, A.; Abass Saley, A.; Baratoux, L.; Mbaye, M.; Faye, G.; Yao, A.K.; Kouamé, K.J. Artisanal Exploitation of Mineral Resources: Remote Sensing Observations of Environmental Consequences, Social and Ethical Aspects. Surv. Geophys. 2023, 44, 225–247. [Google Scholar] [CrossRef]
- Departamento Nacional de Planeación (DNP). Plan Nacional de Desarrollo 2014–2018. Todos Por Un Nuevo País: Paz, Equidad y Educación; Departamento Nacional de Planeación (DNP): Bogotá, Colombia, 2015. Available online: https://colaboracion.dnp.gov.co/cdt/pnd/pnd%202014-2018%20tomo%201%20internet.pdf (accessed on 1 June 2024).
- Hutchins, M.G.; Abesser, C.; Prudhomme, C.; Elliott, J.A.; Bloomfield, J.P.; Mansour, M.M.; Hitt, O.E. Combined Impacts of Future Land-Use and Climate Stressors on Water Resources and Quality in Groundwater and Surface Waterbodies of the Upper Thames River Basin, UK. Sci. Total Environ. 2018, 631–632, 962–986. [Google Scholar] [CrossRef] [PubMed]
- Cockburn, J.; Rosenberg, E.; Copteros, A.; Cornelius, S.F.; Libala, N.; Metcalfe, L.; van der Waal, B. A Relational Approach to Landscape Stewardship: Towards a New Perspective for Multi-Actor Collaboration. Land 2020, 9, 224. [Google Scholar] [CrossRef]
- La Rosa, D.; Izakovičová, Z. Visibility Analysis to Enhance Landscape Protection: A Proposal of Planning Norms and Regulations for Slovakia. Land 2022, 11, 977. [Google Scholar] [CrossRef]
- González González, M.J. Analysis, Systemization of the Impacts of Planning on the Territory: Applied to the Ordesa National Park. Land 2020, 9, 527. [Google Scholar] [CrossRef]
- Guo, Z.; Yan, Z.; He, R.; Yang, H.; Ci, H.; Wang, R. Impacts of Land Use Conversion on Soil Erosion in the Urban Agglomeration on the Northern Slopes of the Tianshan Mountains. Land 2024, 13, 550. [Google Scholar] [CrossRef]
- Gullino, P.; Mellano, M.G.; Beccaro, G.L.; Devecchi, M.; Larcher, F. Strategies for the Management of Traditional Chestnut Landscapes in Pesio Valley, Italy: A Participatory Approach. Land 2020, 9, 536. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Anders, J.; Schneider, C. Monitoring of Changes in Land Use/Land Cover in Syria from 2010 to 2018 Using Multitemporal Landsat Imagery and GIS. Land 2020, 9, 226. [Google Scholar] [CrossRef]
- Argel-Fernandez, A.J.; Puerta Avilés, O. Composición y Configuración Del Paisaje En Municipios Con Bosques Remanentes En La Franja Noroeste de Córdoba y Sucre, Colombia (1985–2020). Estud. Socioterritoriales Rev. Geogr. 2023, 33, 1–23. [Google Scholar] [CrossRef]
- Wu, C. Study on the Spatial Differences in Land-Use Change and Driving Factors in Tibet. Land 2022, 11, 1584. [Google Scholar] [CrossRef]
- Reboratti, C. Geografía y Ambiente. In Geografía y Ambiente en América Latina; Bocco, G., Urquijo, P.S., Vieyra, A., Eds.; CIGA-UNAM, SEMARNAT, INEEC: Mexico City, Mexico, 2011; pp. 21–44. [Google Scholar] [CrossRef]
- Laker, M.C. Environmental Impacts of Gold Mining—With Special Reference to South Africa. Mining 2023, 3, 205–220. [Google Scholar] [CrossRef]
- Garate-Quispe, J.; Ramírez, M.V.; Becerra-Lira, E.; Baez-Quispe, S.; Abril-Surichaqui, M.; Rodriguez-Achata, L.; Muñoz-Ushñahua, A.; Nascimento Herbay, P.; Fernandez-Mamani, Y.; Alarcon-Aguirre, G.; et al. Influence of Distance from Forest Edges on Spontaneous Vegetation Succession Following Small-Scale Gold Mining in the Southeast Peruvian Amazon. Diversity 2023, 15, 793. [Google Scholar] [CrossRef]
