Asymmetric Synthesis of Naturally Occuring Spiroketals
Abstract
:1. Introduction
2. Asymmetric Total Synthesis of Natural Spiroketals
2.1 Enantioselective Total Synthesis of Okaspirodiol
2.2. Enantiospecific synthesis of the heparanase inhibitor (+)-trachyspic acid and its stereoisomer from a common precursor.
2.3. Enantioselective total synthesis of the anti-Helicobacter pyroli agent (+)-spirolaxine methyl ether.
2.3.1 Brimble Synthesis
2.3.2. Dallavalle Synthesis
2.3.3. Phillips Synthesis
2.4. Synthesis of anti-Helicobacter pylori agents CJ-12,954 and CJ-13,014
2.5. Enantioselective Synthesis of aculeatins A, B, D and 6-epi-aculeatin D
2.5.1. Falomir Synthesis
2.5.2. Chandrasekhar Synthesis of aculeatins A and B
2.5.3. Wong Synthesis
2.6. Enantioselective Total synthesis of (+)-Aigialospirol
2.7. Enantioselective Synthesis of 2,7-Dimethyl-1,6-dioxaspiro[4.6]undecane and 2,7-diethyl-1,6-dioxaspiro[4.6]undecane using functionalized nitroalkane synthons
2.9. Total Synthesis of Reveromycin-A
2.9.1. Rizzacasa Synthesis
2.9.2. Shimizu and Nakata Synthesis
2.10. Total synthesis of (-)-Reveromycin B
2.10.1. Rizzacasa Synthesis
2.10.2. Theodorakis Synthesis
2.10.3. Shimizu-Nakata Synthesis
2.11. Total synthesis of (+)-bistramide C
2.12. Total synthesis of Attenol A
2.12.1. Weghe and Eustache Synthesis
2.12.2. D. Enders Synthesis
2.12.3. Suenaga and Uemura Synthesis
2.12.4. Rychnovsky Synthesis
2.13. Stereoselective Total Synthesis of Bistramide A
2.13.1. Yadav Synthesis
2.13.2. Kozmin Synthesis
2.13.3. Crimmins Synthesis
2.13.4. Panek Synthesis
2.14. Asymmetric Total Synthesis of (-)-Spirofungin A and (+)-Spirofungin B
2.15. Total Synthesis of (+)-Calyculin A and (-)-Calyculin B
2.16. Asymmetric synthesis of spiroacetal 2,2,8-trimethyl-1,7-dioxaspiro[5.5]undecane found in rove beetles (Ontholestes murinus)
2.17. Total Synthesis of (+)-Saponaceolide B
2.18. Enantiospecific total synthesis of (-)-Talaromycins C and E
2.19. Total synthesis of Siphonarin B and Dihydrosiphonarin B
Conclusions
References and Notes
- Perron, F.; Albizati, K. F. Chemistry of spiroketals. Chem. Rev. 1989, 89, 1617–1661. [Google Scholar]
- Mead, K. T.; Brewer, B. N. Strategies in spiroketal synthesis revisited: Recent applications and advances. Curr. Org. Chem. 2003, 7, 227–256. [Google Scholar]
- Brimble, M. A.; Furkert, D. P. Chemistry of bis-spiroacetal systems: Natural products, synthesis and stereochemistry. Curr. Org. Chem. 2003, 7, 1461–1484. [Google Scholar] [CrossRef]
- Koshino, H.; Takahashi, H.; Osada, H.; Isono, K. Reveromycins, new inhibitors of eukaryotic cell growth. J. Antibiot. 1992, 45, 1420–1427. [Google Scholar]
- Shimizu, T.; Machida, K.; Furuya, K.; Osada, H.; Nakata, T. Chemical modification of reveromycin A and its biological activities. Bioorg. Med. Chem. Lett. 2002, 12, 3363–3366. [Google Scholar] [CrossRef]
- Pettit, G. R.; Inoue, M.; Kamano, Y.; Herald, D. L.; Arm, C.; Dufresne, C.; Christie, N. D.; Schmidt, J. M.; Doubek, D. L.; Krupa, T. S. Antineoplastic agents. 147. Isolation and structure of the powerful cell growth inhibitor cephalostatin1. J. Am. Chem. Soc. 1998, 120, 2006–2007. [Google Scholar]
