Colon Tumor Discrimination Combining Independent Endoscopic Probe-Based Raman Spectroscopy and Optical Coherence Tomography Modalities with Bayes Rule
Abstract
:1. Introduction
2. Results and Discussion
3. Methods
3.1. Tissue Samples
3.2. Datasets Split
3.3. Raman Instrumentation
3.4. RS Preprocessing
3.5. RS Model Validation
3.6. OCT Instrumentation
3.7. OCT Preprocessing
3.8. Texture Feature Extraction
3.9. OCT Model Validation
3.10. Combination of Modalities Using Bayes Rule
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FerFerlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer: Lyon, France. Available online: https://gco.iarc.who.int/media/globocan/factsheets/populations/900-world-fact-sheet.pdf (accessed on 18 October 2024).
- World Health Organization. Colorectal Cancer, Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer (accessed on 18 October 2024).
- Roshandel, G.; Ghasemi-Kebria, F.; Malekzadeh, R. Colorectal Cancer: Epidemiology, Risk Factors, and Prevention. Cancers 2024, 16, 1530. [Google Scholar] [CrossRef] [PubMed]
- Tariq, K.; Ghias, K. Colorectal Cancer Carcinogenesis: A Review of Mechanisms. Cancer Biol. Med. 2016, 13, 120–135. [Google Scholar] [CrossRef] [PubMed]
- Fearon, E.F.; Vogelstein, B. A Genetic Model for Colorectal Tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.H.; Goel, A.; Chung, D.C. Pathways of Colorectal Carcinogenesis. Gastroenterology 2020, 158, 291–302. [Google Scholar] [CrossRef]
- Brenner, H.; Heisser, T.; Cardoso, R.; Hoffmeister, M. Reduction in Colorectal Cancer Incidence by Screening Endoscopy. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 125–133. [Google Scholar] [CrossRef]
- Liem, B.; Gupta, N. Adenoma Detection Rate: The Perfect Colonoscopy Quality Measure or Is There More? Transl. Gastroenterol. Hepatol. 2018, 3, 19. [Google Scholar] [CrossRef]
- Krafft, C.; Schmitt, M.; Schie, I.W.; Cialla-May, D.; Matthäus, C.; Bocklitz, T.W.; Popp, J. Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches. Angew. Chem.-Int. Ed. 2017, 56, 4392–4430. [Google Scholar] [CrossRef]
- Wang, J.; Lin, K.; Zheng, W.; Yu Ho, K.; Teh, M.; Guan Yeoh, K.; Huang, Z. Simultaneous Fingerprint and High-Wavenumber Fiber-Optic Raman Spectroscopy Improves in Vivo Diagnosis of Esophageal Squamous Cell Carcinoma at Endoscopy. Sci. Rep. 2015, 5, 12957. [Google Scholar] [CrossRef]
- Barroso, E.M.; Smits, R.W.H.; Schut, T.C.B.; Ten Hove, I.; Hardillo, J.A.; Wolvius, E.B.; Baatenburg De Jong, R.J.; Koljenović, S.; Puppels, G.J. Discrimination between Oral Cancer and Healthy Tissue Based on Water Content Determined by Raman Spectroscopy. Anal. Chem. 2015, 87, 2419–2426. [Google Scholar] [CrossRef]
- Schie, I.W.; Stiebing, C.; Popp, J. Looking for a Perfect Match: Multimodal Combinations of Raman Spectroscopy for Biomedical Applications. J. Biomed. Opt. 2021, 26, 080601. [Google Scholar] [CrossRef]
