Time-Series Image-Based Automated Monitoring Framework for Visible Facilities: Focusing on Installation and Retention Period
Abstract
:1. Introduction
2. Literature Review
2.1. Advances in Construction Document Monitoring
2.2. Monitoring Challenges and Vision-Based Solutions
2.3. Integration of Monitoring Systems
3. Methodology
3.1. Research Framework
3.2. Data Collection and Preprocessing
3.3. Object Detection Algorithm
3.4. Recognition of Document Information
3.5. Matching Process Between Drawings and On-Site Detection
3.6. Verification of Jack Support Installation
3.7. Verification of Jack Support Retention Compliance
4. Results
4.1. Object Detection Results
4.1.1. Jack Support Detection on Drawing
4.1.2. On-Site Jack Support Detection
4.2. Document Recognition Result
4.3. Jack Support Installation Determination
4.4. Determining Retention Compliance
- (a)
- JS_10 detection error: As previously mentioned in Section 4.3, the system falsely identified a ceiling pipe as JS_10. This misidentification persisted from T1 through T28, leading to a complete failure in detecting JS_10 throughout the retention period. This error is highlighted in Table 4 and Table 5 and corresponds to Figure 11a.
- (b)
- JS_14 detection error: JS_14 was correctly detected until the dismantling of JS_16, which occurred on T14. From T15 onwards, the system erroneously identified a wall corner as JS_14, leading to missed detections until T28. This error was influenced by the removal of JS_16, which altered the spatial configuration of the surrounding objects. Figure 11b illustrates the misclassification, where the corner of a pillar was incorrectly labeled as JS_14.
- (c)
- JS_20 detection inconsistency: JS_20 experienced inconsistent detection due to varying lighting conditions on-site. The system sometimes detected JS_20 correctly, while at other times, it failed to do so. These fluctuations in detection were primarily observed until its dismantling on 26 February 2024 (T14). After T14, when JS_20 was dismantled, it was no longer detected as expected. Figure 11c provides a comparison of detection differences caused by lighting changes.
Accuracy Evaluation of Jack Support Retention Period Compliance Detection
5. Discussion
5.1. Contribution and Limitations
5.2. Solution for Preventing the Misdetection of Ceiling Pipes as Jack Supports
5.2.1. Using a Consistent Color Pattern for Ceiling Pipes
5.2.2. Applying Construction Drawings for Ceiling Pipes
5.2.3. Jack Support Detection Through Vertical Segmentation
5.2.4. Comparison of Three Methods to Prevent Misdetection of Ceiling Pipes as Jack Supports
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Teizer, J.; Lee, J.-K.; Eastman, C.M.; Venugopal, M. Building Information Modeling (BIM) and Safety: Automatic Safety Checking of Construction Models and Schedules. Autom. Constr. 2013, 29, 183–195. [Google Scholar] [CrossRef]
- Musarat, M.A.; Khan, A.M.; Alaloul, W.S.; Blas, N.; Ayub, S. Automated Monitoring Innovations for Efficient and Safe Construction Practices. Results Eng. 2024, 22, 102057. [Google Scholar] [CrossRef]
- Golparvar-Fard, M.; Bohn, J.; Teizer, J.; Savarese, S.; Peña-Mora, F. Evaluation of Image-Based Modeling and Laser Scanning Accuracy for Emerging Automated Performance Monitoring Techniques. Autom. Constr. 2011, 20, 1143–1155. [Google Scholar] [CrossRef]
- Yang, J.; Park, M.-W.; Vela, P.A.; Golparvar-Fard, M. Construction Performance Monitoring via Still Images, Time-Lapse Photos, and Video Streams: Now, Tomorrow, and the Future. Adv. Eng. Inform. 2015, 29, 211–224. [Google Scholar] [CrossRef]
