Delivering More from Land: A Review of Integrated Land Use Modelling for Sustainable Food Provision
Abstract
:1. Introduction
2. Conceptual Framework
- Land cover being the physical and biological features already present and the layers of soils and biomass, as well as natural vegetation, crops, and human structures [28].
- Land use types interact heavily with land cover and land function. They represent the human activities on land such as agriculture, forestry, infrastructure development, or conservation. Human decisions regarding land use have significant implications for land cover change and can alter the function of the land [22]. Agricultural practices may alter land cover through deforestation while affecting land function by introducing changes in soil composition [30].
- Provisioning being the economic activities linked to goods provided by the system, such as crops or timber.
- Regulating services are indirect benefits provided by the environment.
- Cultural services are the immaterial experiences of people in the natural environment [33].
3. Methodology
- “land use model” OR “land use modelling” OR “land use modeling”.
- “agriculture” OR “agricultural” OR “food” OR “environment” OR “environmental” OR “climate change” OR “sustainability” OR “economic” OR “social” OR “policy”.
- Literature reviews on land use modelling, as specific case studies were needed where dimensions were identifiable.
- Land use modelling that deals with urban development, transport, energy, or water only, as these models are not involved in the production of food or materials.
- Research not in the English language.
4. Results
4.1. Location
4.2. Space and Time
4.3. Application
4.4. Methodological Approach
4.5. Data
4.6. Dimensions of Land Use
4.6.1. Biophysical Dimension
4.6.2. Economic Dimensions
4.6.3. Human Dimensions
4.7. Policy Choices
4.8. Ecosystem Services
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Christiaensen, L.; Rutledge, Z.; Taylor, J.E. The future of work in agri-food. Food Policy 2021, 99, 101963. [Google Scholar] [CrossRef]
- Wesseler, J. The EU’s farm-to-fork strategy: An assessment from the perspective of agricultural economics. Appl. Econ. Perspect. Policy 2022, 44, 1826–1843. [Google Scholar] [CrossRef]
- Allan, R.P.; Arias, P.A.; Berger, S.; Canadell, J.G.; Cassou, C.; Chen, D.; Cherchi, A.; Connors, S.L.; Coppola, E.; Cruz, F.A.; et al. Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 3–32. [Google Scholar]
- Ovando, P.; Brouwer, R. A review of economic approaches modeling the complex interactions between forest management and watershed services. For. Policy Econ. 2019, 100, 164–176. [Google Scholar] [CrossRef]
- Lacher, I.L.; Ahmadisharaf, E.; Fergus, C.; Akre, T.; Mcshea, W.J.; Benham, B.L.; Kline, K.S. Scale-dependent impacts of urban and agricultural land use on nutrients, sediment, and runoff. Sci. Total Environ. 2019, 652, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.J.; Mottet, A.; Opio, C.I.; Falcucci, A.; Teillard, F. Environmental impacts of beef production: Review of challenges and perspectives for durability. Meat Sci. 2015, 109, 2–12. [Google Scholar] [CrossRef]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef] [PubMed]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision agriculture techniques and practices: From considerations to applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef]
- Kerr, R.B.; Madsen, S.; Stüber, M.; Liebert, J.; Enloe, S.; Borghino, N.; Parros, P.; Mutyambai, D.M.; Prudhon, M.; Wezel, A. Can agroecology improve food security and nutrition? A review. Glob. Food Secur. 2021, 29, 100540. [Google Scholar] [CrossRef]