- Siqueira-Gay, J.; Sánchez, L.E. The Outbreak of Illegal Gold Mining in the Brazilian Amazon Boosts Deforestation. Reg. Environ. Change 2021, 21, 28. [Google Scholar] [CrossRef]
- Engstrand, R.C.; Espejo, J.C.; Silman, M.R.; Asner, G.P. Repeated Mining Accounts for the Majority of Artisanal and Small-Scale Gold Mining Activity in Southeastern Peru. Environ. Res. Lett. 2024, 19, 064036. [Google Scholar] [CrossRef]
- Bruno, D.E.; De Simone, F. ASGM Mercury Discharges in Tropical Basins: Assessment of the Criticality of Their Geographical Distribution. Sustainability 2024, 16, 2991. [Google Scholar] [CrossRef]
- Xu, Q.; Xia, G.; Yan, W.; Aili, A.; Yuan, K. Responses of Vegetation and Soil to Artificial Restoration Measures in Abandoned Gold Mining Areas in Altai Mountain, Northwest China. Diversity 2022, 14, 427. [Google Scholar] [CrossRef]
- Pérez, J.D.; Puerta, O. El Paisaje: Una Aproximación Conceptual Desde La Geografía Ambiental. Rev. Geogr. Venez. 2024, 65, 463–476. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=9759685 (accessed on 3 December 2023).
- Nižić, M.K.; Grdić, Z.; Endres, R. Will the Goals of Sustainable Development be Achieved in the European Union? In Tourism and Hospitality Industry 2024: Trends and Challenges: Congress Proceedings, Proceedings of the Tourism and Hospitality Industry 2024, Opatija, Croatia, 6–7 June 2024; Faculty of Tourism and Hospitality Management, University of Rueka: Opatija, Croatia, 2024; pp. 75–84. [Google Scholar] [CrossRef]
- Alsayegh, M.F.; Ditta, A.; Mahmood, Z.; Kouser, R. The Role of Sustainability Reporting and Governance in Achieving Sustainable Development Goals: An International Investigation. Sustainability 2023, 15, 3531. [Google Scholar] [CrossRef]
- López-Carrión, A.E.; Martí-Sánchez, M. Analysis of the Coverage and Discourse of the Sustainable Development Goals and the 2030 Agenda in the Spanish Digital Press (2015–2022). Rev. Lat. Comun. Soc. 2024, 82, 1–21. [Google Scholar] [CrossRef]
- Vásquez, M.A.P. Retos de la política ambiental colombiana frente a los desafíos de la ocde y los ods. Análisis Político 2020, 33, 101–120. [Google Scholar] [CrossRef]
- Giraldo, N.O.; Cachopo, J.P.C. Coherencia en y entre las políticas públicas para el desarrollo sostenible y la innovación: Análisis del caso de Colombia a partir de documentos Conpes. Estud. Derecho 2024, 81, 7–33. [Google Scholar] [CrossRef]
- Aguilera, M.M. Ciénaga De Ayapel: Riqueza En Biodiversidad y Recursos Hìdricos. Documentos de Trabajos Sobre Economía Regional; Banco de la Republica: Cartagena de Indias, Colombia, 2009; p. 70. [Google Scholar] [CrossRef]
- DANE. DANE-Proyecciones de Población. Proyecciones y Retroproyecciones de Población Municipal para el Periodo 1985–2019 y 2020–2035 con Base en el CNPV 2018. Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion (accessed on 3 December 2023).
- Corporación Autónoma Regional de los Valles del Sinú y del San Jorge (CVS). Acuerdo de Consejo Directivo N° 133. Montería 2009. Available online: https://cvs.gov.co/acuerdos/ (accessed on 15 December 2023).
- Paz, A. Oro y Bacrim, El Verdadero Precio. Semana 2014. Available online: https://www.semana.com/medio-ambiente/multimedia/oro-bacrim-verdadero-precio/32229/ (accessed on 16 December 2023).