- Leung, S.; Mak, S.; Lee, B.L.P. Using a Real-Time Integrated Communication System to Monitor the Progress and Quality of Construction Works. Autom. Constr. 2008, 17, 749–757. [Google Scholar] [CrossRef]
- Carbonari, A.; Giretti, A.; Naticchia, B. A Proactive System for Real-Time Safety Management in Construction Sites. Autom. Constr. 2011, 20, 686–698. [Google Scholar] [CrossRef]
- Qureshi, A.H.; Alaloul, W.S.; Wing, W.K.; Saad, S.; Ammad, S.; Altaf, M. Characteristics-Based Framework of Effective Automated Monitoring Parameters in Construction Projects. Arab J. Sci. Eng. 2023, 48, 4731–4749. [Google Scholar] [CrossRef] [PubMed]
- Alaloul, W.S.; Qureshi, A.H.; Musarat, M.A.; Saad, S. Evolution of Close-Range Detection and Data Acquisition Technologies towards Automation in Construction Progress Monitoring. J. Build. Eng. 2021, 43, 102877. [Google Scholar] [CrossRef]
- Cheng, T.; Teizer, J. Real-Time Resource Location Data Collection and Visualization Technology for Construction Safety and Activity Monitoring Applications. Autom. Constr. 2013, 34, 3–15. [Google Scholar] [CrossRef]
- Wang, L.-C. Enhancing Construction Quality Inspection and Management Using RFID Technology. Autom. Constr. 2008, 17, 467–479. [Google Scholar] [CrossRef]
- Kim, K.; Cho, Y.; Zhang, S. Integrating Work Sequences and Temporary Structures into Safety Planning: Automated Scaffolding-Related Safety Hazard Identification and Prevention in BIM. Autom. Constr. 2016, 70, 128–142. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, H.; Zhang, W. Intelligent Monitoring and Evaluation for the Prefabricated Construction Schedule. Comput. -Aided Civ. Infrastruct. Eng. 2023, 38, 391–407. [Google Scholar] [CrossRef]
- Golparvar-Fard, M.; Peña-Mora, F.; Savarese, S. D4AR—A 4-Dimensional Augmented Reality Model for Automating Construction Progress Monitoring Data Collection, Processing and Communication. J. Inf. Technol. Constr. 2019, 14, 129–153. [Google Scholar]
- Bohn, J.S.; Teizer, J. Benefits and Barriers of Construction Project Monitoring Using High-Resolution Automated Cameras. J. Constr. Eng. Manag. 2010, 136, 632–640. [Google Scholar] [CrossRef]
- Alzubi, K.M.; Alaloul, W.S.; Salaheen, M.A.; Qureshi, A.H.; Musarat, M.A.; Baarimah, A.O. Automated Monitoring for Construction Productivity Recognition. In Proceedings of the 2021 Third International Sustainability and Resilience Conference: Climate Change, Online, 15–17 November 2021; pp. 489–494. [Google Scholar]
- Navon, R. Automated Project Performance Control of Construction Projects. Autom. Constr. 2005, 14, 467–476. [Google Scholar] [CrossRef]
- Jämsä-Jounela, S.-L. Future Trends in Process Automation. Annu. Rev. Control 2007, 31, 211–220. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, R.-P.; Dai, T.; Wang, Z.-T.; Wu, K. An AIoT-Based System for Real-Time Monitoring of Tunnel Construction. Tunn. Undergr. Space Technol. 2021, 109, 103766. [Google Scholar] [CrossRef]
- Lee, U.-K.; Kim, J.-H.; Cho, H.; Kang, K.-I. Development of a Mobile Safety Monitoring System for Construction Sites. Autom. Constr. 2009, 18, 258–264. [Google Scholar] [CrossRef]
- Rao, A.S.; Radanovic, M.; Liu, Y.; Hu, S.; Fang, Y.; Khoshelham, K.; Palaniswami, M.; Ngo, T. Real-Time Monitoring of Construction Sites: Sensors, Methods, and Applications. Autom. Constr. 2022, 136, 104099. [Google Scholar] [CrossRef]