- Aguilera, E.; Diaz-Gaona, C.; Garcia-Laureano, R.; Reyes-Palomo, C.; Guzmán, G.I.; Ortolani, L.; Sánchez-Rodríguez, M.; Rodríguez-Estévez, V. Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review. Agric. Syst. 2020, 181, 102809. [Google Scholar] [CrossRef]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef]
- Lotze-Campen, H. The role of modelling tools in Integrated Sustainability Assessment (ISA). Int. J. Innov. Sustain. Dev. 2008, 3, 70–92. [Google Scholar] [CrossRef]
- Parson, E.A.; Fisher-Vanden, K. Integrated assessment models of global climate change. Annu. Rev. Energy Environ. 1997, 22, 589–628. [Google Scholar] [CrossRef]
- Castro, L.M.; Härtl, F.; Ochoa, S.; Calvas, B.; Izquierdo, L.; Knoke, T. Integrated bio-economic models as tools to support land-use decision making: A review of potential and limitations. J. Bioecon. 2018, 20, 183–211. [Google Scholar] [CrossRef]
- Wang, G.; Han, Q.; de Vries, B. The multi-objective spatial optimization of urban land use based on low-carbon city planning. Ecol. Indic. 2021, 125, 107540. [Google Scholar] [CrossRef]
- Weidner, T.; Galán-Martín, Á.; Ryberg, M.W.; Guillén-Gosálbez, G. Energy systems modeling and optimization for absolute environmental sustainability: Current landscape and opportunities. Comput. Chem. Eng. 2022, 164, 107883. [Google Scholar] [CrossRef]
- Akpoti, K.; Kabo-bah, A.T.; Zwart, S.J. Review—Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis. Agric. Syst. 2019, 173, 172–208. [Google Scholar] [CrossRef]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Merganičová, K.; Merganič, J.; Lehtonen, A.; Vacchiano, G.; Sever, M.Z.O.; Augustynczik, A.L.; Grote, R.; Kyselová, I.; Mäkelä, A.; Yousefpour, R.; et al. Forest carbon allocation modelling under climate change. Tree Physiol. 2019, 39, 1937–1960. [Google Scholar] [CrossRef] [PubMed]
- Carle, M.A.; D’Amours, S.; Azouzi, R.; Rönnqvist, M. A strategic forest management model for optimizing timber yield and carbon sequestration. For. Sci. 2021, 67, 205–218. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, L.K. The process-based forest growth model 3-PG for use in forest management: A review. Ecol. Model. 2019, 397, 55–73. [Google Scholar] [CrossRef]
- Agarwal, C. A Review and Assessment of Land-Use Change Models: Dynamics of Space, Time, and Human Choice; U.S. Department of Agriculture, Forest Service, Northeastern Research Station: Amherst, MA, USA, 2002. [Google Scholar]
- Brown, D.G.; Verburg, P.H.; Pontius, R.G., Jr.; Lange, M.D. Opportunities to improve impact, integration, and evaluation of land change models. Curr. Opin. Environ. Sustain. 2013, 5, 452–457. [Google Scholar] [CrossRef]
- Plantinga, A.J. Integrating economic land-use and biophysical models. Annu. Rev. Resour. Econ. 2015, 7, 233–249. [Google Scholar] [CrossRef]
- Van Vliet, J.; Magliocca, N.R.; Büchner, B.; Cook, E.; Rey Benayas, J.M.; Ellis, E.C.; Heinimann, A.; Keys, E.; Lee, T.M.; Liu, J.; et al. Meta-studies in land use science: Current coverage and prospects. Ambio 2016, 45, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Verburg, P.H.; Alexander, P.; Evans, T.; Magliocca, N.R.; Malek, Z.; Rounsevell, M.D.; van Vliet, J. Beyond land cover change: Towards a new generation of land use models. Curr. Opin. Environ. Sustain. 2019, 38, 77–85. [Google Scholar] [CrossRef]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future land-use changes and its impacts on terrestrial ecosystem services: A review. Sci. Total Environ. 2021, 781, 146716. [Google Scholar] [CrossRef] [PubMed]