- Muller, I. M.; Dirsch, V. M.; Rudy, A.; Lopez-Anton, N.; Pettit, G. R.; Vollmar, A. M. Cephalostatin 1 inactivates Bcl-2 by hyperphosphorylation independent of M-phase arrest and DNA damage. Mol. Pharmacol. 2005, 67, 1684–1689. [Google Scholar] [CrossRef]
- Ueno, T.; Takahashi, H.; Oda, M.; Mizunuma, M.; Yokoyama, A.; Goto, Y.; Mizushina, Y.; Sakaguchi, K.; Hayashi, H. Inhibition of human telomerase by rubromycins: Implication of spiroketal system of the compounds as an active moiety. Biochemistry 2000, 39, 5995–6002. [Google Scholar] [CrossRef]
- Li, A.; Piel, J. Gene cluster from a marine streptomyces encoding the biosynthesis of the aromatic spiroketal polyketide griseorhodin A. Chem. Biol. 2002, 9, 1017–1026. [Google Scholar] [CrossRef]
- Francke, W.; Kitching, W. Spiroacetals in insects. Curr. Org. Chem. 2001, 5, 233–251. [Google Scholar] [CrossRef]
- Exceptions were reported, e.g.: Stok, J. E.; Lang, C.-S.; Schwartz, B. D.; Fletcher, M. T.; Kitching, W.; de Voss, J. J. Carbon hydroxylation of alkyltetrahydropyranols: A paradigm for spiroacetal biosynthesis in Bactrocera sp. Org. Lett. 2001, 3, 397–400. [Google Scholar] references [1] and [10]
- Bender, T.; Schuhmann, T.; Magull, J.; Grond, S.; Zezschwitz, P. Comprehensive study of okaspirodiol: characterization, total synthesis, and biosynthesis of a new metabolite from streptomyces. J. Org. Chem 2006, 71, 7125–7132. [Google Scholar] [CrossRef]
- Philips, C.; Jacobson, R.; Abrahams, B.; Williams, H. J.; Smith, L. R. Useful route to 1,6-dioxaspiro[4.4]nonane and 1,6-dioxaspiro[4.5]decane derivatives. J. Org. Chem. 1980, 45, 1920–1924. [Google Scholar] [CrossRef]
- Hayes, P.; Fletcher, M. T.; Moore, C. J.; Kitching, W. Synthesis and absolute stereochemistry of a constitutionally new spiroacetal from an insect. J. Org. Chem. 2001, 66, 2530–2533. [Google Scholar] [CrossRef]
- Hungerbuhler, E.; Naef, R.; Wasmuth, D.; Seebach, D.; Loosli, H. R.; Wehrli, A. Synthesis of optically active 2-methyl- and 2-methyl-1,6-dioxaspiro[4.4] nonane and –[4.5] decane pheromones from common chiral precursor. Helv. Chim. Acta. 1980, 63, 1960–1970. [Google Scholar] [CrossRef]
- Ueki, T.; Kinoshita, T. Stereoselective synthesis and structure of butalactin and lactone II isolated from Streptomyces species. Org. Biomol. Chem. 2004, 2, 2777–2785. [Google Scholar] [CrossRef]
- White, J. D.; Somers, T. C.; Reddy, G. N. Degradation and absolute configurational assignment to C34-botryococcene. J. Org. Chem. 1992, 57, 4991–4998. [Google Scholar] [CrossRef]
- Phillips, C.; Jacobsen, R.; Abrahams, B.; Williams, H. J.; Smith, L. R. Useful route to 1,6-dioxaspiro[4.4]nonane and 1,6-dioxaspiro[4.5]decane derivatives. J. Org. Chem. 1980, 45, 1920–1924. [Google Scholar] [CrossRef]
- Shiozawa, H.; Takahashi, M.; Takatsu, T.; Kinishita, T.; Tanazawa, K.; Hosoya, T.; Furuya, K.; Takahashi, S.; Furihata, K.; Seta, H. Trachyspic acid, a new metabolite produced by talaromyces trachyspermus, that inhibits tumor cell heparanase: Taxonomy of the producing strain, fermentation, isolation, structural elucidation, and biological activity. J. Antibiot. 1995, 48, 357–362. [Google Scholar] [CrossRef]
