The Effect of Electrical Stimulation Strength Training on Lower Limb Muscle Activation Characteristics During the Jump Smash Performance in Badminton Based on the EMS and EMG Sensors
Abstract
:1. Introduction
2. Participants and Method
2.1. Participants
2.1.1. Inclusion Criteria
2.1.2. Exclusion Criteria
2.2. Experimental Design
2.3. Experimental Procedure
2.4. Electrical Stimulation Parameters
- (1)
- Current type: Biphasic symmetric square wave.
- (2)
- Frequency: 100 Hz, selected to activate fast-twitch muscle fibers and optimize strength training outcomes.
- (3)
- Pulse duration: 300 µs, ensuring effective deep muscle stimulation.
- (4)
- Intensity: Calibrated individually based on initial pain threshold testing, typically set between 25 and 35 mA to achieve at least 60% of maximum voluntary contraction (MVC).
- (5)
- Electrode placement: Self-adhesive electrodes were placed on the quadriceps muscles of both knees, with each electrode measuring 25 cm2 (5 cm × 5 cm) or 50 cm2 (10 cm × 5 cm).
- (6)
- Stimulation mode: EMS was configured to an endurance mode, delivering fixed-intensity pulses during the eccentric, stretch-reflex, and concentric phases of each squat cycle, with a transition to low-intensity relaxation mode (10 mA, frequency 3 Hz) upon completion of each cycle.
2.5. Measurement Variables
2.5.1. Jump Smash Performance
2.5.2. Static Squat Jump and Eccentric-Concentric Squat Jump Performance
2.5.3. Electromyography (EMG) Data Collection
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Effect on Jump Performance
4.2. EMG and Muscle Activation
4.3. Implications for Training
4.4. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.J.; Worthy, A.; Lee, B.; Jafari, S.; Dyke, O.; Cho, J.; Brown, E. Adapting spatiotemporal gait symmetry to functional electrical stimulation during treadmill walking. PLoS ONE 2024, 19, e0312285. [Google Scholar] [CrossRef]
- Hoekstra, S.; King, J.A.; Fenton, J.; Kirk, N.; Willis, S.A.; Phillips, S.M.; Webborn, N.; Tolfrey, K.; Bosch, J.V.D.; Goosey-Tolfrey, V.L. The effect of home-based neuromuscular electrical stimulation-resistance training and protein supplementation on lean mass in persons with spinal cord injury: A pilot study. Physiol. Rep. 2024, 12, e70073. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Yan, S.; Dee, W.; Keefer, R.; Roth, E.J.; Rymer, W.Z.; Wu, M. Enhanced phasic calf muscle activation with swing resistance enhances propulsion of the paretic leg in people poststroke. J. Neurophysiol. 2024, 132, 1348–1358. [Google Scholar] [CrossRef] [PubMed]
- Maffiuletti, N.A.; Cometti, G.; Amiridis, I.G.; Martin, A.; Pousson, M.; Chatard, J.C. The effects of electromyostimulation training and basketball practice on muscle strength and jumping ability. Int. J. Sports Med. 2000, 21, 437–443. [Google Scholar] [CrossRef]
- Chen, C.H.; Chen, Y.C.; Jiang, R.S.; Lo, L.Y.; Wang, I.L.; Chiu, C.H. Transcranial Direct Current Stimulation Decreases the Decline of Speed during Repeated Sprinting in Basketball Athletes. Int. J. Environ. Res. Public Health 2021, 18, 6967. [Google Scholar] [CrossRef] [PubMed]
- Abian-Vicen, J.; Castanedo, A.; Abian, P.; Gonzalez-Millan, C.; Salinero, J.J.; Del Coso, J. Influence of successive badminton matches on muscle strength, power, and body-fluid balance in elite players. Int. J. Sports Physiol. Perform. 2014, 9, 689–694. [Google Scholar] [CrossRef]