- Pongratz, J.; Dolman, H.; Don, A.; Erb, K.H.; Fuchs, R.; Herold, M.; Jones, C.; Kuemmerle, T.; Luyssaert, S.; Meyfroidt, P.; et al. Models meet data: Challenges and opportunities in implementing land management in Earth system models. Glob. Change Biol. 2018, 24, 1470–1487. [Google Scholar] [CrossRef]
- Verburg, P.H.; Van De Steeg, J.; Veldkamp, A.; Willemen, L. From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manag. 2009, 90, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- DeFries, R.S.; Foley, J.A.; Asner, G.P. Land-use choices: Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Bennett, E.M.; Cramer, W.; Begossi, A.; Cundill, G.; Díaz, S.; Egoh, B.N.; Geijzendorffer, I.R.; Krug, C.B.; Lavorel, S.; Lazos, E.; et al. Linking biodiversity, ecosystem services, and human well-being: Three challenges for designing research for sustainability. Curr. Opin. Environ. Sustain. 2015, 14, 76–85. [Google Scholar] [CrossRef]
- Clemente, P.; Calvache, M.; Antunes, P.; Santos, R.; Cerdeira, J.O.; Martins, M.J. Combining social media photographs and species distribution models to map cultural ecosystem services: The case of a Natural Park in Portugal. Ecol. Indic. 2019, 96, 59–68. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Gereffi, G.; Humphrey, J.; Sturgeon, T. The governance of global value chains. Rev. Int. Political Econ. 2005, 12, 78–104. [Google Scholar] [CrossRef]
- Edwards-Jones, G. Modelling farmer decision-making: Concepts, progress and challenges. Anim. Sci. 2006, 82, 783–790. [Google Scholar] [CrossRef]
- Angus, A.; Burgess, P.; Morris, J.; Lingard, J. Agriculture and land use: Demand for and supply of agricultural commodities, characteristics of the farming and food industries, and implications for land use in the UK. Land Use Policy 2009, 26, S230–S242. [Google Scholar] [CrossRef]
- Lusk, J.L.; McCluskey, J. Understanding the impacts of food consumer choice and food policy outcomes. Appl. Econ. Perspect. Policy 2018, 40, 5–21. [Google Scholar] [CrossRef]
- van Meijl, H.; Van Rheenen, T.; Tabeau, A.; Eickhout, B. The impact of different policy environments on agricultural land use in Europe. Agric. Ecosyst. Environ. 2006, 114, 21–38. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Follmann, A.; Willkomm, M.; Dannenberg, P. As the city grows, what do farmers do? A systematic review of urban and peri-urban agriculture under rapid urban growth across the Global South. Landsc. Urban Plan. 2021, 215, 104186. [Google Scholar] [CrossRef]
- van Delden, H.; van Vliet, J.; Rutledge, D.T.; Kirkby, M.J. Comparison of scale and scaling issues in integrated land-use models for policy support. Agric. Ecosyst. Environ. 2011, 142, 18–28. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Arksey, H.; O’malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Levac, D.; Colquhoun, H.; O’brien, K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Fujimori, S.; Masui, T.; Matsuoka, Y. AIM/CGE [basic] manual. In Center for Social and Environmental Systems Research; NIES: Tsukuba, Japan, 2012. [Google Scholar]
- Hasegawa, T.; Fujimori, S.; Ito, A.; Takahashi, K.; Masui, T. Global land-use allocation model linked to an integrated assessment model. Sci. Total Environ. 2017, 580, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Doelman, J.C.; Stehfest, E.; Tabeau, A.; van Meijl, H.; Lassaletta, L.; Gernaat, D.E.; Hermans, K.; Harmsen, M.; Daioglou, V.; Biemans, H.; et al. Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Glob. Environ. Change 2018, 48, 119–135. [Google Scholar] [CrossRef]
- Dietrich, J.P.; Schmitz, C.; Lotze-Campen, H.; Popp, A.; Müller, C. Forecasting technological change in agriculture—An endogenous implementation in a global land use model. Technol. Forecast. Soc. Change 2014, 81, 236–249. [Google Scholar] [CrossRef]
