Evaluation of the Impact of Plant Protection Products (PPPs) on Non-Target Soil Organisms in the Olive Orchard: Drone (Aerial) Spraying vs. Tractor (Ground) Spraying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Set-Up of Drones and Ground Distribution Systems and Spintor® Fly Spraying and Monitoring Schedules
2.2. Study Site and Climatic Data
2.3. Soil Chemical Analysis
2.4. The Arthropod-Based Biological Soil Quality Index (QBS-ar)
2.5. Bait Lamina Test
2.6. Avoidance Test
2.7. Statistical Analysis
3. Results
3.1. Soil Chemical and Climatic Data Analysis
3.2. QBS-ar Evaluation
3.3. Bait Lamina Test
3.4. Avoidance Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ISMEA. Rapporto Olio di Oliva: Speciale Previsioni di Produzione n.1/2024. Available online: https://www.ismeamercati.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/13252 (accessed on 23 September 2024).
- Di Paola, A.; Di Giuseppe, E.; Gutierrez, A.P.; Ponti, L.; Pasqui, M. Climate stressors modulate interannual olive yield at province level in Italy: A composite index approach to support crop management. J. Agron. Crop Sci. 2023, 209, 475–488. [Google Scholar] [CrossRef]
- Ozbun, T. Olive oil industry in Italy. Statista. Available online: https://www.statista.com/topics/6013/olive-oil-industry-in-italy/ (accessed on 2 October 2024).
- Niedobová, J.; Ouředníčková, J.; Hamřík, T.; Mészáros, M.; Skalský, M. Sublethal and lethal effects of different residues of spinosad on Pardosa spiders. Ann. Appl. Biol. 2022, 181, 225–234. [Google Scholar] [CrossRef]
- Williams, T.; Valle, J.; Viñuela, E. Is the naturally derived insecticide Spinosad® compatible with insect natural enemies? Biocontrol Sci. Technol. 2003, 13, 459–475. [Google Scholar] [CrossRef]
- National Pesticide Information Center (NPIC). Spinosad General Factsheet. 2020. Available online: http://npic.orst.edu/factsheets/spinosadgen.html (accessed on 3 October 2024).
- BPDB. Bio-Pesticides DataBase. 2024. Available online: https://sitem.herts.ac.uk/aeru/bpdb/Reports/596.htm (accessed on 2 October 2024).
- Thompson, D.G.; Harris, B.J.; Buscarini, T.M.; Chartrand, D.T. Fate of spinosad in litter and soils of a white spruce plantation in central Ontario. Pest Manag. Sci. 2002, 58, 397–404. [Google Scholar] [CrossRef]
- Sharma, A.; Srivastava, A.; Ram, B.; Srivastava, P.C. Dissipation behaviour of spinosad insecticide in soil, cabbage and cauliflower under subtropical conditions. Pest Manag. Sci. 2007, 63, 1141–1145. [Google Scholar] [CrossRef]
- Adak, T.; Mukherjee, I. Dissipation kinetics of spinosad from tomato under sub-tropical agro-climatic conditions. Environmental. Monit. Assess. 2016, 188, 299. [Google Scholar] [CrossRef]
- Wang, L.J.; Wang, M.; Li, G.B.; Zhang, B.H.; Lü, H.; Luo, L.; Kong, X.P. Evaluation of a Spinosad Controlled-Release Formulation Based on Chitosan Carrier: Insecticidal Activity against Plutella xylostella (L.) Larvae and Dissipation Behaviour in Soil. ACS Omega 2021, 6, 30762–30768. [Google Scholar] [CrossRef]
- Cavalaris, C.; Tagarakis, A.C.; Kateris, D.; Bochtis, D. Cost analysis of using UAV sprayers for olive fruit fly control. AgriEngineering 2023, 5, 1925–1942. [Google Scholar] [CrossRef]
- Sánchez-Fernández, L.; Barrera, M.; Martínez-Guanter, J.; Pérez-Ruiz, M. Drift reduction in orchards through the use of an autonomous UAV system. Comput. Electron. Agric. 2023, 211, 107981. [Google Scholar] [CrossRef]
- Morales-Rodríguez, P.A.; Cano Cano, E.; Villena, J.; López-Perales, J.A. A comparison between conventional sprayers and new UAV sprayers: A study case of vineyards and olives in extremadura (Spain). Agronomy 2022, 12, 1307. [Google Scholar] [CrossRef]
- Gertsis, A.; Karampekos, L. Evaluation of spray coverage and other spraying characteristics from ground and aerial sprayers (drones: UAVs) used in a high-density planting olive grove in Greece. In Information and Communication Technologies for Agriculture—Theme IV: Actions; Springer International Publishing: Cham, Switzerland, 2021; pp. 255–268. [Google Scholar]