- Abián, P.; Del Coso, J.; Salinero, J.J.; Gallo-Salazar, C.; Areces, F.; Ruiz-Vicente, D.; Lara, B.; Soriano, L.; Muñoz, V.; Lorenzo-Capella, I.; et al. Muscle damage produced during a simulated badminton match in competitive male players. Res. Sports Med. 2016, 24, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Enoka, R.M.; Amiridis, I.G.; Duchateau, J. Electrical Stimulation of Muscle: Electrophysiology and Rehabilitation. Physiology 2020, 35, 40–56. [Google Scholar] [CrossRef] [PubMed]
- Maffiuletti, N.A.; Dirks, M.L.; Stevens-Lapsley, J.; McNeil, C.J. Electrical stimulation for investigating and improving neuromuscular function in vivo: Historical perspective and major advances. J. Biomech. 2023, 152, 111582. [Google Scholar] [CrossRef]
- McErlain-Naylor, S.A.; Towler, H.; Afzal, I.A.; McErlain-Naylor, S.A.; Afzal, I.A.; Felton, P.J.; Hiley, M.J.; King, M.A. Effect of racket-shuttlecock impact location on shot outcome for badminton smashes by elite players. J. Sports Sci. 2020, 38, 2471–2478. [Google Scholar] [CrossRef]
- King, M.; Towler, H.; Dillon, R.; McErlain-Naylor, S. A Correlational Analysis of Shuttlecock Speed Kinematic Determinants in the Badminton Jump Smash. Appl. Sci. 2020, 10, 1248. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Fyfe, J.J.; Hamilton, D.L.; Daly, R.M. Minimal-Dose Resistance Training for Improving Muscle Mass, Strength, and Function: A Narrative Review of Current Evidence and Practical Considerations. Sports Med. 2022, 52, 463–479. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Jan, N. The Application of Transcranial Electrical Stimulation in Sports Psychology. Comput. Math. Methods Med. 2022, 2022, 1008346. [Google Scholar] [CrossRef] [PubMed]
- Basas, A.; Cook, J.; Gomez, M.A.; Basas, Á.; Gómez, M.A.; Rafael, M.A.; Ramirez, C.; Medeiros, B.; Lorenzo, A. Effects of a strength protocol combined with electrical stimulation on patellar tendinopathy: 42 months retrospective follow-up on 6 high-level jumping athletes. Phys. Ther. Sport 2018, 34, 105–112. [Google Scholar] [CrossRef]
- Makronasios, N.S.; Amiridis, I.G.; Evaggelos, B.; Makronasios, N.S.; Amiridis, I.G.; Theodoros, K.M.; Plastraki, A.C.; Sahinis, C.; Enoka, R.M. Neuromuscular electrical stimulation improves reaction time and execution time of roundhouse kick in highly skilled martial arts athletes. Sports Biomech. 2023, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Draghici, A.E.; Picard, G.; Taylor, J.A.; Shefelbine, S.J. Assessing kinematics and kinetics of functional electrical stimulation rowing. J. Biomech. 2017, 53, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Atkins, K.D.; Bickel, C.S. Effects of functional electrical stimulation on muscle health after spinal cord injury. Curr. Opin. Pharmacol. 2021, 60, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Cullen, M.L.; Casazza, G.A.; Davis, B.A. Passive Recovery Strategies after Exercise: A Narrative Literature Review of the Current Evidence. Curr. Sports Med. Rep. 2021, 20, 351–358. [Google Scholar] [CrossRef]
- Fang, Y.; Morse, L.R.; Nguyen, N.; Battaglino, R.A.; Goldstein, R.F.; Troy, K.L. Functional electrical stimulation (FES)-assisted rowing combined with zoledronic acid, but not alone, preserves distal femur strength and stiffness in people with chronic spinal cord injury. Osteoporos. Int. 2021, 32, 549–558. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, K.; O’Kelley, E.; Kutz, M.; O’Kelley, E.; Langford, G.; Ernest, J.; Torres, M. Comparison of Lower Extremity Emg Between the 2-Leg Squat and Modified Single-Leg Squat in Female Athletes. J. Sport Rehabil. 2010, 19, 57–70. [Google Scholar] [CrossRef]