- Van Asselen, S.; Verburg, P.H. Land cover change or land-use intensification: Simulating land system change with a global-scale land change model. Glob. Change Biol. 2013, 19, 3648–3667. [Google Scholar] [CrossRef] [PubMed]
- Souty, F.; Dorin, B.; Brunelle, T.; Dumas, P.; Ciais, P. Modelling economic and biophysical drivers of agricultural land-use change. Calibration and evaluation of the Nexus Land-Use model over 1961–2006. Geosci. Model Dev. Discuss. 2013, 6, 6975–7046. [Google Scholar]
- Snyder, A.C.; Link, R.P.; Calvin, K.V. Evaluation of integrated assessment model hindcast experiments: A case study of the GCAM 3.0 land use module. Geosci. Model Dev. 2017, 10, 4307–4319. [Google Scholar] [CrossRef]
- Zhang, C.; Di, L.; Yang, Z.; Lin, L.; Hao, P. AgKit4EE: A toolkit for agricultural land use modeling of the conterminous United States based on Google Earth Engine. Environ. Model. Softw. 2020, 129, 104694. [Google Scholar] [CrossRef]
- Zia, A.; Bomblies, A.; Schroth, A.W.; Koliba, C.; Isles, P.D.; Tsai, Y.; Mohammed, I.N.; Bucini, G.; Clemins, P.J.; Turnbull, S.; et al. Coupled impacts of climate and land use change across a river–lake continuum: Insights from an integrated assessment model of Lake Champlain’s Missisquoi Basin, 2000–2040. Environ. Res. Lett. 2016, 11, 114026. [Google Scholar] [CrossRef]
- Castillo, C.P.; Jacobs-Crisioni, C.; Diogo, V.; Lavalle, C. Modelling agricultural land abandonment in a fine spatial resolution multi-level land-use model: An application for the EU. Environ. Model. Softw. 2021, 136, 104946. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, R.; Van Delden, H.; Escobar, F. Participatory land use modelling, pathways to an integrated approach. Environ. Model. Softw. 2014, 52, 149–165. [Google Scholar] [CrossRef]
- Zessner, M.; Schönhart, M.; Parajka, J.; Trautvetter, H.; Mitter, H.; Kirchner, M.; Hepp, G.; Blaschke, A.P.; Strenn, B.; Schmid, E. A novel integrated modelling framework to assess the impacts of climate and socio-economic drivers on land use and water quality. Sci. Total Environ. 2017, 579, 1137–1151. [Google Scholar] [CrossRef]
- Schönhart, M.; Schauppenlehner, T.; Kuttner, M.; Kirchner, M.; Schmid, E. Climate change impacts on farm production, landscape appearance, and the environment: Policy scenario results from an integrated field-farm-landscape model in Austria. Agric. Syst. 2016, 145, 39–50. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Castillo, C.P.; Jacobs-Crisioni, C.; Lavalle, C. Economic evaluation of agricultural land to assess land use changes. Land Use Policy 2016, 56, 125–146. [Google Scholar] [CrossRef]
- Brändle, J.M.; Langendijk, G.; Peter, S.; Brunner, S.H.; Huber, R. Sensitivity analysis of a land-use change model with and without agents to assess land abandonment and long-term re-forestation in a swiss mountain region. Land 2015, 4, 475–512. [Google Scholar] [CrossRef]
- Navarro Cerrillo, R.M.; Palacios Rodríguez, G.; Clavero Rumbao, I.; Lara, M.Á.; Bonet, F.J.; Mesas-Carrascosa, F.J. Modeling major rural land-use changes using the GIS-based cellular automata metronamica model: The case of Andalusia (Southern Spain). ISPRS Int. J. Geo-Inf. 2020, 9, 458. [Google Scholar] [CrossRef]
- Kalt, G.; Mayer, A.; Haberl, H.; Kaufmann, L.; Lauk, C.; Matej, S.; Röös, E.; Theurl, M.C.; Erb, K.-H. Exploring the option space for land system futures at regional to global scales: The diagnostic agro-food, land use and greenhouse gas emission model BioBaM-GHG 2.0. Ecol. Model. 2021, 459, 109729. [Google Scholar] [CrossRef]
