Suitable Site Selection for Rainwater Harvesting and Storage Case Study Using Dohuk Governorate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methods
2.3.1. Data Input and Processing
Slope Map
Stream Order Map
Land Cover and Land Use
Soil Types
2.3.2. SCS-CN Model and Proposed Method
2.3.3. Runoff Depth Estimation
2.3.4. Site Selection Criteria Using WLC
3. Results and Discussion
3.1. Suitable Sites for Water Harvesting Structures
3.2. Sites Proposed for Small and Medium Dams
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, J.P.; Singh, D.; Litoria, P.K. Selection of suitable sites for water harvesting structures in Soankhad watershed, Punjab using remote sensing and geographical information system (RS&GIS) approach—A case study. J. Indian Soc. Remote Sens. 2009, 37, 21–35. [Google Scholar]
- Kumar, T.; Jhariya, D.C. Identification of rainwater harvesting sites using SCS-CN methodology, remote sensing and Geographical Information System techniques. Geocarto Int. 2017, 32, 1367–1388. [Google Scholar] [CrossRef]
- Savary, S.; Rousseau, A.N.; Quilbé, R. Assessing the Effects of Historical Land Cover Changes on Runoff and Low Flows Using Remote Sensing and Hydrological Modeling. J. Hydrol. Eng. 2009, 14, 575–587. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Alazba, A.A. Hydrological Response to Land Cover Changes and Human Activities in Arid Regions Using a Geographic Information System and Remote Sensing. PLOS ONE 2015, 10, e0125805. [Google Scholar] [CrossRef] [PubMed]
- Kaposztasova, D.; Vranayova, Z.; Markovic, G.; Purcz, P. Rainwater Harvesting, Risk Assessment and Utilization in Kosice-city, Slovakia. Procedia Eng. 2014, 89, 1500–1506. [Google Scholar] [CrossRef] [Green Version]
- Naseef, T.A.U.; Thomas, R. Identification of Suitable Sites for Water Harvesting Structures in Kecheri River Basin. Procedia Technol. 2016, 24, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Cook, S.; Geballe, G.T.; Burch Jr, W.R. Rainwater harvesting agriculture: an integrated system for water management on rainfed land in China’s semiarid areas. AMBIO: J. Hum. Environ. 2000, 29, 477–484. [Google Scholar] [CrossRef]
- Tumbo, S.D.; Mbilinyi, B.P.; Mahoo, H.F.; Mkilamwinyi, F.O. Identification of suitable indices for identification of potential sites for rainwater harvesting. Tanzania J. Agric Sci. 2013, 12, 35–46. [Google Scholar]
- Dhakate, R.; Rao, V.G.; Raju, B.A.; Mahesh, J.; Rao, S.M.; Sankaran, S. Integrated approach for identifying suitable sites for rainwater harvesting structures for groundwater augmentation in basaltic terrain. Water Resour. Manag. 2013, 27, 1279–1299. [Google Scholar] [CrossRef]
- Abdulla, F.A.; Amayreh, J.A.; Hossain, A.H. Single Event Watershed Model for Simulating Runoff Hydrograph in Desert Regions. Water. Resour. Manag. 2002, 16, 221–238. [Google Scholar] [CrossRef]
- Mkiramwinyi, F.O.; Mbilinyi, B.P.; Tumbo, S.D.; Munishi, P.T.K.; Mahoo, H.F. Development of a methodology for Identifying Potential Sites for Rainwater Harvesting: A Case of Makanya Catchment in Tanzania; Sokoine University of agriculture, Department of Forest Economics: Morogoro, Tanzania, 2007. [Google Scholar]
- Saraf, A.K.; Jain, S.K. Integrated use of remote sensing and GIS methods for ground water exploration in parts of Lalitpur district, U.P. In Subsurface-Water Hydrology; Springer Nature: Dordrecht, Netherlands, 1996; Volume 16, pp. 251–259. [Google Scholar]
- Kumar, M.G.; Agarwal, A.K.; Bali, R. Delineation of potential sites for water harvesting structures using remote sensing and GIS. J. Water. Soc. Sens. 2008, 36, 323–334. [Google Scholar] [CrossRef]
- Saraf, A.K.; Choudhury, P.R. Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int. J. Sens. 1998, 19, 1825–1841. [Google Scholar] [CrossRef]