- Naderza, W.; Niespodzinski, B.; Studnicki, R.; Niespodziński, B.; Studnicki, R. Analyzing the Impact of Accumulated Training Shots on Electromyography Parameters in Trained Archery Athletes: Exploring Fatigue and Its Association with Training Practices. Appl. Sci. 2024, 14, 6109. [Google Scholar] [CrossRef]
- Ghasemi, M.; Olyaei, G.; Bagheri, H.; Talebian, S.; Shadmehr, A.; Jalaei, S. The effects of triceps surae fatigue on the torque and electromyographic parameters in athletes compared with non-athletes. J. Back Musculoskelet. Rehabil. 2012, 25, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Popovic, M.R. Transcutaneous electrical stimulation technology for functional electrical therapy applications. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 2142–2145. [Google Scholar] [CrossRef]
- Popovic, M.R.; Keller, T. Modular transcutaneous functional electrical stimulation system. Med. Eng. Phys. 2005, 27, 81–92. [Google Scholar] [CrossRef]
- Li, H.; Peng, F.; Lyu, S.; Ji, Z.; Li, X.; Liu, M. Newly compiled Tai Chi (Bafa Wubu) promotes lower extremity exercise: A preliminary cross sectional study. PeerJ 2023, 11, e15036. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, X.; Du, Z.; Shen, S. Analysis of technical characteristics of typical lower limb balance movements in Tai Chi: A cross-sectional study based on AnyBody bone muscle modeling. PeerJ 2023, 11, e15817. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.C.; Ho, C.S.; Hsu, Y.J.; Wu, M.F.; Huang, C.C. Effect of 8-week frequency-specific electrical muscle stimulation combined with resistance exercise training on muscle mass, strength, and body composition in men and women: A feasibility and safety study. PeerJ 2023, 11, e16303. [Google Scholar] [CrossRef]
- Gondin, J.; Cozzone, P.J.; Bendahan, D. Is high-frequency neuromuscular electrical stimulation a suitable tool for muscle performance improvement in both healthy humans and athletes? Eur. J. Appl. Physiol. 2011, 111, 2473–2487. [Google Scholar] [CrossRef] [PubMed]
- Nakano, S.; Okada, H.; Nakamura, K.; Kitagawa, K.; Wada, C. Society of Physical Therapy Science, author. Effects of electrical stimulation of antagonist muscles on shoulder joint adduction force and grip strength. J. Phys. Ther. Sci. 2024, 36, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, K.; Pastinen, U.M.; Karsikas, R.; Linnamo, V. Neuromuscular performance in voluntary bilateral and unilateral contraction and during electrical stimulation in men at different ages. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 70, 518–527. [Google Scholar] [CrossRef]
- Berry, H.R.; Tate, R.J.; Conway, B.A. Transcutaneous spinal direct current stimulation induces lasting fatigue resistance and enhances explosive vertical jump performance. PLoS ONE 2017, 12, e0173846. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Perez-de-Sevilla, G.; Sanchez-Pinto Pinto, B.; García-Pérez-de-Sevilla, G.; Sánchez-Pinto Pinto, B. Effectiveness of physical exercise and neuromuscular electrical stimulation interventions for preventing and treating intensive care unit-acquired weakness: A systematic review of randomized controlled trials. Intensive Crit. Care Nurs. 2023, 74, 103333. [Google Scholar] [CrossRef]