- Egger, C.; Plutzar, C.; Mayer, A.; Dullinger, I.; Dullinger, S.; Essl, F.; Gattringer, A.; Bohner, A.; Haberl, H.; Gaube, V. Using the SECLAND model to project future land-use until 2050 under climate and socioeconomic change in the LTSER region Eisenwurzen (Austria). Ecol. Econ. 2022, 201, 107559. [Google Scholar] [CrossRef]
- Celio, E.; Koellner, T.; Grêt-Regamey, A. Modeling land use decisions with Bayesian networks: Spatially explicit analysis of driving forces on land use change. Environ. Model. Softw. 2014, 52, 222–233. [Google Scholar] [CrossRef]
- Verhagen, P.; de Kleijn, M.; Joyce, J. Different models, different outcomes? A comparison of approaches to land use modeling in the dutch limes. Heritage 2021, 4, 2081–2104. [Google Scholar] [CrossRef]
- Lungarska, A.; Chakir, R. Climate-induced land use change in France: Impacts of agricultural adaptation and climate change mitigation. Ecol. Econ. 2018, 147, 134–154. [Google Scholar] [CrossRef]
- Schulze, J.; Gawel, E.; Nolzen, H.; Weise, H.; Frank, K. The expansion of short rotation forestry: Characterization of determinants with an agent-based land use model. GCB Bioenergy 2017, 9, 1042–1056. [Google Scholar] [CrossRef]
- Göpel, J.; Hissa, L.D.B.V.; Schüngel, J.; Schaldach, R. Sensitivity assessment and evaluation of a spatially explicit land-use model for Southern Amazonia. Ecol. Inform. 2018, 48, 69–79. [Google Scholar] [CrossRef]
- Schindler, J. About the uncertainties in model design and their effects: An illustration with a land-use model. J. Artif. Soc. Soc. Simul. 2013, 16, 6. [Google Scholar] [CrossRef]
- Mu, J.E.; Sleeter, B.M.; Abatzoglou, J.T.; Antle, J.M. Climate impacts on agricultural land use in the USA: The role of socio-economic scenarios. Clim. Change 2017, 144, 329–345. [Google Scholar] [CrossRef]
- Lencucha, R.; Pal, N.E.; Appau, A.; Thow, A.M.; Drope, J. Government policy and agricultural production: A scoping review to inform research and policy on healthy agricultural commodities. Glob. Health 2020, 16, 11. [Google Scholar] [CrossRef]
- Anselmetto, N.; Sibona, E.M.; Meloni, F.; Gagliardi, L.; Bocca, M.; Garbarino, M. Land use modeling predicts divergent patterns of change between upper and lower elevations in a subalpine watershed of the Alps. Ecosystems 2022, 25, 1295–1310. [Google Scholar] [CrossRef]
- Pinz, A.; Roudyani, N.; Thaler, J. Public-private partnerships as instruments to achieve sustainability-related objectives: The state of the art and a research agenda. In Sustainable Public Management; Taylor & Francis Group: Abingdon, UK, 2021; pp. 3–24. [Google Scholar]
- Diogo, V.; Van der Hilst, F.; Van Eijck, J.; Verstegen, J.A.; Hilbert, J.; Carballo, S.; Volante, J.; Faaij, A. Combining empirical and theory-based land-use modelling approaches to assess economic potential of biofuel production avoiding iLUC: Argentina as a case study. Renew. Sustain. Energy Rev. 2014, 34, 208–224. [Google Scholar] [CrossRef]
- West, T.O.; Le Page, Y.; Huang, M.; Wolf, J.; Thomson, A.M. Downscaling global land cover projections from an integrated assessment model for use in regional analyses: Results and evaluation for the US from 2005 to 2095. Environ. Res. Lett. 2014, 9, 064004. [Google Scholar] [CrossRef]
- Hu, T.; Liu, J.; Zheng, G.; Zhang, D.; Huang, K. Evaluation of historical and future wetland degradation using remote sensing imagery and land use modeling. Land Degrad. Dev. 2020, 31, 65–80. [Google Scholar] [CrossRef]