- For a recent review see: Neta, I.; Micheal, E.; Israel, V. Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int. J. Biochem. Cell Biol. 2006, 38, 2018–2039. [Google Scholar] [CrossRef]
- Zammit, S.C.; Ferro, V.; Hammond, E.; Rizzacasa, M. A. Enantiospecific synthesis of the heparanase inhibitor (+)-trachyspic acid and stereoisomers from a common precursor. Org. Biomol. Chem. 2007, 5, 2826–2834. [Google Scholar] [CrossRef]
- Zammit, S.C.; White, J. M. Rizzacasa, Enantiospecific synthesis of (–)-trachyspic acid. Org. Biomol. Chem. 2005, 3, 2073. [Google Scholar] [CrossRef]
- Di Florio, R.; Rizzacasa, M. A. Synthesis of 2,2-disubstituted furanoid natural products: Total synthesis of sphydrofuran. J. Org. Chem. 1998, 63, 8595–8598. [Google Scholar] [CrossRef]
- Giuliano, R. M.; Villani, F. J., Jr. Stereoselectivity of addition of organometallic reagents to pentodialdo-1,4-furanoses: Synthesis of L-axenose and D-evermicose from a common intermediate. J. Org. Chem. 1995, 60, 202–211. [Google Scholar] [CrossRef]
- Kingsbury, C. L.; Sharp, K. S.; Smith, R. A. J. Effects of dimethyl sulfide on the reaction of dibutylcopper reagents with α,β-unsaturated ketones. Tetrahedron 1999, 55, 14693–14700. [Google Scholar] [CrossRef]
- Laschober, R.; Stadlbauer, W. Synthesis of 3-heptyl- and 3-nonyl-2,4(1H,3H)-quinolinediones. Liebigs Ann. Chem. 1990, 11, 1083–1086. [Google Scholar]
- McDougal, P. G.; Rico, J. G.; Oh, Y.; Condon, B. D. A convenient procedure for the monosilylation of symmetric 1,n-diols. J. Org. Chem. 1986, 51, 3388–3390. [Google Scholar] [CrossRef]
- Corey, E. J.; Fuchs, P. L. A synthetic method for formyl→ethynyl conversion. Tetrahedron Lett. 1972, 13, 3769–3772. [Google Scholar] [CrossRef]
- Hirai, K.; Ooi, H.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Total synthesis of (±)-trachyspic acid and determination of the relative configuration. Org. Lett. 2003, 5, 857–859. [Google Scholar] [CrossRef]
- Martin, S. F.; Dodge, J. A. Efficacious modification of the mitsunobu reaction for inversions of sterically hindered secondary alcohols. Tetrahedron Lett. 1991, 32, 3017–3020. [Google Scholar] [CrossRef]
- Deffieux, G.; Baute, R.; Baute, M.-A.; Neven, A. A new metabolite produced by the fungus corticium caeruleum (sehrad.ex.Fr.) Fr. (Aphyllophorales): Cortciolic acid, isolation and chemical structure. C. R. Hebd. Seances Acad. Sci. Ser. D 1979, 288, 647–649. [Google Scholar]
- Robinson, J. E.; Brimble, M. A. The first enantioselective total synthesis of the anti-Helicobacter pylori agent (+)-spirolaxine methyl ether. Chem. Commun. 2005, 1560–1562. [Google Scholar] [CrossRef]
- Gauthier, D. R., Jr.; Carreira, E. M. Catalytic, enantioselective addition of allylsilanes to aldehydes: generation of a novel, reactive TiIV complex from TiF4. Angew. Chem., Int. Ed. 1996, 35, 2363–2365. [Google Scholar] [CrossRef]
- Cotterill, A. S.; Gill, M.; Gimenez, A.; Milanovic, N. M. Pigments of fungi. Part 38. Synthesis of austrocorticinic acid and (S)-(–)-austrocorticin; absolute stereochemistry of natural austrocorticin. J. Chem. Soc. Perkin Trans. 1 1994, 1, 3269–3276. [Google Scholar]