- Guo, B.H.W.; Zou, Y.; Fang, Y.; Goh, Y.M.; Zou, P.X.W. Computer Vision Technologies for Safety Science and Management in Construction: A Critical Review and Future Research Directions. Saf. Sci. 2021, 135, 105130. [Google Scholar] [CrossRef]
- Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Arashpour, M.; Sharafi, P.; Teodosio, B.; Shringi, A.; Mendis, P. Artificial Intelligence and Smart Vision for Building and Construction 4.0: Machine and Deep Learning Methods and Applications. Autom. Constr. 2022, 141, 104440. [Google Scholar] [CrossRef]
- Hannan Qureshi, A.; Alaloul, W.S.; Wing, W.K.; Saad, S.; Ammad, S.; Musarat, M.A. Factors Impacting the Implementation Process of Automated Construction Progress Monitoring. Ain Shams Eng. J. 2022, 13, 101808. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Z.; Liu, Z.; Zhang, Y.; Cai, R.; Hu, X.; Yang, R.; Wang, G. Multi-Task Intelligent Monitoring of Construction Safety Based on Computer Vision. Buildings 2024, 14, 2429. [Google Scholar] [CrossRef]
- Ekanayake, B.; Wong, J.K.-W.; Fini, A.A.F.; Smith, P. Computer Vision-Based Interior Construction Progress Monitoring: A Literature Review and Future Research Directions. Autom. Constr. 2021, 127, 103705. [Google Scholar] [CrossRef]
- Navon, R.; Shpatnitsky, Y. A Model for Automated Monitoring of Road Construction. Constr. Manag. Econ. 2005, 23, 941–951. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Wang, J.; Bouferguene, A.; Al-Hussein, M. Vision-Based Real-Time Process Monitoring and Problem Feedback for Productivity-Oriented Analysis in off-Site Construction. Autom. Constr. 2024, 162, 105389. [Google Scholar] [CrossRef]
- Mhmoud Alzubi, K.; Salah Alaloul, W.; Malkawi, A.B.; Al Salaheen, M.; Hannan Qureshi, A.; Ali Musarat, M. Automated Monitoring Technologies and Construction Productivity Enhancement: Building Projects Case. Ain Shams Eng. J. 2023, 14, 102042. [Google Scholar] [CrossRef]
- Deng, H.; Hong, H.; Luo, D.; Deng, Y.; Su, C. Automatic Indoor Construction Process Monitoring for Tiles Based on BIM and Computer Vision. J. Constr. Eng. Manag. 2020, 146, 04019095. [Google Scholar] [CrossRef]
- Pučko, Z.; Šuman, N.; Rebolj, D. Automated Continuous Construction Progress Monitoring Using Multiple Workplace Real Time 3D Scans. Adv. Eng. Inform. 2018, 38, 27–40. [Google Scholar] [CrossRef]
- Zaidi, S.F.A.; Yang, J.; Abbas, M.S.; Hussain, R.; Lee, D.; Park, C. Vision-Based Construction Safety Monitoring Utilizing Temporal Analysis to Reduce False Alarms. Buildings 2024, 14, 1878. [Google Scholar] [CrossRef]
- Kim, J. Visual Analytics for Operation-Level Construction Monitoring and Documentation: State-of-the-Art Technologies, Research Challenges, and Future Directions. Front. Built Environ. 2020, 6, 575738. [Google Scholar] [CrossRef]
- Yuan, X.; Parfitt, M.K.; Anumba, C.J. The Use of Cyber-Physical Systems in Temporary Structures—An Exploratory Study. In Proceedings of the 2014 International Conference on Computing in Civil and Building Engineering, Orlando, FL, USA, 23–25 June 2014; ASCE: Reston, VA, USA, 2014; pp. 1707–1714. [Google Scholar] [CrossRef]
- Hou, X.; Li, C.; Fang, Q. Computer Vision-Based Safety Risk Computing and Visualization on Construction Sites. Autom. Constr. 2023, 156, 105129. [Google Scholar] [CrossRef]
- Vassena, G.P.M.; Perfetti, L.; Comai, S.; Mastrolembo Ventura, S.; Ciribini, A.L.C. Construction Progress Monitoring through the Integration of 4D BIM and SLAM-Based Mapping Devices. Buildings 2023, 13, 2488. [Google Scholar] [CrossRef]