- Zhang, H.K.; Roy, D.P. Computationally Inexpensive Landsat 8 Operational Land Imager (OLI) Pansharpening. Remote Sens. 2016, 8, 180. [Google Scholar] [CrossRef]
- IDEAM. Leyenda Nacional de Coberturas de La Tierra. Metodología CORINE Land Cover Adaptada Para Colombia, Escala 1:100,000; IDEAM: Bogotá, Colombia, 2010. [Google Scholar]
- IDEAM. Catálogo de Patrones de Coberturas de La Tierra Colombia; IDEAM: Bogotá, Colombia, 2012. [Google Scholar]
- IGAC. Interpretación Visual de Imágenes de Sensores Remotos y Su Aplicación En Levantamientos de Cobertura y Uso de La Tierra, 1st ed.; IGAC: Bogotá, Colombia, 2005. [Google Scholar]
- IDEAM. Mapa de Coberturas de La Tierra. Metodología Corine Land Cover Adaptada Para Colombia. Período 2000–2002. Escala 1:100,000; IDEAM: Bogotá, Colombia, 2012. [Google Scholar]
- IDEAM. Mapa de Coberturas de La Tierra. Metodología Corine Land Cover Adaptada Para Colombia. Año 2018. Escala 1:100,000; IDEAM: Bogotá, Colombia, 2021. [Google Scholar]
- Pérez, J.D.; Puerta, O. Transformaciones Espaciales de Las Coberturas Por La Minería Aurífera En El Municipio de Ayapel (Córdoba): Un Análisis Geográfico-Ambiental. In Geografía Para la Vida-Tomo 1; IGAC: Bogota, Colombia, 2024; Volume 1, pp. 32–41. [Google Scholar]
- Bertrand, G. Paysage et Géographie Physique Globale. Esquisse Méthodologique. Rev. Geogr. Pyren. Sud. Ouest 1968, 39, 249–272. Available online: https://www.persee.fr/doc/rgpso_0035-3221_1968_num_39_3_4553 (accessed on 10 December 2024). [CrossRef]
- Giné, D.S.; Romero, A.G.; Sánchez, L.A.G.; Chávez, E.S. Un Nuevo Método de Cartografía Del Paisaje Para Altas Montañas Tropicales. Cuad. Geográficos 2019, 58, 83–100. [Google Scholar] [CrossRef]
- Mateo, J.M. Geografía de Los Paisajes. Primera Parte. Paisajes Naturales; Editorial Universitaria: La Habana, Cuba, 2002; Available online: https://es.scribd.com/document/382376188/Geografia-de-Los-Paisajes-Prim-Jose-Manuel-Mateo-Rodriguez (accessed on 1 December 2024).
- Jiménez Olivencia, Y.; Porcel Rodríguez, L.; Caballero Calvo, A. Medio Siglo En La Evolución de Los Paisajes Naturales y Agrarios de Sierra Nevada (España). Boletín Asoc. Geógrafos Españoles 2015, 68, 205–232. [Google Scholar] [CrossRef]
- Caballero Calvo, A.; Jiménez Olivencia, Y. Evaluación de recursos locales. Los paisajes del árbol fuera del bosque en el municipio de Válor. In Desarrollo Local en Tiempos de Crisis: “El Retorno a los Recursos Endógenos”; Rodríguez Martínez, F., Ed.; Universidad de Granada: Granada, Spain, 2013; pp. 297–316. Available online: https://digibug.ugr.es/handle/10481/86791 (accessed on 1 December 2024).
- Salinas, E.; García, A.E.; Miravet Sánchez, B.L.; Remond Noa, R.; Cruañas López, E. Delimitación, Clasificación y Cartografía de Los Paisajes de La Cuenca Ariguanabo, Cuba, Mediante El Uso de Los SIG. Rev. Geográfica 2019, 154, 9–30. [Google Scholar] [CrossRef]
- Salinas, E.; Mateo, J.M.; Costa de Souza, L.; Moreira, A. Cartografía de Los Paisajes: Teoría y Aplicación. Physis Terrae-Rev. Ibero-Afro-Am. Geogr. Física Ambiente 2019, 1, 7–29. [Google Scholar] [CrossRef]
- Salinas, E.; Ramón, A.M.; Amaro, L.R. La Cartografia de Los Paisajes y Los Sistemas de Información Geográfica: Aspectos Conceptuales y Metodológicos. In Cartografía Biogeográfica e da Paisagem. Volume II; Salinas Chávez, E., Seolin Dias, L., Eds.; ANAP: São Paulo, Brazil, 2019; Volume II, pp. 37–54. [Google Scholar]
- Salinas, E.; Ribeiro, Á.F. La Cartografía de Los Paisajes Con El Empleo de Los Sistemas de Información Geográfica: Caso de Estudio Parque Nacional Sierra de Bodoquena y Su Entorno. Geogr. Sist. Inf. Geográfica (GeoSIG) 2017, 9, 186–205. [Google Scholar]
- Servicio Geológico Colombiano. Memoria Explicativa-Mapa Geológico de La Plancha 83 Nechí; Servicio Geológico Colombiano: Medellin, Colombia, 2012. Available online: https://catalogo.sgc.gov.co/cgi-bin/koha/opacdetail.pl?biblionumber=49247&shelfbrowse_itemnumber=48594 (accessed on 16 January 2024).