- The effect of LiBr on acetylide addition reactions has been noted: Van Rijn, P. E.; Mommers, S.; Visser, R. G.; Verkruijsse, H. D.; Brandsma, L. An efficient one-spot procedure for methyl ethers derived from tertiary acetylenic alcohols: strong influence of lithium bromide upon the coupling between propynyl lithium and cyclopentanone or cyclohexanone. Synthesis 1981, 459–460. [Google Scholar]
- Blakemore, P. R. The modified Julia olefination: alkene synthesis via the condensation of metallated heteroarylalkylsulfones with carbonyl compounds. J. Chem. Soc. Perkin Trans. 1 2002, 2563–2585. [Google Scholar] [CrossRef]
- Ley, S. V.; Humphries, A. C.; Eick, H.; Downham, R.; Ross, A. R.; Boyce, R. J.; Pavey, J. B. J.; Pietruszka, J. Total synthesis of the protein phosphatase inhibitor okadaic acid. J. Chem. Soc., Perkin Trans. 1 1998, 3907–3912. [Google Scholar]
- Nannei, R.; Dallavalle, S.; Merlini, L.; Bava, A.; Nasini, G. Synthesis of (+)-spirolaxine methyl ether. J. Org. Chem. 2006, 71, 6277–6280. [Google Scholar] [CrossRef]
- Arundale, E.; Mikeska, L. A. The olefin-aldehyde condensation. The Prins reaction. Chem. Rev. 1952, 52, 505–555. [Google Scholar] [CrossRef]
- Brown, H. C.; Jadhav, P. K. Asymmetric carbon-carbon bond formation via β-allyldiisopino-camphenylborane. Simple synthesis of secondary homoallylic alcohols with excellent enantiomeric purities. J. Am. Chem. Soc. 1983, 105, 2092–2093. [Google Scholar] [CrossRef]
- Coppi, L.; Ricci, A.; Taddei, M. Lewis acid-mediated condensation of alkenols and aldehydes. A selective synthesis of tetrahydropyrans and oxepanes. J. Org. Chem. 1988, 53, 911–913. [Google Scholar] [CrossRef]
- Dallallavalle, S.; Merlini, L.; Nannei, R.; Nasini, G.; Bava, A. A synthetic approach to sporotricale methylether. Synlett 2005, 17, 2676–2678. [Google Scholar]
- Keaton, K. A.; Phillips, A. J. Cyclopropanol-based strategy for subunit coupling: Total synthesis of (+)-spirolaxine methyl ether. J. Org. Lett. 2007, 9, 2717–2719. [Google Scholar] [CrossRef]
- Kulinkovich, O. G.; de Meijere, A. 1,n-Dicarbanionic titanium intermediates from mono-carbanionic organometallics and their application in organic synthesis. Chem. Rev. 2000, 100, 2789–2834. [Google Scholar] [CrossRef]
- Netherton, M. R.; Dai, C.; Neuschutz, K.; Fu, G. C. Room-temperature alkyl-alkyl Suzuki cross-coupling of alkyl bromides that possess beta hydrogens. J. Am. Chem. Soc. 2001, 123, 10099–100100. [Google Scholar] [CrossRef]
- Dekker, K. A.; Inagaki, T.; Gootz, T. D.; Kaneda, K.; Nomura, E.; Sakakibara, T.; Sakemi, S.; Sugie, Y.; Yamauchi, Y.; Yoshikawa, N.; Kojima, N. CJ-12,954 and its congeners, new anti-Helicobacter pylori compounds produced by Phanerochaete velutina: fermentation, isolation, structural elucidation and biological activities. J. Antibiot. 1997, 50, 833–839. [Google Scholar] [CrossRef]
- Brimble, M. A.; Bryant, C. J. Synthesis of the spiroacetal-containing anti-Helicobacter pylori agents CJ-12,954 and CJ-13,014. Chem. Commun. 2006, 4506–4508. [Google Scholar] [CrossRef]
- Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C.-P.; Singh, V. K. A stable and easily prepared catalyst for the enantioselective reduction of ketones. Applications to multistep syntheses. J. Am. Chem. Soc. 1987, 109, 7925–7926. [Google Scholar]