- Yang, J.; Wilde, A.; Menzel, K.; Sheikh, M.Z.; Kuznetsov, B. Computer Vision for Construction Progress Monitoring: A Real-Time Object Detection Approach. In Collaborative Networks in Digitalization and Society 5.0., Proceedings of the 24th IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2023, Valencia, Spain, 27–29 September 2023; Camarinha-Matos, L.M., Boucher, X., Ortiz, A., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 660–672. [Google Scholar]
- Halder, S.; Afsari, K.; Akanmu, A. A Robotic Cyber-Physical System for Automated Reality Capture and Visualization in Construction Progress Monitoring. arXiv 2024, arXiv:2402.07034. [Google Scholar] [CrossRef]
- Dimitrov, A.; Golparvar-Fard, M. Vision-Based Material Recognition for Automated Monitoring of Construction Progress and Generating Building Information Modeling from Unordered Site Image Collections. Adv. Eng. Inform. 2014, 28, 37–49. [Google Scholar] [CrossRef]
- Azimi, R.; Lee, S.; AbouRizk, S.M.; Alvanchi, A. A Framework for an Automated and Integrated Project Monitoring and Control System for Steel Fabrication Projects. Autom. Constr. 2011, 20, 88–97. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Chen, J.-C. Integrating Barcode and GIS for Monitoring Construction Progress. Autom. Constr. 2002, 11, 23–33. [Google Scholar] [CrossRef]
- Ren, R.; Zhang, J. An Integrated Framework to Support Construction Monitoring Automation Using Natural Language Processing and Sensing Technologies. In Computing in Civil Engineering 2021, Proceedings of the ASCE International Conference on Computing in Civil Engineering 2021, Orlando, FL, USA, 12–14 September 2021; ASCE: Reston, VA, USA, 2022; pp. 1101–1109. [Google Scholar] [CrossRef]
- Duarte-Vidal, L.; Herrera, R.F.; Atencio, E.; Muñoz-La Rivera, F. Interoperability of Digital Tools for the Monitoring and Control of Construction Projects. Appl. Sci. 2021, 11, 10370. [Google Scholar] [CrossRef]
- Rebolj, D.; Babič, N.Č.; Magdič, A.; Podbreznik, P.; Pšunder, M. Automated Construction Activity Monitoring System. Adv. Eng. Inform. 2008, 22, 493–503. [Google Scholar] [CrossRef]
- Rehman, M.S.U.; Shafiq, M.T.; Ullah, F.; Ahmed, K.G. A Critical Appraisal of Traditional Methods of Construction Progress Monitoring. Built Environ. Proj. Asset Manag. 2023, 13, 830–845. [Google Scholar] [CrossRef]
- Zollmann, S.; Hoppe, C.; Kluckner, S.; Poglitsch, C.; Bischof, H.; Reitmayr, G. Augmented Reality for Construction Site Monitoring and Documentation. Proc. IEEE 2014, 102, 137–154. [Google Scholar] [CrossRef]
- Soibelman, L.; Wu, J.; Caldas, C.; Brilakis, I.; Lin, K.-Y. Data Analysis on Complicated Construction Data Sources: Vision, Research, and Recent Developments. In Intelligent Computing in Engineering and Architecture, Proceedings of the 13th EG-ICE Workshop, Ascona, Switzerland, 25–30 June 2006; Smith, I.F.C., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 637–652. [Google Scholar]
- Lu, Q.; Lee, S. A Semi-Automatic Approach to Detect Structural Components from CAD Drawings for Constructing As-Is BIM Objects. In Proceedings of the ASCE International Workshop on Computing in Civil Engineering 2017, Seattle, WA, USA, 25–27 June 2017; ASCE: Reston, VA, USA, 2017; pp. 84–91. [Google Scholar] [CrossRef]
- Yazed, M.S.M.; Shaubari, E.F.A.; Yap, M.H. A Review of Neural Network Approach on Engineering Drawing Recognition and Future Directions. JOIV Int. J. Inform. Vis. 2023, 7, 2513–2522. [Google Scholar] [CrossRef]