- Servicio Geológico Colombiano. Memoria Explicativa-Mapa Geológico de La Plancha 73 Ayapel; Servicio Geológico Colombiano: Medellín, Colombia, 2015. Available online: https://catalogo.sgc.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=73464 (accessed on 16 January 2024).
- IGAC. Estudio General de Suelos y Zonificación de Tierras Del Departamento de Córdoba; IGAC: Bogotá, Colombia, 2009; Available online: https://es.scribd.com/document/640120345/Untitled (accessed on 25 January 2024).
- UNODC. Colombia. Explotación de Oro de Aluvión. Evidencias a Partir de Percepción Remota 2021; UNODC: Vienna, Austria, 2022; Available online: https://www.unodc.org/documents/colombia/2022/Junio/Informe_Colombia_Explotacion_de_Oro_de_Aluvion_Evidencias_a_Partir_de_Percepcion_Remota_2021_SP_.pdf (accessed on 5 January 2025).
- Shikhov, A.; Ilyushina, P.; Makarieva, O.; Zemlianskova, A.; Mozgina, M. Satellite-Based Mapping of Gold-Mining-Related Land-Cover Changes in the Magadan Region, Northeast Russia. Remote Sens. 2023, 15, 3564. [Google Scholar] [CrossRef]
- Alarcón-Aguirre, G.; Sajami Quispe, E.; Vásquez Zavaleta, T.; Ponce Tejada, L.V.; Ramos Enciso, D.; Rodríguez Achata, L.; Garate-Quispe, J. Vegetation Dynamics in Lands Degraded by Gold Mining in the Southeastern Peruvian Amazon. Trees For. People 2023, 11, 100369. [Google Scholar] [CrossRef]
- Romiyanto, R.; Barus, B.; Sudadi, U. Model Spasial Kerusakan Lahan Dan Pencemaran Air Akibat Kegiatan Pertambangan Emas Tanpa Izin Di Daerah Aliran Sungai Raya, Kalimantan Barat. J. Ilmu Tanah Dan Lingkung. 2015, 17, 47–53. Available online: https://journal.ipb.ac.id/index.php/jtanah/article/view/14836/0 (accessed on 4 January 2025). [CrossRef]
- Dominguez Rave, S.L.; Romero Bejarano, L.R.; Torra Ruiz, L.C.; López Arango, Y.L. Valoración Participativa de Impactos Socioambientales y Sanitarios En Minería de Oro: Buriticá (Antioquia), Colombia. Rev. Fac. Nac. De Salud Pública 2020, 38, 1–29. [Google Scholar] [CrossRef]
- Palacios-Torres, Y.; de la Rosa, J.D.; Olivero-Verbel, J. Trace Elements in Sediments and Fish from Atrato River: An Ecosystem with Legal Rights Impacted by Gold Mining at the Colombian Pacific. Environ. Pollut. 2020, 256, 113290. [Google Scholar] [CrossRef]
- Moletta, I.M.; Nucci, J.C. Área degradada pela extração de areia: Um estudo da derivação da paisagem no bairro do umbará, curitiba-pr. Revista RAEGA 2006, 12. Available online: https://revistas.ufpr.br/raega/article/view/4300 (accessed on 6 December 2024). [CrossRef]
- Salas Barreto, A.D.; Estupiñan Cruz, A.L. Explotación Minera y Conflictividad Socioambiental En El Páramo Cruz Verde-Sumapaz, Colombia, 2011–2021. Cuad. De Geogr. Rev. Colomb. De Geogr. 2024, 33, 467–484. [Google Scholar] [CrossRef]
- Carabia-Sanz, I.; Simoy, M.V.; Cortelezzi, A.; Trofino-Falasco, C.; Berkunsky, I. Spatial Distribution and Landscape Impact Analysis of Quarrying in the Highly Fragmented Ecosystem of Tandilia System (Province of Buenos Aires, Argentina). Environ. Earth Sci. 2024, 83, 319. [Google Scholar] [CrossRef]