- Kadam, A.K.; Kale, S.S.; Pande, N.N.; Pawar, N.J.; Sankhua, R.N. Identifying Potential Rainwater Harvesting Sites of a Semi-arid, Basaltic Region of Western India, Using SCS-CN Method. Water Resour. Manag. 2012, 26, 2537–2554. [Google Scholar] [CrossRef]
- Ramakrishnan, D.; Bandyopadhyay, A.; Kusuma, K.N. SCS-CN and GIS-based approach for identifying potential water harvesting sites in the Kali Watershed, Mahi River Basin, India. J. Earth Syst. Sci. 2009, 118, 355–368. [Google Scholar] [CrossRef]
- Mishra, S.K.; Pandey, R.P.; Jain, M.K.; Singh, V.P. A rain duration and modified AMC-dependent SCS-CN procedure for long duration rainfall-runoff events. Water Resour. Manage. 2008, 22, 861–876. [Google Scholar] [CrossRef]
- Hameed, H. Water Harvesting in Erbil Governorate, Kurdistan Region, Iraq: Detection of Suitable Sites Using Geographic Information System and Remote Sensing. Master’s Thesis, Lund University, Lund, Sweden, 2013. [Google Scholar]
- Ouessar, M.; Bruggeman, A.; Abdelli, F.; Mohtar, R.H.; Gabriels, D.; Cornelis, W.M. Modelling water-harvesting systems in the arid south of Tunisia using SWAT. Hydrol. Earth Sci. 2009, 13, 2003–2021. [Google Scholar] [CrossRef] [Green Version]
- Ammar, A.; Riksen, M.; Ouessar, M.; Ritsema, C. Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions: A review. Int. Soil Water Conserv. 2016, 4, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Chowdary, V.M.; Mal, B.C.; Dabral, P.P. Remote sensing and GIS for identification of suitable sites for soil and water conservation structures. Land Degrad. Dev. 2011, 22, 359–372. [Google Scholar] [CrossRef]
- Oweis, T.; Oberle, A.; Prinz, D. Determination of potential sites and methods for water harvesting in central Syria. Adv. GeoEcol. 1998, 31, 83–88. [Google Scholar]
- Hajani, E.; Rahman, A. Rainwater utilization from roof catchments in arid regions: A case study for Australia. J. Environ. 2014, 111, 35–41. [Google Scholar] [CrossRef]
- Rahman, A.; Hajani, E.; Eslamian, S. Rainwater Harvesting in Arid Regions of Australia. In Handbook of Drought and Water Scarcity: Environmental Impacts and Analysis of Drought and Water Scarcity; Eslamian, S., Eslamian, F.A., Eds.; Taylor and Francis: London, UK; New York, NY, USA, 2016; pp. 489–500. [Google Scholar]
- Adham, A.; Sayl, K.N.; Abed, R.; Abdeladhim, M.A.; Wesseling, J.G.; Riksen, M.; Fleskens, L.; Karim, U.; Ritsema, C.J. A GIS-based approach for identifying potential sites for harvesting rainwater in the Western Desert of Iraq. Int. Soil Water Conserv. 2018, 6, 297–304. [Google Scholar] [CrossRef]
- Chavan, P.B. Study of Water Harvesting Potential of Morna River Catchment using Remote Sensing and GIS. Ph.D. Thesis, Maharashtra University, Jalgaon, India, 2013. [Google Scholar]
- Shanableh, A.; Al-Ruzouq, R.; Yilmaz, A.G.; Siddique, M.; Merabtene, T.; Alam Imteaz, M.; Imteaz, M. Effects of Land Cover Change on Urban Floods and Rainwater Harvesting: A Case Study in Sharjah, UAE. Water 2018, 10, 631. [Google Scholar] [CrossRef]
- Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Sadik, M.; Aqeel, C. Spatial Planning for a Developed Vocational Training System in the Kurdistan Region with Special Focus on Duhok Governorate. Qalaai Zanist Sci. J. 2016, 1, 241–282. [Google Scholar] [CrossRef]
- Tera’at El Mansuriyah St, E. Determining potential sites for runoff water harvesting using remote sensing and Geographic Information Systems-based modeling in Sinai. Am. J. Environ. Sci. 2012, 8, 42–55. [Google Scholar]
- De Winnaar, G.; Jewitt, G.; Horan, M. A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa. Phys. Chem. Earth, Parts A/B/C 2007, 32, 1058–1067. [Google Scholar] [CrossRef]
- Critchley, W.; Siegert, K.; Chapman, C. Water harvesting, a manual guide for the design and construction of water harvesting schemes for plant production, FAO, Rome. 1991. Available online: https://www.samsamwater.com/library/Water_harvesting_-_Critchley.pdf (accessed on 20 February 2019).