- Humpenöder, F.; Popp, A.; Stevanovic, M.; Müller, C.; Bodirsky, B.L.; Bonsch, M.; Dietrich, J.P.; Lotze-Campen, H.; Weindl, I.; Biewald, A.; et al. Land-use and carbon cycle responses to moderate climate change: Implications for land-based mitigation? Environ. Sci. Technol. 2015, 49, 6731–6739. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Chen, K.; Wang, P.; Guo, B.; Dong, Y.; Yang, J. Trade-offs in land-use competition and sustainable land development in the North China Plain. Technol. Forecast. Soc. Change 2019, 141, 36–46. [Google Scholar] [CrossRef]
- Santé, I.; García, A.M.; Miranda, D.; Crecente, R. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landsc. Urban Plan. 2010, 96, 108–122. [Google Scholar] [CrossRef]
- Brown, C.; Alexander, P.; Holzhauer, S.; Rounsevell, M.D. Behavioral models of climate change adaptation and mitigation in land-based sectors. Wiley Interdiscip. Rev. Clim. Change 2017, 8, e448. [Google Scholar] [CrossRef]
- Waddell, P.; Borning, A.; Noth, M.; Freier, N.; Becke, M.; Ulfarsson, G. Microsimulation of urban development and location choices: Design and implementation of UrbanSim. Netw. Spat. Econ. 2003, 3, 43–67. [Google Scholar] [CrossRef]
- Salvini, P.; Miller, E.J. ILUTE: An operational prototype of a comprehensive microsimulation model of urban systems. Netw. Spat. Econ. 2005, 5, 217–234. [Google Scholar] [CrossRef]
- Hoogendoorn, S.P.; Bovy, P.H. State-of-the-art of vehicular traffic flow modelling. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2001, 215, 283–303. [Google Scholar] [CrossRef]
- Rutter, C.M.; Zaslavsky, A.M.; Feuer, E.J. Dynamic microsimulation models for health outcomes: A review. Med. Decis. Mak. 2011, 31, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Robinson, D.T. Comparison of statistical approaches for modelling land-use change. Land 2018, 7, 144. [Google Scholar] [CrossRef]
- Bell, A.R.; Robinson, D.T.; Malik, A.; Dewal, S. Modular ABM development for improved dissemination and training. Environ. Model. Softw. 2015, 73, 189–200. [Google Scholar] [CrossRef]
- Rounsevell, M.D.; Robinson, D.T.; Murray-Rust, D. From actors to agents in socio-ecological systems models. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Gounaridis, D.; Chorianopoulos, I.; Symeonakis, E.; Koukoulas, S. A Random Forest-Cellular Automata modelling approach to explore future land use/cover change in Attica (Greece), under different socio-economic realities and scales. Sci. Total Environ. 2019, 646, 320–335. [Google Scholar] [CrossRef] [PubMed]
- Heumann, B.W.; Walsh, S.J.; Verdery, A.M.; McDaniel, P.M.; Rindfuss, R.R. Land suitability modeling using a geographic socio-environmental niche-based approach: A case study from northeastern Thailand. Ann. Assoc. Am. Geogr. 2013, 103, 764–784. [Google Scholar] [CrossRef]
- Dullinger, I.; Gattringer, A.; Wessely, J.; Moser, D.; Plutzar, C.; Willner, W.; Egger, C.; Gaube, V.; Haberl, H.; Mayer, A.; et al. A socio-ecological model for predicting impacts of land-use and climate change on regional plant diversity in the Austrian Alps. Glob. Change Biol. 2020, 26, 2336–2352. [Google Scholar] [CrossRef]
- Cracknell, M.J.; Reading, A.M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Pal, S.; Liou, Y.A.; Rahman, A. Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Bateman, I.; Agarwala, M.; Binner, A.; Coombes, E.; Day, B.; Ferrini, S.; Fezzi, C.; Hutchins, M.; Lovett, A.; Posen, P. Spatially explicit integrated modeling and economic valuation of climate driven land use change and its indirect effects. J. Environ. Manag. 2016, 181, 172–184. [Google Scholar] [CrossRef]
- Crenna, E.; Marques, A.; La Notte, A.; Sala, S. Biodiversity assessment of value chains: State of the art and emerging challenges. Environ. Sci. Technol. 2020, 54, 9715–9728. [Google Scholar] [CrossRef]
- Haines-Young, R. Land use and biodiversity relationships. Land Use Policy 2009, 26, S178–S186. [Google Scholar] [CrossRef]