- Fitzgerald, S.; Akhtar, J.; Schartner, E.; Ebendorff-Heidepriem, H.; Mahadevan-Jansen, A.; Li, J. Multimodal Raman Spectroscopy and Optical Coherence Tomography for Biomedical Analysis. J. Biophotonics 2023, 16, e202200231. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Qi, J.; Lu, J.; Wang, S.; Wu, C.; Shih, W.C.; Larin, K.V. Improvement of Tissue Analysis and Classification Using Optical Coherence Tomography Combined with Raman Spectroscopy. J. Innov. Opt. Health Sci. 2015, 8, 1550006. [Google Scholar] [CrossRef]
- van Manen, L.; Dijkstra, J.; Boccara, C.; Benoit, E.; Vahrmeijer, A.L.; Gora, M.J.; Mieog, J.S.D. The Clinical Usefulness of Optical Coherence Tomography during Cancer Interventions. J. Cancer Res. Clin. Oncol. 2018, 144, 1967–1990. [Google Scholar] [CrossRef] [PubMed]
- Schie, I.W.; Placzek, F.; Knorr, F.; Cordero, E.; Wurster, L.M.; Hermann, G.G.; Mogensen, K.; Hasselager, T.; Drexler, W.; Popp, J.; et al. Morpho-Molecular Signal Correlation between Optical Coherence Tomography and Raman Spectroscopy for Superior Image Interpretation and Clinical Diagnosis. Sci. Rep. 2021, 11, 9951. [Google Scholar] [CrossRef]
- Placzek, F.; Cordero Bautista, E.; Kretschmer, S.; Wurster, L.M.; Knorr, F.; González-Cerdas, G.; Erkkilä, M.T.; Stein, P.; Ataman, Ç.; Hermann, G.G.; et al. Morpho-Molecular Ex Vivo Detection and Grading of Non-Muscle-Invasive Bladder Cancer Using Forward Imaging Probe Based Multimodal Optical Coherence Tomography and Raman Spectroscopy. Analyst 2020, 145, 1445–1456. [Google Scholar] [CrossRef]
- Varkentin, A.; Mazurenka, M.; Blumenröther, E.; Behrendt, L.; Emmert, S.; Morgner, U.; Meinhardt-Wollweber, M.; Rahlves, M.; Roth, B. Trimodal System for in Vivo Skin Cancer Screening with Combined Optical Coherence Tomography-Raman and Colocalized Optoacoustic Measurements. J. Biophotonics 2018, 11, e201700288. [Google Scholar] [CrossRef]
- Ashok, P.C.; Praveen, B.B.; Bellini, N.; Riches, A.; Dholakia, K.; Herrington, C.S. Multi-Modal Approach Using Raman Spectroscopy and Optical Coherence Tomography for the Discrimination of Colonic Adenocarcinoma from Normal Colon. Biomed. Opt. Express 2013, 4, 2179. [Google Scholar] [CrossRef]
- Cordero Bautista, E.; Rüger, J.; Marti, D.; Mondol, A.S.; Hasselager, T.; Mogensen, K.; Hermann, G.G.; Popp, J.; Schie, I.W. Bladder Tissue Characterization Using Probe-Based Raman Spectroscopy: Evaluation of Tissue Heterogeneity and Influence on the Model Prediction. J. Biophotonics 2020, 13, e201960025. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Brozek-Pluska, B.; Musial, J.; Kordek, R.; Abramczyk, H. Analysis of Human Colon by Raman Spectroscopy and Imaging-Elucidation of Biochemical Changes in Carcinogenesis. Int. J. Mol. Sci. 2019, 20, 3398. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ishida, M.; Miki, H.; Hatta, M.; Hamada, M.; Hirose, Y.; Sekimoto, M. Significance of Desmoplastic Reactions on Tumor Deposits in Patients with Colorectal Cancer. Oncol. Lett. 2023, 25, 1. [Google Scholar] [CrossRef] [PubMed]
- Tougui, I.; Jilbab, A.; Mhamdi, J. El Impact of the Choice of Cross-Validation Techniques on the Results of Machine Learning-Based Diagnostic Applications. Healthc. Inform. Res. 2021, 27, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Chaibub Neto, E.; Pratap, A.; Perumal, T.M.; Tummalacherla, M.; Snyder, P.; Bot, B.M.; Trister, A.D.; Friend, S.H.; Mangravite, L.; Omberg, L. Detecting the Impact of Subject Characteristics on Machine Learning-Based Diagnostic Applications. NPJ Digit. Med. 2019, 2, 99. [Google Scholar] [CrossRef]