- Freeman, F.; Kim, D. S. H. L.; Rodriguez, E. Preparation of 1,4-diketones and their reactions with bis(trialkyltin) or bis(triphenyltin) sulfide-boron trichloride. J. Org. Chem. 1992, 57, 1722–1727. [Google Scholar] [CrossRef]
- Blakemore, P. R. The modified Julia olefination: alkene synthesis via the condensation of metallated heteroarylalkylsulfones with carbonyl compounds. J. Chem. Soc. Perkin Trans. 1 2002, 2563–2585. [Google Scholar]
- lvarez-Bercedo, P.; Falomir, E.; Carda, M.; Marco, J. A. Enantioselective synthesis and absolute configurations of aculeatins A, B, D and 6-epi-aculeatin D. Tetraherdon 2006, 62, 9641–9649. [Google Scholar]
- Ronald, R. C.; Wheeler, C. J. Synthesis of the simple flavonoid broussonin A. J. Org. Chem. 1984, 49, 1658–1660. [Google Scholar] [CrossRef]
- For review see: Ramachandran, P.V. Pinane-based versatile “allyl” boranes. Aldrichimica Acta 2002, 35, 23–35. [Google Scholar]
- Tsuji, J. Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Winterfeldt, E., Eds.; Pergamon: Oxford, UK, 1993; Vol. 7, pp. 449–468. [Google Scholar]
- Cowden, C. J.; Paterson, I. Organic Reactions; Paquette, L. A., Ed.; Wiley: New York, USA, 1997; Vol. 51, pp. 1–200. [Google Scholar]
- The addition step of the enolborane of β-alkoxy methyl ketone 101 to n-tetradecanal takes place with complete stereoselectivity, which reflects a high anti-1,5-induction. Paterson, I.; Gibson, K. R.; Oballa, R. M. Remote, 1,5-anti stereoinduction in the boron-mediated aldol reactions of β-oxygenated methyl ketones. Tetrahedron Lett. 1996, 37, 8585–8588. [Google Scholar] [CrossRef]
- Wong, Y-S. Synthesis of (±)-aculeatins A and B. Chem. Commun. 2002, 686–687. [Google Scholar] [CrossRef]
- Moriarty, R. M. Organohypervalent iodine: Development, applications, and future directions. J. Org. Chem. 2005, 70, 2893–2903. [Google Scholar] [CrossRef]
- Evans, D. A.; Chapman, K. T.; Carreira, E. M. Directed reduction of β-hydroxy ketones employing tetramethylammonium triacetoxyborohydride. J. Am. Chem. Soc. 1988, 110, 3560–3578. [Google Scholar] [CrossRef]
- Scheidt, K. A.; Chen, H.; Follows, B. C.; Chemler, S. R.; Coffey, D. S.; Roush, W. R. Tris(dimethylamino)sulfonium difluorotrimethylsilicate, a mild reagent for the removal of silicon protecting groups. J. Org. Chem. 1998, 63, 6436–6437. [Google Scholar] [CrossRef]
- Chandrasekhar, S.; Rambabu, C.; Shyamsunder, T. Total synthesis of aculeatins A and B via a tethered oxa-Michael approach. Tetrahedron Lett. 2007, 48, 4683–4685. [Google Scholar] [CrossRef]
- Hanawa, H.; Hashimoto, T.; Maruoka, K. Bis(((S)-binaphthoxy)(isopropoxy)titanium) oxide as a μ-oxo-type chiral Lewis acid: application to catalytic asymmetric allylation of aldehydes. J. Am. Chem. Soc. 2003, 125, 1708–1709. [Google Scholar] [CrossRef]
- Evans, D. A.; Gouchet-Prunet, J. A. Diastereoselective synthesis of protected syn 1,3-diols by base-catalyzed intramolecular conjugate addition of hemiacetal-derived alkoxide nucleophiles. J. Org. Chem. 1993, 58, 2446–2453. [Google Scholar] [CrossRef]
- Zhadankin, V. V.; Stang, P. J. Recent developments in the chemistry of polyvalent iodine compounds. Chem. Rev. 2002, 102, 2523–2584. [Google Scholar] [CrossRef]