- Martin, G.; Barth, K.; Benoit, M.; Brock, C.; Destruel, M.; Dumont, B.; Grillot, M.; Hübner, S.; Magne, M.-A.; Moerman, M.; et al. Potential of multi-species livestock farming to improve the sustainability of livestock farms: A review. Agric. Syst. 2020, 181, 102821. [Google Scholar] [CrossRef]
- Xu, X.; Gao, Q.; Peng, C.; Cui, X.; Liu, Y.; Jiang, L. Integrating global socio-economic influences into a regional land use change model for China. Front. Earth Sci. 2014, 8, 81–92. [Google Scholar] [CrossRef]
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 2017, 42, 331–345. [Google Scholar] [CrossRef]
- Bureau, J.C.; Swinnen, J. EU policies and global food security. Glob. Food Secur. 2018, 16, 106–115. [Google Scholar] [CrossRef]
- De Pinto, A.; Li, M.; Haruna, A.; Hyman, G.G.; Martinez, M.A.L.; Creamer, B.; Kwon, H.-Y.; Garcia, J.B.V.; Tapasco, J.; Martinez, J.D. Low emission development strategies in agriculture. An agriculture, forestry, and other land uses (AFOLU) perspective. World Dev. 2016, 87, 180–203. [Google Scholar] [CrossRef]
- Daigneault, A.; Greenhalgh, S.; Samarasinghe, O. Economic impacts of multiple agro-environmental policies on New Zealand land use. Environ. Resour. Econ. 2018, 69, 763–785. [Google Scholar] [CrossRef]
- Dade, M.C.; Mitchell, M.G.; McAlpine, C.A.; Rhodes, J.R. Assessing ecosystem service trade-offs and synergies: The need for a more mechanistic approach. Ambio 2019, 48, 1116–1128. [Google Scholar] [CrossRef] [PubMed]
- Murray-Rust, D.; Brown, C.; van Vliet, J.; Alam, S.J.; Robinson, D.T.; Verburg, P.H.; Rounsevell, M. Combining agent functional types, capitals and services to model land use dynamics. Environ. Model. Softw. 2014, 59, 187–201. [Google Scholar] [CrossRef]
- van der Kwast, J.; Yalew, S.; Dickens, C.; Quayle, L.; Reinhardt, J.; Liersch, S.; Mul, M.; Hamdard, M.; Douven, W. A framework for coupling land use and hydrological modelling for management of ecosystem services. Int. J. Environ. Monit. Anal. 2013, 1, 230–236. [Google Scholar]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [PubMed]
- Polasky, S.; Nelson, E.; Camm, J.; Csuti, B.; Fackler, P.; Lonsdorf, E.; Montgomery, C.; White, D.; Arthur, J.; Garber-Yonts, B.; et al. Where to put things? Spatial land management to sustain biodiversity and economic returns. Biol. Conserv. 2008, 141, 1505–1524. [Google Scholar] [CrossRef]
- Lu, H.; Liu, G. Distributed land use modeling and sensitivity analysis for REDD+. Land Use Policy 2013, 33, 54–60. [Google Scholar] [CrossRef]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S.; et al. Bringing Ecosystem Services into Economic Decision-Making: Land Use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Pilehforooshha, P.; Karimi, M.; Taleai, M. A GIS-based agricultural land-use allocation model coupling increase and decrease in land demand. Agric. Syst. 2014, 130, 116–125. [Google Scholar] [CrossRef]
- Wehner, S.; Herrmann, S.; Berkhoff, K. CLUENaban—A land use change model combining social factors with physical landscape factors for a mountainous area in Southwest China. Ecol. Indic. 2014, 36, 757–765. [Google Scholar] [CrossRef]
- Kyle, P.; Thomson, A.; Wise, M.; Zhang, X. Assessment of the importance of spatial scale in long-term land use modeling of the Midwestern United States. Environ. Model. Softw. 2015, 72, 261–271. [Google Scholar] [CrossRef]
- Koomen, E.; Diogo, V.; Dekkers, J.; Rietveld, P. A utility-based suitability framework for integrated local-scale land-use modelling. Comput. Environ. Urban Syst. 2014, 50, 1–14. [Google Scholar] [CrossRef]