- European Food Safety Authority. EFSA Guidance Document for predicting environmental concentrations of active substances of plant protection products and transformation products of these active substances in soil. EFSA J. 2017, 15, e04982. [Google Scholar]
- Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.-P. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 2006, 42, S3–S15. [Google Scholar] [CrossRef]
- Beaumelle, L.; Tison, L.; Eisenhauer, N.; Hines, J.; Malladi, S.; Pelosi, C.; Thouvenot, L.; Phillips, H.R. Pesticide effects on soil fauna communities—A meta-analysis. J. Appl. Ecol. 2023, 60, 1239–1253. [Google Scholar] [CrossRef]
- European Commission; Sante, D.G. Application of pesticides by drones, Directive 2009/128/EC on the Sustainable Use of Pesticides (SUD). Ref. Ares 2017. [Google Scholar]
- Lattanzi, P.; Mariani, S. The aerial application of pesticides by drones: Challenges and regulatory issues (2023). In Proceedings of the 14th European Conference on Precision Agriculture (ECPA), Bologna, Italy, 2–6 July 2023. [Google Scholar]
- Acronimo: S.F.I.D.A. Smart Farming: Innovare con i Droni l’Ambiente; Agenzia di Sviluppo Rurale Srl: Macerata, Italy, 2024; ISBN 979-12-210-5424-8. [Google Scholar]
- ISO 17512-1:2008; Soil Quality—Avoidance Test for Determining the Quality of Soils and Effects of Chemicals on Behaviour—Part 1: Test with Earthworms (Eisenia fetida and Eisenia andrei). International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO 18311:2016; Soil Quality—Method for Testing Effects of Soil Contaminants on the Feeding Activity of Soil Dwelling Organisms—Bait-Lamina Test. International Organization for Standardization: Geneva, Switzerland, 2016.
- Singh, P.; Mazumdar, P. Microbial pesticides: Trends, scope and adoption for plant and soil improvement. In Biopesticides; Woodhead Publishing: Cambridge, UK, 2022; pp. 37–71. [Google Scholar]
- Gentilucci, M.; Barbieri, M.; Materazzi, M.; Pambianchi, G. Effects of Climate Change on Vegetation in the Province of Macerata (Central Italy). In Advances in Science, Technology and Innovation; Springer: Berlin/Heidelberg, Germany, 2021; pp. 463–474. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- AMAP (Agency ’Marche, Agricoltura, Pesca’). Available online: https://www.amap.marche.it (accessed on 20 September 2024).
- Ministerial Decree (DM) 13/09/1999 SO N. 185—Approvazione dei “Metodi Ufficiali di Analisi Chimica Del Suolo”. Available online: https://www.gazzettaufficiale.it/eli/id/1999/10/21/099A8497/sg (accessed on 2 October 2024).
- Lehotay, S.J.; O’Neil, M.; Tully, J.; García, A.V.; Contreras, M.; Mol, H.; Heinke, V.; Anspach, T.; Lach, G.; Fussell, R.; et al. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study. J. AOAC Int. 2007, 90, 485–520. [Google Scholar] [CrossRef]
- Parisi, V. La qualità biologica del suolo. Un metodo basato sui microartropodi. Acta Nat. De L’ateneo Parm. 2001, 37, 87–106. [Google Scholar]
- Parisi, V.; Menta, C.; Gardi, C.; Jacomini, C.; Mozzanica, E. Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agric. Ecosyst. Environ. 2005, 105, 323–333. [Google Scholar] [CrossRef]
- von Törne, E. Assessing feeding activities of soil-living animals I. Bait-lamina tests. Pedobiologia 1990, 34, 89–101. [Google Scholar] [CrossRef]
- Vorobeichik, E.L.; Bergman, I.E. Bait-lamina test for assessment of polluted soils: Rough vs. Precise scales. Ecol. Indic. 2021, 122, 107277. [Google Scholar] [CrossRef]
- Yeardley, R.B.; Gast, L.C.; Lazorchak, J.M. The potential of an earthworm avoidance test for evaluation of hazardous waste sites. Environ. Toxicol. Chem. Int. J. 1996, 15, 1532–1537. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Retrieved 22 January 2024. Available online: https://www.R-project.org/ (accessed on 3 September 2024).