- Kahinda, J.M.; Lillie, E.S.B.; Taigbenu, A.E.; Taute, M.; Boroto, R.J. Developing suitability maps for rainwater harvesting in South Africa. Phys. Chem. Earth Parts A/B/C 2008, 33, 788–799. [Google Scholar] [CrossRef]
- Glendenning, C.; Van Ogtrop, F.; Mishra, A.; Vervoort, R.; Van Ogtrop, F. Balancing watershed and local scale impacts of rain water harvesting in India—A review. Agric. Water Manag. 2012, 107, 1–13. [Google Scholar] [CrossRef]
- Adham, A.; Riksen, M.; Ouessar, M.; Abed, R.; Ritsema, C. Development of methodology for existing rainwater harvesting assessment in (semi-)arid regions. In Water and Land Security in Dry Lands; Springer International Publishing: Cham, Switzerland, 2017; pp. 171–184. [Google Scholar]
- DeFries, R.; Eshleman, K.N. Land-use change and hydrologic processes: a major focus for the future. Hydrol. Process. 2004, 18, 2183–2186. [Google Scholar] [CrossRef]
- Payraudeau, S.; Tournoud, M.G.; Cernesson, F. Sensitivity of effective rainfall amount to land use description using GIS tool. Case of a small Mediterranean catchment. Phys. Chem. Earth Parts A/B/C 2003, 28, 255–262. [Google Scholar] [CrossRef]
- Day, C.A. Using remote sensing imagery to determine the impact of land cover changes on potential runoff for the Mid-Cibolo Creek watershed, Texas. Geocarto Int. 2010, 25, 543–554. [Google Scholar] [CrossRef]
- Maidment, D.R. Handbook of Hydrology; McGraw-Hill Education: New York, NY, USA, 1993. [Google Scholar]
- Tramblay, Y.; Bouvier, C.; Martin, C.; Didon-Lescot, J.-F.; Todorovik, D.; Domergue, J.-M. Assessment of initial soil moisture conditions for event-based rainfall–runoff modelling. J. Hydrol. 2010, 387, 176–187. [Google Scholar] [CrossRef]
- Weerasinghe, H.; Schneider, U.A.; Low, A. Water harvest- and storage- location assessment model using GIS and remote sensing. Hydrol. Earth Sci. Discuss. 2011, 8, 3353–3381. [Google Scholar] [CrossRef] [Green Version]
- Soulis, K.X.; Valiantzas, J.D.; Dercas, N.; Londra, P.A. Analysis of the runoff generation mechanism for the investigation of the SCS-CN method applicability to a partial area experimental watershed. Hydrol. Earth Sci. Discuss. 2009, 6, 373–400. [Google Scholar] [CrossRef]
- Al-Hasan, A.A.S.; Mattar, Y.E. Mean runoff coefficient estimation for ungauged streams in the Kingdom of Saudi Arabia. Arabian J. Geosci. 2014, 7, 2019–2029. [Google Scholar] [CrossRef]
- Shadeed, S.; Almasri, M. Application of GIS-based SCS-CN method in West Bank catchments, Palestine. Water Sci. Eng. 2010, 31, 1–13. [Google Scholar]
- Napoli, M.; Cecchi, S.; Orlandini, S.; Zanchi, C.A. Determining potential rainwater harvesting sites using a continuous runoff potential accounting procedure and GIS techniques in central Italy. Agric. Water Manag. 2014, 141, 55–65. [Google Scholar] [CrossRef]
- Huang, M.; Gallichand, J.; Dong, C.; Wang, Z.; Shao, M. Use of soil moisture data and curve number method for estimating runoff in the Loess Plateau of China. Hydrol. Processes: Int. J. 2007, 21, 1471–1481. [Google Scholar] [CrossRef]