- Guo, S.; Bocklitz, T.W.; Neugebauer, U.; Popp, J. Common Mistakes in Cross-Validating Classification Models. Anal. Methods 2017, 9, 4410–4417. [Google Scholar] [CrossRef]
- Latka, I.; Mogensen, K.; Knorr, F.; Kuzucu, C.; Windirsch, F.; Sandic, D.; Popp, J.; Hermann, G.G.; Schie, I.W. Raman Spectroscopy for Instant Bladder Tumor Diagnosis: System Development and In Vivo Proof-Of-Principle Study in Accordance with the European Medical Device Regulation (MDR2017/745). Cancers 2024, 16, 3238. [Google Scholar] [CrossRef]
- Ryabchykov, O.; Bocklitz, T.; Ramoji, A.; Neugebauer, U.; Foerster, M.; Kroegel, C.; Bauer, M.; Kiehntopf, M.; Popp, J. Automatization of Spike Correction in Raman Spectra of Biological Samples. Chemom. Intell. Lab. Syst. 2016, 155, 1–6. [Google Scholar] [CrossRef]
- Eilers, P.H.; Boelens, H.F. Boelens Baseline Correction with Asymmetric Least Squares Smoothing. Leiden Univ. Med. Cent. Rep. 2005, 1, 5. [Google Scholar]
- Lee, C.M.; Engelbrecht, C.J.; Soper, T.D.; Helmchen, F.; Seibel, E.J. Scanning Fiber Endoscopy with Highly Flexible, 1-Mm Catheterscopes for Wide-Field, Full-Color Imaging. J. Biophotonics 2010, 3, 385–407. [Google Scholar] [CrossRef]
- Attendu, X.; Ruis, R.M.; Boudoux, C.; van Leeuwen, T.G.; Faber, D.J. Simple and Robust Calibration Procedure for K-Linearization and Dispersion Compensation in Optical Coherence Tomography. J. Biomed. Opt. 2019, 24, 1. [Google Scholar] [CrossRef]
- Movellan, J.R. Tutorial on Gabor Filters. Open Source Doc. 2002, 40, 1–23. [Google Scholar]
- Bianconi, F.; Fernández, A. Evaluation of the Effects of Gabor Filter Parameters on Texture Classification. Pattern Recognit. 2007, 40, 3325–3335. [Google Scholar] [CrossRef]
- Cerkezi, L.; Topal, C. Towards More Discriminative Features for Texture Recognition. Pattern Recognit. 2020, 107, 107473. [Google Scholar] [CrossRef]
- Xiao, Y.; Cao, Z.; Wang, L.; Li, T. Local Phase Quantization plus: A Principled Method for Embedding Local Phase Quantization into Fisher Vector for Blurred Image Recognition. Inf. Sci. 2017, 420, 77–95. [Google Scholar] [CrossRef]
- Gossage, K.W.; Tkaczyk, T.S.; Rodriguez, J.J.; Barton, J.K. Texture Analysis of Optical Coherence Tomography Images: Feasibility for Tissue Classification. J. Biomed. Opt. 2003, 8, 570. [Google Scholar] [CrossRef] [PubMed]
- Bours, M.J. Bayes’ Rule in Diagnosis. J. Clin. Epidemiol. 2021, 131, 158–160. [Google Scholar] [CrossRef]
# of subjects | # of healthy samples | # of tumor samples | Total |
27 | 21 | 40 | 61 |
# of healthy records | # of tumor records | Total | |
RS | 132 | 171 | 303 |
OCT | 144 | 202 | 346 |
Wavenumber [cm−1] | Bond Assignment | Reference |
---|---|---|
853 | proline, hydroxyproline, and tyrosine | [10] |
935 | C–C stretching of proline | [21] |
1078 | alkyl C–C gauche stretches in lipids | [10] |
1265 | Amide III and Amide I | [10] |
1302 | CH2 twisting | [10] |
1451 | CH2 and CH3 deformation | [21] |