- Singh, A.; Jangra, S.; Aggarwal, G. EnvisionText: Enhancing Text Recognition Accuracy through OCR Extraction and NLP-Based Correction. In Proceedings of the 2024 14th International Conference on Cloud Computing, Data Science & Engineering, Noida, India, 18–19 January 2024; pp. 47–52. [Google Scholar]
- Sajadfar, N.; Abdollahnejad, S.; Hermann, U.; Mohamed, Y. Text Detection and Classification of Construction Documents. In Proceedings of the International Symposium on Automation and Robotics in Construction (ISARC), Waterloo, ON, Canada, 21–24 May 2019; Volume 36, pp. 446–452. [Google Scholar]
- Azzam, F.; Jaber, M.; Saies, A.; Kirresh, T.; Awadallah, R.; Karakra, A.; Barghouthi, H.; Amarneh, S. The Use of Blockchain Technology and OCR in E-Government for Document Management: Inbound Invoice Management as an Example. Appl. Sci. 2023, 13, 8463. [Google Scholar] [CrossRef]
- Locatelli, M.; Seghezzi, E.; Pellegrini, L.; Tagliabue, L.C.; Di Giuda, G.M. Exploring Natural Language Processing in Construction and Integration with Building Information Modeling: A Scientometric Analysis. Buildings 2021, 11, 583. [Google Scholar] [CrossRef]
- Moon, S.; Lee, G.; Chi, S. Automated System for Construction Specification Review Using Natural Language Processing. Adv. Eng. Inform. 2022, 51, 101495. [Google Scholar] [CrossRef]
- Hasan, S.; Sacks, R. Integrating BIM and Multiple Construction Monitoring Technologies for Acquisition of Project Status Information. J. Constr. Eng. Manag. 2023, 149, 04023051. [Google Scholar] [CrossRef]
- Xu, N.; Ma, L.; Wang, L.; Deng, Y.; Ni, G. Extracting Domain Knowledge Elements of Construction Safety Management: Rule-Based Approach Using Chinese Natural Language Processing. J. Manag. Eng. 2021, 37, 04021001. [Google Scholar] [CrossRef]
- Zhong, B.; Xing, X.; Luo, H.; Zhou, Q.; Li, H.; Rose, T.; Fang, W. Deep Learning-Based Extraction of Construction Procedural Constraints from Construction Regulations. Adv. Eng. Inform. 2020, 43, 101003. [Google Scholar] [CrossRef]
- ul Hassan, F.; Le, T. Automated Requirements Identification from Construction Contract Documents Using Natural Language Processing. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2020, 12, 04520009. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, J.; Mao, Y. Construction Quality Problems Prevention Based on Coupling Relationship Mining. Eng. Constr. Archit. Manag. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Xue, J.; Hou, X.; Zeng, Y. Review of Image-Based 3D Reconstruction of Building for Automated Construction Progress Monitoring. Appl. Sci. 2021, 11, 7840. [Google Scholar] [CrossRef]
- Alizadehsalehi, S.; Yitmen, I. The Impact of Field Data Capturing Technologies on Automated Construction Project Progress Monitoring. Procedia Eng. 2016, 161, 97–103. [Google Scholar] [CrossRef]
- Alizadehsalehi, S.; Yitmen, I. A Concept for Automated Construction Progress Monitoring: Technologies Adoption for Benchmarking Project Performance Control. Arab. J. Sci. Eng. 2019, 44, 4993–5008. [Google Scholar] [CrossRef]
- Akhavian, R.; Behzadan, A.H. An Integrated Data Collection and Analysis Framework for Remote Monitoring and Planning of Construction Operations. Adv. Eng. Inform. 2012, 26, 749–761. [Google Scholar] [CrossRef]
- Yuan, X.; Anumba, C.J.; Parfitt, M.K. Review of the Potential for a Cyber-Physical System Approach to Temporary Structures Monitoring. Int. J. Arch. Res. Archnet-IJAR 2015, 9, 26–44. [Google Scholar] [CrossRef]
- Luo, R.; Zhou, Z.; Chu, X.; Ma, W.; Meng, J. 3D Deformation Monitoring Method for Temporary Structures Based on Multi-Thread LiDAR Point Cloud. Measurement 2022, 200, 111545. [Google Scholar] [CrossRef]