- Miyamoto, T.; Kamada, H.; Tamaki, A.; Moritani, T. Low-intensity electrical muscle stimulation induces significant increases in muscle strength and cardiorespiratory fitness. Eur. J. Sport Sci. EJSS 2016, 16, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Bala, S.; Vishnu, V.Y.; Joshi, D. Muscle Synergy-Based Functional Electrical Stimulation Reduces Muscular Fatigue in Post-Stroke Patients: A Systematic Comparison. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 2858–2871. [Google Scholar] [CrossRef] [PubMed]
- Hwang, U.J.; Kwon, O.Y.; Jung, S.H.; Kim, H.A.; Gwak, G.T. Effect of neuromuscular electrical stimulation training for abdominal muscles on change of muscle size, strength, endurance and lumbopelvic stability. J. Sports Med. Phys. Fit. 2020, 60, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Dideriksen, J.; Leerskov, K.; Czyzewska, M.; Rasmussen, R. Relation Between the Frequency of Short-Pulse Electrical Stimulation of Afferent Nerve Fibers and Evoked Muscle Force. IEEE Trans. Bio-Med. Eng. 2017, 64, 2737–2745. [Google Scholar] [CrossRef]
- Willoughby, D.; Simpson, S. Supplemental EMS and dynamic weight training: Effects on knee extensor strength and vertical jump of female college track & field athletes. J. Strength Cond. Res. 1998, 12, 131–137. [Google Scholar]
- Filipovic, A.; Kleinöder, H.; Mester, J.; Filipovic, A.; Kleinöder, H.; Dörmann, U.; Mester, J. Electromyostimulation—A Systematic Review of the Effects of Different Electromyostimulation Methods on Selected Strength Parameters in Trained and Elite Athletes. J. Strength Cond. Res. 2012, 26, 2600–2614. [Google Scholar] [CrossRef] [PubMed]
- Sabah HM, A.E.; Labib HS, A. Assessment of neuromuscular electrical stimulation effect on contralateral quadriceps muscle. J. Bodyw. Mov. Ther. 2022, 31, 84–89. [Google Scholar] [CrossRef]
- Mukherjee, S.; Fok, J.R.; van Mechelen, W. Electrical Stimulation and Muscle Strength Gains in Healthy Adults: A Systematic Review. J. Strength Cond. Res. 2023, 37, 938–950. [Google Scholar] [CrossRef] [PubMed]
- Neyroud, D.; Temesi, J.; Millet, G.Y.; Verges, S.; Maffiuletti, N.A.; Kayser, B.; Place, N. Comparison of electrical nerve stimulation, electrical muscle stimulation and magnetic nerve stimulation to assess the neuromuscular function of the plantar flexor muscles. Eur. J. Appl. Physiol. 2015, 115, 1429–1439. [Google Scholar] [CrossRef] [PubMed]
- Blazevich, A.J.; Collins, D.F.; Millet, G.Y.; Vaz, M.A.; Maffiuletti, N.A. Enhancing Adaptations to Neuromuscular Electrical Stimulation Training Interventions. Exerc. Sport Sci. Rev. 2021, 49, 244–252. [Google Scholar] [CrossRef]
- Raja Hussain, R.N.J.; Shari, M. Effects of Resistance Training and Whole-Body Electromyostimulation on Muscular Strength in Female Collegiate Softball Players. Pertanika J. Soc. Sci. Humanit. 2021, 29, 1939–1955. [Google Scholar] [CrossRef]
Gender | Age (Years) | Height (cm) | Weight (kg) | Training Experience (Years) |
---|---|---|---|---|
Male | 17.7 ± 1.6 | 186.8 ± 7.5 | 76.3 ± 9.6 | 4.5 ± 0.3 |
Baseline | Strength Only | EMS + Strength | F | p | |
---|---|---|---|---|---|
Jump Smash | 51.34 ± 3.45 | 52.25 ± 2.69 a | 53.22 ± 3.76 ab | 3.39 | 0.042 |