- Gómez-Rodríguez, M.E.; Molina-Pérez, F.J.; Agudelo-Echavarría, D.M.; Cañón-Barriga, J.E.; de Jesús Vélez-Macías, F. Changes in soil cover in Nechí, Antioquia: An approach to the environmental impact of mining, 1986–2010. Fac. De Ing. 2017, 26, 149–163. [Google Scholar] [CrossRef]
- Dzoro, M.; Mashapa, C.; Gandiwa, E. Impact of Artisanal Gold Mining on Woody Vegetation in Chewore South Safari Area, Northern Zimbabwe. Trees For. People 2023, 11, 100375. [Google Scholar] [CrossRef]
- Kamga, M.A.; Nguemhe Fils, S.C.; Ayodele, M.O.; Olatubara, C.O.; Nzali, S.; Adenikinju, A.; Khalifa, M. Evaluation of Land Use/Land Cover Changes Due to Gold Mining Activities from 1987 to 2017 Using Landsat Imagery, East Cameroon. GeoJournal 2020, 85, 1097–1114. [Google Scholar] [CrossRef]
- Schueler, V.; Kuemmerle, T.; Schröder, H. Impacts of Surface Gold Mining on Land Use Systems in Western Ghana. Ambio 2011, 40, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Oficina de las Naciones Unidas Contra la Droga y el Delito(UNODC). La Respuesta a La Minería Ilegal y El Tráfico de Metales y Minerales. Guía Sobre Buenas Prácticas Legislativas. Nac. Unidas Viena 2023, 142. Available online: https://sherloc.unodc.org/cld/uploads/pdf/Illegal_Mining_and_Trafficking_in_Metals_S.pdf (accessed on 5 January 2025).
- Vargas Licona, S.P.; Marrugo Negrete, J.L. Mercury, Methylmercury and Other Heavy Metals in Fish in Colombia: Risk from Ingestion. Acta Biolo Colomb. 2019, 24, 232–242. [Google Scholar] [CrossRef]
- Marrugo, J.; Lans, E.; Benítez, L. Finding of Mercury in Fish From the Ayapel Marsh. Rev. MVZ Cordoba 2007, 12, 878–886. Available online: https://www.redalyc.org/pdf/693/69312103.pdf (accessed on 10 December 2024).
- Gracia, H.L.; Marrugo, N.J.L.; Alvis, R.E.M. Contaminación Por Mercurio En Humanos y Peces En El Municipio de Ayapel, Córdoba, Colombia, 2009. Rev. Fac. Nac. De Salud Pública 2010, 28, 118–124. [Google Scholar] [CrossRef]
- Okviyani, N.; Trimahyuni, E.; Ma’rif, A.A.F. The Analysis of Mercury Concentrations of Water in Gold Mining Environment at Poboya, East Palu Subdistrict, Palu, Central Sulawesi Province. IOP Conf. Ser. Earth Environ. Sci. 2023, 1209, 12023. [Google Scholar] [CrossRef]
- Estupiñán-Aponte, C.A. Ciénaga de Ayapel, Afluente Hídrico En Aprietos. Perspect. En Intel. 2016, 8, 51–62. Available online: https://revistascedoc.com/index.php/pei/article/view/90 (accessed on 10 December 2024).
- Pedraza, M.L.; Espinosa-Ramírez, A.J. The Legacy of Arsenic and Mercury in the Ramsar Ayapel Wetland Complex (Córdoba, Colombia): An Approach to the Magdalena-Cauca Macro-Basin. Acta Biolo Colomb. 2022, 27, 164–176. [Google Scholar] [CrossRef]
- Vicente, A.; Martin, N.; Slee, D.; Birss, M.; Lefebvre, S.; Bauer, B. Minería En Colombia “A Qué Precio”. PBI Colomb. 2011, 18, 48. Available online: https://www.peacebrigades.org/fileadmin/user_files/projects/colombia/files/colomPBIa/111122_boletin_final_web.pdf (accessed on 5 January 2025).