- Feng, Y.; Dai, F. Evaluation of Stereo Matching Algorithms for Temporary Structure Monitoring. In Proceedings of the 2014 International Conference on Computing in Civil and Building Engineering, Orlando, FL, USA, 23–25 June 2014; ASCE: Reston, VA, USA, 2014; pp. 1206–1213. [Google Scholar] [CrossRef]
- Cho, C.; Kim, K.; Park, J.; Cho, Y.K. Data-Driven Monitoring System for Preventing the Collapse of Scaffolding Structures. J. Constr. Eng. Manag. 2018, 144, 04018077. [Google Scholar] [CrossRef]
- Kim, H.-S.; Seong, J.; Jung, H.-J. Optimal Domain Adaptive Object Detection with Self-Training and Adversarial-Based Approach for Construction Site Monitoring. Autom. Constr. 2024, 158, 105244. [Google Scholar] [CrossRef]
- Liu, D.; Lin, M.; Li, S. Real-Time Quality Monitoring and Control of Highway Compaction. Autom. Constr. 2016, 62, 114–123. [Google Scholar] [CrossRef]
- Ding, L.; Li, K.; Zhou, Y.; Love, P.E.D. An IFC-Inspection Process Model for Infrastructure Projects: Enabling Real-Time Quality Monitoring and Control. Autom. Constr. 2017, 84, 96–110. [Google Scholar] [CrossRef]
- Chen, F.; Jiao, H.; Han, L.; Shen, L.; Du, W.; Ye, Q.; Yu, G. Real-Time Monitoring of Construction Quality for Gravel Piles Based on Internet of Things. Autom. Constr. 2020, 116, 103228. [Google Scholar] [CrossRef]
- Choi, C.H.; Lee, J. A BIM-Based Quality Inspection System Prototype for Temporary Construction Works. Buildings 2022, 12, 1931. [Google Scholar] [CrossRef]
- Reja, V.K.; Varghese, K.; Ha, Q.P. Computer Vision-Based Construction Progress Monitoring. Autom. Constr. 2022, 138, 104245. [Google Scholar] [CrossRef]
- Sami Ur Rehman, M.; Shafiq, M.T.; Ullah, F. Automated Computer Vision-Based Construction Progress Monitoring: A Systematic Review. Buildings 2022, 12, 1037. [Google Scholar] [CrossRef]
- Kim, S.; Hong, S.H.; Kim, H.; Lee, M.; Hwang, S. Small Object Detection (SOD) System for Comprehensive Construction Site Safety Monitoring. Autom. Constr. 2023, 156, 105103. [Google Scholar] [CrossRef]
- Gong, J.; Caldas, C.H. An Object Recognition, Tracking, and Contextual Reasoning-Based Video Interpretation Method for Rapid Productivity Analysis of Construction Operations. Autom. Constr. 2011, 20, 1211–1226. [Google Scholar] [CrossRef]
- Chern, W.-C.; Kim, T.; Asari, V.K.; Kim, H. Image Hashing-Based Shallow Object Tracker for Construction Worker Monitoring in Scaffolding Scenes. Autom. Constr. 2024, 166, 105604. [Google Scholar] [CrossRef]
- Xie, H.; Zhu, J.; Khayatkhoei, M.; Li, J.; Hussein, M.E.; Abdalmageed, W. A Critical View of Vision-Based Long-Term Dynamics Prediction Under Environment Misalignment. In Proceedings of the International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; pp. 38258–38271. [Google Scholar]
- Blum, P.; Crowley, P.; Lykotrafitis, G. Vision-Based Navigation and Obstacle Avoidance via Deep Reinforcement Learning. arXiv 2022, arXiv:2211.05243. [Google Scholar] [CrossRef]
- Bokhari, H.R.; Lee, D.; Khan, N.; Park, C. Inspection of Discrepancies in Construction Temporary Safety Structures through Augmented Reality. In Proceedings of the 37th International Symposium on Automation and Robotics in Construction (ISARC 2020), Kitakyushu, Japan, 14 October 2020. [Google Scholar]
- Vasenev, A.; Hartmann, T.; Dorée, A.G. A Distributed Data Collection and Management Framework for Tracking Construction Operations. Adv. Eng. Inform. 2014, 28, 127–137. [Google Scholar] [CrossRef]