- Kan, I.; Kimhi, A.; Kaminski, J. Climate-Change Impacts on Agriculture and Food Markets: Combining a Micro-Level Structural Land-Use Model and a Market-Level Equilibrium Model. In Proceedings of the AAEA & WAEA Joint Annual Meeting, San Francisco, CA, USA, 26–28 July 2015. [Google Scholar]
- Sparovek, G.; Barretto, A.G.D.O.P.; Matsumoto, M.; Berndes, G. Effects of governance on availability of land for agriculture and conservation in Brazil. Environ. Sci. Technol. 2015, 49, 10285–10293. [Google Scholar] [CrossRef]
- Engström, K.; Rounsevell, M.D.; Murray-Rust, D.; Hardacre, C.; Alexander, P.; Cui, X.; Arneth, A. Applying Occam’s razor to global agricultural land use change. Environ. Model. Softw. 2016, 75, 212–229. [Google Scholar] [CrossRef]
- Yalew, S.G.; Mul, M.L.; Van Griensven, A.; Teferi, E.; Priess, J.; Schweitzer, C.; Van Der Zaag, P. Land-Use Change Modelling in the Upper Blue Nile Basin. Environments 2016, 3, 21. [Google Scholar] [CrossRef]
- Parsa, V.A.; Yavari, A.; Nejadi, A. Spatio-temporal analysis of land use/land cover pattern changes in Arasbaran Biosphere Reserve: Iran. Model. Earth Syst. Environ. 2016, 2, 1–13. [Google Scholar] [CrossRef]
- Dislich, C.; Hettig, E.; Salecker, J.; Heinonen, J.; Lay, J.; Meyer, K.M.; Tarigan, S. Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs. PLoS ONE 2018, 13, e0190506. [Google Scholar] [CrossRef] [PubMed]
- Belem, M. Integrated Assessment Modeling of Land Use Policies—A Multi-Scale Modelling Approach for West-Africa; Technical Report; WASCAL: Accra, Ghana, 2018. [Google Scholar]
- Zhao, X.; van der Mensbrugghe, D.Y.; Keeney, R.M.; Tyner, W.E. Improving the way land use change is handled in economic models. Econ. Model. 2020, 84, 13–26. [Google Scholar] [CrossRef]
- Koo, H.; Kleemann, J.; Fürst, C. Integrating ecosystem services into land-use modeling to assess the effects of future land-use strategies in northern Ghana. Land 2020, 9, 379. [Google Scholar] [CrossRef]
- Misra, J.; Rajan, K.S. Shifting cultivation practices in Barak Valley, India—Policy scenarios from a spatially explicit land use model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 129–136. [Google Scholar] [CrossRef]
- Viana, C.M.; Santos, M.; Freire, D.; Abrantes, P.; Rocha, J. Evaluation of the factors explaining the use of agricultural land: A machine learning and model-agnostic approach. Ecol. Indic. 2021, 131, 108200. [Google Scholar] [CrossRef]
- Kapitza, S.; Golding, N.; Wintle, B.A. A fractional land use change model for ecological applications. Environ. Model. Softw. 2022, 147, 105258. [Google Scholar] [CrossRef]
Literature Type | No. of Papers | Share |
---|---|---|
Article | 57 | 0.95 |
Report | 1 | 0.02 |
Other | 2 | 0.03 |
Total | 60 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spain Butler, A.; O’Donoghue, C.; Styles, D. Delivering More from Land: A Review of Integrated Land Use Modelling for Sustainable Food Provision. Sustainability 2025, 17, 56. https://doi.org/10.3390/su17010056
Spain Butler A, O’Donoghue C, Styles D. Delivering More from Land: A Review of Integrated Land Use Modelling for Sustainable Food Provision. Sustainability. 2025; 17(1):56. https://doi.org/10.3390/su17010056
Chicago/Turabian StyleSpain Butler, Amy, Cathal O’Donoghue, and David Styles. 2025. "Delivering More from Land: A Review of Integrated Land Use Modelling for Sustainable Food Provision" Sustainability 17, no. 1: 56. https://doi.org/10.3390/su17010056
APA StyleSpain Butler, A., O’Donoghue, C., & Styles, D. (2025). Delivering More from Land: A Review of Integrated Land Use Modelling for Sustainable Food Provision. Sustainability, 17(1), 56. https://doi.org/10.3390/su17010056