- Melesse, A.M.; Shih, S.F. Spatially distributed storm runoff depth estimation using Landsat images and GIS. Comput. Electron. Agric. 2002, 37, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, L.D. Methods for Generating Land Suitability Maps: A Comparative Evaluation. J. Am. Inst. Planners 1977, 43, 386–400. [Google Scholar] [CrossRef]
- Malczewski, J. On the Use of Weighted Linear Combination Method in GIS: Common and Best Practice Approaches. Trans. GIS 2000, 4, 5–22. [Google Scholar] [CrossRef]
- Articte, P.N. Raster Procedures for M ulti-Criteria/Multi-Objective Decisions. Photogramm. Eng. Remote Sens. 1995, 61, 539–547. [Google Scholar]
- Al-Hanbali, A.; Alsaaideh, B.; Kondoh, A. Using GIS-Based Weighted Linear Combination Analysis and Remote Sensing Techniques to Select Optimum Solid Waste Disposal Sites within Mafraq City, Jordan. J. Geogr. Inf. 2011, 3, 267–278. [Google Scholar] [CrossRef]
Land Use Classes | Area km2 | Area % |
---|---|---|
Water body | 31.81 | 0.77 |
Urban area | 89.31 | 2.15 |
Farm Land | 1432 | 34.49 |
Forest area | 678.2 | 16.33 |
Bare soil | 1920.11 | 46.25 |
Total | 4151.43 | 100 |
Soil Group | Runoff Description | Soil Texture |
---|---|---|
A | Low runoff potential because of high infiltration rate | Sand, Loamy sand and sandy loam |
B | Moderately infiltration rates leading to a moderately runoff potential | Silty loam and loam |
C | High/moderate runoff potential because of slow infiltration rates | Sand clay loam |
D | High runoff potential with very low infiltration | Clay loam, silty clay loam, sandy clay, silty clay, and clay |
Dams | Elevation | Dam Height | Storage Capacity (m3) | Dams | Elevation | Dam Height | Storage Capacity (m3) |
---|---|---|---|---|---|---|---|
Dam 1 | 630 | 0 | 0 | Dam 3 | 680 | 0 | 0 |
635 | 5 | 24,643 | 685 | 5 | 48,406 | ||
640 | 10 | 624,353 | 690 | 10 | 201,766 | ||
645 | 15 | 1,438,076 | 695 | 15 | 4,536,311 | ||
650 | 20 | 2,813,110 | 700 | 20 | 1,307,402 | ||
705 | 25 | 2,617,465 | |||||
Dam 2 | 715 | 0 | 0 | Dam 4 | 550 | 0 | 0 |
720 | 5 | 3,229 | 555 | 5 | 49,946 | ||
725 | 10 | 16,254 | 560 | 10 | 221,751 | ||
730 | 15 | 74,611 | 565 | 15 | 650,251 | ||
735 | 20 | 161,776 | 570 | 20 | 1,488,713 | ||
740 | 25 | 308,887 | 575 | 25 | 2,832,540 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, G.R.F.; Rasul, A.; Ali Hamid, A.; Ali, Z.F.; Dewana, A.A. Suitable Site Selection for Rainwater Harvesting and Storage Case Study Using Dohuk Governorate. Water 2019, 11, 864. https://doi.org/10.3390/w11040864
Ibrahim GRF, Rasul A, Ali Hamid A, Ali ZF, Dewana AA. Suitable Site Selection for Rainwater Harvesting and Storage Case Study Using Dohuk Governorate. Water. 2019; 11(4):864. https://doi.org/10.3390/w11040864
Chicago/Turabian StyleIbrahim, Gaylan Rasul Faqe, Azad Rasul, Arieann Ali Hamid, Zana Fattah Ali, and Amanj Ahmad Dewana. 2019. "Suitable Site Selection for Rainwater Harvesting and Storage Case Study Using Dohuk Governorate" Water 11, no. 4: 864. https://doi.org/10.3390/w11040864
APA StyleIbrahim, G. R. F., Rasul, A., Ali Hamid, A., Ali, Z. F., & Dewana, A. A. (2019). Suitable Site Selection for Rainwater Harvesting and Storage Case Study Using Dohuk Governorate. Water, 11(4), 864. https://doi.org/10.3390/w11040864