- Shamsollahi, D.; Moselhi, O.; Khorasani, K. Construction Progress Monitoring and Reporting Using Computer Vision Techniques—A Review. In Proceedings of the ISARC, Proceedings of the 39th International Symposium on Automation and Robotics in Construction (ISARC 2022), Bogotá, Colombia, 13–15 July 2022; Volume 39, pp. 467–474. [Google Scholar]
- Li, D.; Tian, H.; Lang, H.; Niu, Z.; Zhao, Q.; Wen, L. Design of Computer Vision-Based Construction Progress Monitoring System. In Proceedings of the 2023 15th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 26–27 August 2023; pp. 116–119. [Google Scholar]
- Wang, S.-K.; Chen, H.-M. A Construction Progress On-Site Monitoring and Presentation System Based on The Integration of Augmented Reality and BIM. In Proceedings of the International Symposium on Automation and Robotics in Construction, Kitakyushu, Japan, 27–28 October 2020; IAARC Publications: Waterloo, ON, Canada, 2020; Volume 37, pp. 147–154. [Google Scholar]
- Xu, Q.; Chong, H.-Y.; Liao, P.-C. Collaborative Information Integration for Construction Safety Monitoring. Autom. Constr. 2019, 102, 120–134. [Google Scholar] [CrossRef]
- Maravas, A.; Pantouvakis, J.-P.; Lambropoulos, S. An Integrated Information System for Monitoring Construction Works. Int. J. Inf. Technol. Proj. Manag. 2014, 5, 33–44. [Google Scholar] [CrossRef]
- Kim, K.; Kim, K.; Jeong, S. Application of YOLO v5 and v8 for Recognition of Safety Risk Factors at Construction Sites. Sustainability 2023, 15, 15179. [Google Scholar] [CrossRef]
- Bai, R.; Wang, M.; Zhang, Z.; Lu, J.; Shen, F. Automated Construction Site Monitoring Based on Improved YOLOv8-Seg Instance Segmentation Algorithm. IEEE Access 2023, 11, 139082–139096. [Google Scholar] [CrossRef]
- Zaher, M.; Greenwood, D.; Marzouk, M. Mobile Augmented Reality Applications for Construction Projects. Constr. Innov. 2018, 18, 152–166. [Google Scholar] [CrossRef]
- Halder, S.; Afsari, K.; Serdakowski, J.; DeVito, S.; Ensafi, M.; Thabet, W. Real-Time and Remote Construction Progress Monitoring with a Quadruped Robot Using Augmented Reality. Buildings 2022, 12, 2027. [Google Scholar] [CrossRef]
- Vega, M. Efficient Vertical Object Detection in Large High-Quality Point Clouds of Construction Sites. Master’s Thesis, University of Munich, Munich, Germany, 2020. [Google Scholar]
Text Preprocessing | Purpose | Details |
---|---|---|
Tokenization |
|
|
Normalization |
|
|
Stopword Removal |
|
|
NLP Techniques | Purpose | Details |
---|---|---|
Named Entity Recognition (NER) |
|
|
Part-of-Speech Tagging |
|
|
Dependency Parsing |
|
|
Sentiment Analysis |
|
|
Text Summarization |
|
|
Checklist Number | Jack Support Number | Installation Time | Dismantling Time |
---|---|---|---|
Checklist_1 | JS_1 to 12 | ○ | ○ |
Checklist_2 | JS 13 to 23 | ○ | ○ |
Checklist_3 | JS_24 to 33 | ○ | ○ |
⋮ | ⋮ | ⋮ | ⋮ |
Checklist_17 | JS_169 to 181 | ○ | ○ |
Jack Support Number | Detected in Drawing | Detected Onsite at T1 | Installation Time | Error | Determine |
---|---|---|---|---|---|
JS_1 | ○ | ○ | 12 February 2024 | - | √ |
JS_2 | ○ | ○ | 12 February 2024 | - | √ |
JS_3 | ○ | ○ | 12 February 2024 | - | √ |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
JS_10 | ○ | × | 12 February 2024 | ○*a) | × |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
JS_23 | ○ | ○ | 12 February 2024 | - | √ |
Jack Support | Dismantling Time | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | T11 | T12 | T13 | T14 | T15 | T16 | T17 | T18 | T19 | T20 | T21 | T22 | T23 | T24 | T25 | T26 | T27 | T28 | Error | Determine |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JS_1 | T28 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | √ |
JS_2 | T28 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | √ |
JS_3 | T28 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | √ |
JS_4 | T28 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | √ |
JS_5 | T28 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | √ |
JS_6 | T7 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | √ |
JS_7 | T7 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | √ |
JS_8 | T7 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | √ |
JS_9 | T7 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | √ |
JS_10 | T7 | × | × | × | × | × | × | × | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ○*a) | × |
JS_11 | T28 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | √ |
JS_12 | T28 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | √ |
JS_13 | T28 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | √ |
JS_14 | T28 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | × | × | × | × | × | × | × | × | × | × | × | × | × | × | ○*b) | × |
JS_15 | T28 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | √ |
JS_16 | T14 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | √ |
JS_17 | T14 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | √ |
JS_18 | T14 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | √ |
JS_19 | T14 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | √ |
JS_20 | T14 | ○ | ○ | × | ○ | × | × | ○ | × | ○ | ○ | × | ○ | ○ | × | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ○*c) | × |
JS_21 | T28 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | √ |
JS_22 | T28 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | √ |
JS_23 | T28 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | - | √ |
Time | Detected Jack Supports | Total Jack Supports to Detection | Accuracy (%) |
---|---|---|---|
T1 | 22 | 23 | 95.65 |
⋮ | ⋮ | ⋮ | ⋮ |
T14 | 17 | 18 | 94.44 |
⋮ | ⋮ | ⋮ | ⋮ |
T28 | 12 | 13 | 92.31 |
Jack Support | Detected Days | Designated Retention Period | Accuracy (%) |
---|---|---|---|
JS_1 | 28 | 28 | 100 |
⋮ | ⋮ | ⋮ | ⋮ |
JS_10 | 0 | 7 | 0 |
⋮ | ⋮ | ⋮ | ⋮ |
JS_14 | 14 | 28 | 50 |
⋮ | ⋮ | ⋮ | ⋮ |
JS_20 | 8 | 14 | 57.14 |
⋮ | ⋮ | ⋮ | ⋮ |
JS_23 | 28 | 28 | 100 |
Method | False Detection Reduction Rate (%) | Algorithm Implementation Convenience (Rank) | Processing Speed |
---|---|---|---|
Color Differentiation | 68 | 1 | 2 (15 ms) |
Exclusion of Pre-Mapped Structures | 78 | 3 | 3 (20 ms) |
Vertical Structure Segmentation | 86 | 2 | 1 (12 ms) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.; Kim, H. Time-Series Image-Based Automated Monitoring Framework for Visible Facilities: Focusing on Installation and Retention Period. Sensors 2025, 25, 574. https://doi.org/10.3390/s25020574
Yoon S, Kim H. Time-Series Image-Based Automated Monitoring Framework for Visible Facilities: Focusing on Installation and Retention Period. Sensors. 2025; 25(2):574. https://doi.org/10.3390/s25020574
Chicago/Turabian StyleYoon, Seonjun, and Hyunsoo Kim. 2025. "Time-Series Image-Based Automated Monitoring Framework for Visible Facilities: Focusing on Installation and Retention Period" Sensors 25, no. 2: 574. https://doi.org/10.3390/s25020574
APA StyleYoon, S., & Kim, H. (2025). Time-Series Image-Based Automated Monitoring Framework for Visible Facilities: Focusing on Installation and Retention Period. Sensors, 25(2), 574. https://doi.org/10.3390/s25020574