1661 | Amide III and Amide I | [22] |
2860 | CH2 symmetric stretch of lipids | [11] |
2890 | CH2 asymmetric stretch | [11] |
2935 | CH3 symmetric band | [21] |
3010 | unsaturated =CH stretch | [11] |
3210 | water OH-stretching and NH-stretching | [11] |
RS | Predicted | |||
---|---|---|---|---|
Tumor | Healthy | |||
True Label | Tumor | 149 | 22 | Sensitivity 0.87 |
Healthy | 43 | 89 | Specificity 0.67 | |
Precision 0.78 | Negative predictive value 0.80 | Accuracy 0.79 | ||
OCT | Predicted | |||
Tumor | Healthy | |||
True Label | Tumor | 145 | 57 | Sensitivity 0.72 |
Healthy | 36 | 108 | Specificity 0.75 | |
Precision 0.80 | Negative predictive value 0.65 | Accuracy 0.73 |
Predicted | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Confirmatory Test (C-Test) | Screening Test (S-Test) | Youden Index | ||||||||
Tumor | Healthy | Tumor | Healthy | Tumor | Healthy | |||||
True label | RS and OCT | |||||||||
Tumor | 33 | 7 | Sen. 0.83 | 36 | 4 | Sen. 0.90 | 33 | 7 | Sen. 0.83 | |
Healthy | 2 | 19 | Spec. 0.90 | 5 | 16 | Spec. 0.76 | 2 | 19 | Spec. 0.90 | |
Prec. 0.94 | NPV 0.73 | Accu. 0.85 | Prec. 0.88 | NPV 0.80 | Accu. 0.85 | Prec. 0.94 | NPV 0.73 | Accu. 0.85 | ||
RS | ||||||||||
Tumor | 12 | 28 | Sens. 0.30 | 36 | 4 | Sen. 0.90 | 39 | 1 | Sen. 0.98 | |
Healthy | 2 | 19 | Spec. 0.90 | 9 | 12 | Spec. 0.57 | 10 | 11 | Spec. 0.52 | |
Prec. 0.86 | NPV 0.40 | Accu. 0.51 | Prec. 0.80 | NPV 0.75 | Accu. 0.79 | Prec. 0.80 | NPV 0.92 | Accu. 0.82 | ||
OCT | ||||||||||
Tumor | 24 | 16 | Sen. 0.60 | 36 | 4 | Sen. 0.90 | 33 | 7 | Sen. 0.81 | |
Healthy | 2 | 19 | Spec. 0.90 | 8 | 13 | Spec. 0.62 | 4 | 17 | Spec. 0.81 | |
Prec. 0.92 | NPV 0.54 | Accu. 0.70 | Prec. 0.82 | NPV 0.76 | Accu. 0.80 | Prec. 0.89 | NPV 0.71 | Accu. 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasquez, D.L.; Kreft, C.; Latka, I.; Popp, J.; Mantke, R.; Schie, I.W. Colon Tumor Discrimination Combining Independent Endoscopic Probe-Based Raman Spectroscopy and Optical Coherence Tomography Modalities with Bayes Rule. Int. J. Mol. Sci. 2024, 25, 13306. https://doi.org/10.3390/ijms252413306
Vasquez DL, Kreft C, Latka I, Popp J, Mantke R, Schie IW. Colon Tumor Discrimination Combining Independent Endoscopic Probe-Based Raman Spectroscopy and Optical Coherence Tomography Modalities with Bayes Rule. International Journal of Molecular Sciences. 2024; 25(24):13306. https://doi.org/10.3390/ijms252413306
Chicago/Turabian StyleVasquez, David L., Calvin Kreft, Ines Latka, Jürgen Popp, René Mantke, and Iwan W. Schie. 2024. "Colon Tumor Discrimination Combining Independent Endoscopic Probe-Based Raman Spectroscopy and Optical Coherence Tomography Modalities with Bayes Rule" International Journal of Molecular Sciences 25, no. 24: 13306. https://doi.org/10.3390/ijms252413306
APA StyleVasquez, D. L., Kreft, C., Latka, I., Popp, J., Mantke, R., & Schie, I. W. (2024). Colon Tumor Discrimination Combining Independent Endoscopic Probe-Based Raman Spectroscopy and Optical Coherence Tomography Modalities with Bayes Rule. International Journal of Molecular Sciences, 25(24), 13306. https://doi.org/10.3390/ijms252413306