Static Squat Jump | 53.76 ± 4.19 | 55.57 ± 3.25 a | 56.32 ± 2.98 ab | 3.67 | 0.033 |
Eccentric-Concentric Squat Jump | 127.66 ± 1.23 | 129.38 ± 2.31 | 125.25 ± 1.54 | 0.59 | 0.561 |
Baseline | Strength Only | EMS + Strength | F | p | |
---|---|---|---|---|---|
VL | 0.48 ± 0.57 | 0.51 ± 0.76 | 0.60 ± 0.91 | 1.48 | 0.238 |
RF | 0.42 ± 0.48 | 0.46 ± 0.38 | 0.63 ± 0.26 ab | 3.44 | 0.040 |
VM | 0.46 ± 0.27 | 0.55 ± 0.29 | 0.57 ± 0.31 | 2.01 | 0.160 |
BF | 0.49 ± 0.23 | 0.61 ± 0.41 | 0.55 ± 0.38 | 1.16 | 0.316 |
Baseline | Strength Only | EMS + Strength | F | p | |
---|---|---|---|---|---|
VL | 0.59 ± 0.32 | 0.61 ± 0.32 | 0.65 ± 0.41 | 1.13 | 0.322 |
RF | 0.54 ± 0.36 | 0.56 ± 0.35 | 0.74 ± 0.27 ab | 3.66 | 0.033 |
VM | 0.56 ± 0.39 | 0.63 ± 0.37 | 0.68 ± 0.22 | 1.90 | 0.141 |
BF | 0.65 ± 0.35 | 0.66 ± 0.32 | 0.67 ± 0.35 | 0.74 | 0.482 |
Baseline | Strength Only | EMS + Strength | F | p | |
---|---|---|---|---|---|
VL | 124.43 ± 65.63 | 106.38 ± 61.72 | 122.24 ± 75.98 | 1.47 | 0.239 |
RF | 72.39 ± 65.73 | 105.93 ± 83.15 | 111.62 ± 70.38 | 2.15 | 0.135 |
VM | 77.94 ± 93.05 | 96.57 ± 87.76 | 122.35 ± 85.36 | 1.88 | 0.157 |
BF | 19.89 ± 14.05 | 27.25 ± 20.69 | 20.19 ± 9.78 | 0.97 | 0.325 |
Baseline | Strength Only | EMS + Strength | F | p | |
---|---|---|---|---|---|
VL | 0.61 ± 0.41 | 0.55 ± 0.37 | 0.47 ± 0.31 | 0.05 | 0.952 |
RF | 0.64 ± 0.25 | 0.47 ± 0.33 | 0.41 ± 0.25 | 0.17 | 0.840 |
VM | 0.56 ± 0.23 | 0.56 ± 0.39 | 0.43 ± 0.37 | 0.07 | 0.936 |
BF | 0.54 ± 0.37 | 0.62 ± 0.46 | 0.48 ± 0.22 | 0.47 | 0.495 |
Baseline | Strength Only | EMS + Strength | F | p | |
---|---|---|---|---|---|
VL | 0.63 ± 0.41 | 0.61 ± 0.33 | 0.59 ± 0.38 | 0.03 | 0.970 |
RF | 0.72 ± 0.26 | 0.54 ± 0.34 | 0.58 ± 0.35 | 0.05 | 0.955 |
VM | 0.61 ± 0.21 | 0.67 ± 0.31 | 0.55 ± 0.34 | 0.57 | 0.569 |
BF | 0.62 ± 0.35 | 0.63 ± 0.48 | 0.63 ± 0.36 | 0.01 | 0.901 |
Baseline | Strength Only | EMS + Strength | F | p | |
---|---|---|---|---|---|
VL | 114.54 ± 76.71 | 120.76 ± 82.86 | 137.13 ± 64.19 | 0.05 | 0.949 |
RF | 105.73 ± 63.34 | 105.71 ± 74.21 | 109.15 ± 63.25 | 0.12 | 0.912 |
VM | 77.44 ± 61.33 | 93.29 ± 63.91 | 123.65 ± 65.73 | 0.20 | 0.819 |
BF | 23.71 ± 21.06 | 26.17 ± 36.87 | 28.91 ± 9.27 | 0.08 | 0.892 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Hu, Y.; Sheng, Y. The Effect of Electrical Stimulation Strength Training on Lower Limb Muscle Activation Characteristics During the Jump Smash Performance in Badminton Based on the EMS and EMG Sensors. Sensors 2025, 25, 577. https://doi.org/10.3390/s25020577
Lin X, Hu Y, Sheng Y. The Effect of Electrical Stimulation Strength Training on Lower Limb Muscle Activation Characteristics During the Jump Smash Performance in Badminton Based on the EMS and EMG Sensors. Sensors. 2025; 25(2):577. https://doi.org/10.3390/s25020577
Chicago/Turabian StyleLin, Xinyu, Yimin Hu, and Yi Sheng. 2025. "The Effect of Electrical Stimulation Strength Training on Lower Limb Muscle Activation Characteristics During the Jump Smash Performance in Badminton Based on the EMS and EMG Sensors" Sensors 25, no. 2: 577. https://doi.org/10.3390/s25020577
APA StyleLin, X., Hu, Y., & Sheng, Y. (2025). The Effect of Electrical Stimulation Strength Training on Lower Limb Muscle Activation Characteristics During the Jump Smash Performance in Badminton Based on the EMS and EMG Sensors. Sensors, 25(2), 577. https://doi.org/10.3390/s25020577