- Menta, C.; Conti, F.D.; Pinto, S.; Bodini, A. Soil Biological Quality index (QBS-ar): 15 years of application at global scale. Ecol. Indic. 2018, 85, 773–780. [Google Scholar] [CrossRef]
- Picchio, R.; Senfett, M.; Luchenti, I.; Venanzi, R. Impacts of Coppice Harvesting Operations on Soil. In Coppice Forests in Europe; Albert Ludwig University Freiburg: Freiburg, Germany, 2018; p. 101. [Google Scholar]
- Martin, D.; Singh, V.; Latheef, M.A.; Bagavathiannan, M. Spray deposition on weeds (Palmer amaranth and morningglory) from a remotely piloted aerial application system and backpack sprayer. Drones 2020, 4, 59. [Google Scholar] [CrossRef]
- Peña-Peña, K.; Irmler, U. Moisture seasonality, soil fauna, litter quality and land use as drivers of decomposition in Cerrado soils in SE-Mato Grosso, Brazil. Appl. Soil Ecol. 2016, 107, 124–133. [Google Scholar] [CrossRef]
- De Bernardi, A.; Marini, E.; Casucci, C.; Tiano, L.; Marcheggiani, F.; Ciani, M.; Comitini, F.; Taskin, E.; Puglisi, E.; Vischetti, C. Ecotoxicological effects of a synthetic and a natural insecticide on earthworms and soil bacterial community. Environ. Adv. 2022, 8, 100225. [Google Scholar] [CrossRef]
Treatment | Plot | TL (g/Kg) | CEC (meq/100 g) | EC (dS/m) | TOC (g/kg) | TN (g/kg) | P (mg/Kg) | Fe (mg/Kg) | Cu (mg/Kg) | Zn (mg/Kg) | Mn (mg/Kg) |
---|---|---|---|---|---|---|---|---|---|---|---|
Pre-treatment | CAP | 310 | 19.9 | 0.885 | 13.63 | 1.55 | 17.9 | 9.6 | 1.59 | 0.93 | 9.6 |
CAS | 289 | 17.9 | 0.873 | 20 | 2.78 | 17.8 | 7.23 | 1.63 | 1.21 | 12.63 | |
DRO | 253 | 21.3 | 0.922 | 19.5 | 2.75 | 15 | 9.2 | 1.87 | 1.20 | 15 | |
Post-treatment | CAP | 305 | 20.3 | 0.899 | 12 | 1.65 | 19.8 | 10 | 1.75 | 0.73 | 8.5 |
CAS | 285 | 18.4 | 0.871 | 19.7 | 2.65 | 18.6 | 6.65 | 1.7 | 1.29 | 8.4 | |
DRO | 257 | 21 | 0.924 | 22.15 | 2.7 | 13.4 | 9.4 | 1.9 | 1.15 | 14.4 |
QBS-ar Values | ||
---|---|---|
Plot | Pre-Treatment | Post-Treatment |
CAP | 243 a | 243 a |
CAS | 217 a | 222 a |
DRO | 220 a | 226 a |
Sampling | Plot | Mean Bait Consumption (%) |
---|---|---|
Pre-treatment | CAP | 28.9 |
CAS | 11.9 | |
DRO | 11.3 | |
Post-treatment | CAP | 37.5 |
CAS | 20.8 | |
DRO | 21.9 |
Application Mode | CAP | CAP | CAP | CAP | CAP | CAP | CAS | CAS | CAS | CAS | CAS | DRO | DRO | DRO | DRO | DRO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Avoidance (%) | 40 | 0 | 0 | 0 | 20 | 0 | 60 | 40 | 20 | 60 | 0 | 40 | 60 | 20 | 0 | 40 |
Mean avoidance per application mode (%) | 10 a | 36 a | 32 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Alessandro, A.; Coletta, M.; Torresi, A.; Dell’Ambrogio, G.; Renaud, M.; Ferrari, B.J.D.; La Terza, A. Evaluation of the Impact of Plant Protection Products (PPPs) on Non-Target Soil Organisms in the Olive Orchard: Drone (Aerial) Spraying vs. Tractor (Ground) Spraying. Sustainability 2024, 16, 11302. https://doi.org/10.3390/su162411302
D’Alessandro A, Coletta M, Torresi A, Dell’Ambrogio G, Renaud M, Ferrari BJD, La Terza A. Evaluation of the Impact of Plant Protection Products (PPPs) on Non-Target Soil Organisms in the Olive Orchard: Drone (Aerial) Spraying vs. Tractor (Ground) Spraying. Sustainability. 2024; 16(24):11302. https://doi.org/10.3390/su162411302
Chicago/Turabian StyleD’Alessandro, Aldo, Martina Coletta, Aurora Torresi, Gilda Dell’Ambrogio, Mathieu Renaud, Benoît J. D. Ferrari, and Antonietta La Terza. 2024. "Evaluation of the Impact of Plant Protection Products (PPPs) on Non-Target Soil Organisms in the Olive Orchard: Drone (Aerial) Spraying vs. Tractor (Ground) Spraying" Sustainability 16, no. 24: 11302. https://doi.org/10.3390/su162411302
APA StyleD’Alessandro, A., Coletta, M., Torresi, A., Dell’Ambrogio, G., Renaud, M., Ferrari, B. J. D., & La Terza, A. (2024). Evaluation of the Impact of Plant Protection Products (PPPs) on Non-Target Soil Organisms in the Olive Orchard: Drone (Aerial) Spraying vs. Tractor (Ground) Spraying. Sustainability, 16(24), 11302. https://doi.org/10.3390/su162411302