- Restrepo, L.C.; Muñoz, H.; Zúñiga, L.M.; Castillo, B. Minería Ilegal y Sus Implicaciones En El Conflicto Armado En El Departamento de Córdoba y Bajo Cauca Antioqueño. Rev. Nuevo Derecho 2017, 13, 1–28. [Google Scholar] [CrossRef]
- Zabala, A.M. Diagnóstico Ambiental De La Ciénaga De Ayapel a Través De La Variación Temporal De Los Aspectos Morfo Funcionales Del Fitoplancton Y Un Indicador De Calidad Ecológica, Universidad de Antioquia Corporación. 2017. Available online: https://bibliotecadigital.udea.edu.co/handle/10495/9074 (accessed on 5 December 2024).
- Quintarelli, J.M.; Garnier, J.; Rudrigues de Souza, J.P.; de Sousa Tonhá, M.; Barral, U.M.; Roig, H.L.; Martinez, J.-M.; Santini, W.; Puita, O.; Seyler, P.; et al. Mercury in River Samples with Artisanal and Small-Scale Gold Mining Influence: The Case of the Upper Madeira River Basin (Brazil/Bolivia). J. S. Am. Earth Sci. 2024, 145, 105070. [Google Scholar] [CrossRef]
- Hong, F.; He, G.; Wang, G.; Zhang, Z.; Peng, Y. Monitoring of Land Cover and Vegetation Changes in Juhugeng Coal Mining Area Based on Multi-Source Remote Sensing Data. Remote Sens. 2023, 15, 3439. [Google Scholar] [CrossRef]
- Schubert, H.; Rauchecker, M.; Caballero Calvo, A.; Schütt, B. Land use changes and their perception in the Hinterland of Barranquilla, Colombian Caribbean. Sustainability 2019, 11, 6729. [Google Scholar] [CrossRef]
Sensor | Capture Date | Path/Row | Spatial Resolution |
---|---|---|---|
Landsat 5 TM | 30 January 1987 | 009/054 | 30 m |
Landsat 7ETM | 1 December 2002 | 009/054 | 15 m |
Landsat 8 OLI | 9 July 2022 | 009/054 | 15 m |
Sentinel 2B | 22 February 2022 | No Aplica | 10 m |
First Level Units | Second Level Units | Third Level Units | Code |
---|---|---|---|
|
| a. On heterogeneous, medium, and fine sediments | I1a |
c. On mudstones, sandstones, and conglomerates | I1c | ||
| c. On mudstones, sandstones, and conglomerates | I2c | |
| a. On heterogeneous, medium, and fine sediments | I3a | |
c. On mudstones, sandstones, and conglomerates | I3c | ||
|
| a. On heterogeneous, medium, and fine sediments | II1a |
b. Fine sediments | II1b | ||
c. On mudstones, sandstones, and conglomerates | II1c | ||
| b. Fine sediments | II2b | |
c. On mudstones, sandstones, and conglomerates | II2c | ||
| c. On mudstones, sandstones, and conglomerates | II3c | |
|
| a. On heterogeneous, medium, and fine sediments | III1a |
| a. On heterogeneous, medium, and fine sediments | III2a | |
c. On mudstones, sandstones, and conglomerates | III2c | ||
| a. On heterogeneous, medium, and fine sediments | III3a | |
c. On mudstones, sandstones, and conglomerates | III3c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Aristizábal, J.D.; Puerta-Avilés, O.; Jiménez-Caldera, J.; Caballero-Calvo, A. Landscape Transformations (1987–2022): Analyzing Spatial Changes Driven by Mining Activities in Ayapel, Colombia. Land 2025, 14, 157. https://doi.org/10.3390/land14010157
Pérez-Aristizábal JD, Puerta-Avilés O, Jiménez-Caldera J, Caballero-Calvo A. Landscape Transformations (1987–2022): Analyzing Spatial Changes Driven by Mining Activities in Ayapel, Colombia. Land. 2025; 14(1):157. https://doi.org/10.3390/land14010157
Chicago/Turabian StylePérez-Aristizábal, Juan David, Oscar Puerta-Avilés, Juan Jiménez-Caldera, and Andrés Caballero-Calvo. 2025. "Landscape Transformations (1987–2022): Analyzing Spatial Changes Driven by Mining Activities in Ayapel, Colombia" Land 14, no. 1: 157. https://doi.org/10.3390/land14010157
APA StylePérez-Aristizábal, J. D., Puerta-Avilés, O., Jiménez-Caldera, J., & Caballero-Calvo, A. (2025). Landscape Transformations (1987–2022): Analyzing Spatial Changes Driven by Mining Activities in Ayapel, Colombia. Land, 14(1), 157. https://doi.org/10.3390/land14010157