- Peuchmaur, M.; Wong, Y.-S. Diastereoconvergent strategies for the synthesis of homochiral aculeatins. J. Org. Chem. 2007, 72, 5374–5379. [Google Scholar] [CrossRef]
- Nokami, J.; Ohga, M.; Nakamoto, H.; Matsubara, T.; Hussain, I.; Kataoka, K. The first and highly enantioselective crotylation of aldehydes via an allyl-transfer reaction from a chiral crotyl-donor. J. Am. Chem. Soc. 2001, 123, 9168–9169. [Google Scholar] [CrossRef]
- Wiseman, J. M.; McDonald, F. E.; Liotta, D. C. 1-Deoxy-5-hydroxysphingolipids as new anticancer principles: An Efficient Procedure for stereoselective syntheses of 2-amino-3, 5-diols. Org. Lett. 2005, 7, 3155–3157. [Google Scholar] [CrossRef]
- Vongvilai, P.; Isaka, M.; Kittakoop, P.; Prasert Srikitikulchai, P.; Kongsaeree, P.; Thebtaranonth, Y. Ketene acetal and spiroacetal constituents of the marine fungus Aigialus parvus BCC 5311. J. Nat. Prod. 2004, 67, 457–460. [Google Scholar] [CrossRef]
- Isaka, M.; Suyarnsestakorn, C.; Tanticharoen, M.; Kongsaeree, P.; Thebtaranonth, Y. Aigialomycins A-E, New resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J. Org. Chem. 2002, 67, 1561–1566. [Google Scholar] [CrossRef]
- Tanaka, H.; Nishida, K.; Sugita, K.; Yoshioka, T. Antitumor efficacy of hypothemycin, a new Ras-signaling inhibitor. Jpn. J. Cancer Res. 1999, 90, 1139–1145. [Google Scholar] [CrossRef]
- Figueroa, R.; Hsung, R. P.; Guevarra, C. C. An enantioselective total synthesis of (+)-Aigialospirol. Org. Lett. 2007, 9, 4857–4859. [Google Scholar] [CrossRef]
- Hansen, T. V. Synthesis of (R)-(−)-argentilactone. Tetrahedron: Asymmetry 2002, 13, 547–550. [Google Scholar] [CrossRef]
- Khalaf, J. K.; Datta, A. Stereoselective route to the ezoaminuroic acid core of the ezomycins. J. Org. Chem. 2005, 70, 6937–6940. [Google Scholar] [CrossRef]
- Sakakura, A.; Suzuki, K.; Nakano, K.; Ishihara, K. Chiral 1,1'-binaphthyl-2,2'-diammonium salt catalysts for the enantioselective Diels-Alder reaction with –acyloxyacroleins. Org. Lett. 2006, 8, 2229–2232. [Google Scholar] [CrossRef]
- Ko, C.; Hsung, R. P. An unusual stereoselectivity in the anomeric substitution with carbamates promoted by HNTf2. Org. Biomol. Chem. 2007, 7, 431–434. [Google Scholar]
- Trnka, T. M.; Grubbs, R. H. The development of L2X2Ru=CHR olefin metathesis catalysts: An organometallic success story. Acc. Chem. Res. 2001, 34, 18–29. [Google Scholar] [CrossRef]
- Snieckus, V. Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics. Chem. Rev. 1990, 90, 879–933. [Google Scholar] [CrossRef]
- Selles, P.; Lett, R. Convergent stereospecific synthesis of C292 (or LL-Z1640-2), and hypothemycin. Part 1. Tetrahedron Lett. 2002, 43, 4621–4625. [Google Scholar] [CrossRef]
- Bez, G.; Bezbarua, M. S.; Saikia, A. K.; Barua, N. C. Short enantioselective syntheses of both 2,7-dimethyl-1,6-dioxaspiro[4.6]undecane and 2,7-diethyl-1,6-dioxaspiro[4.6]undecane using functionalized nitroalkane synthons. Synthesis 2000, 4, 537–540. [Google Scholar]
- Francke, W.; Reith, W.; Bergstrom, G.; Tengoe, J. Pheromone bonquet of the mandibular glands in adrenahaemorrhoa F (Hym., Apoida). Z. Naturforsch. Teil C 1981, 36, 928–932. [Google Scholar]
- Bergstroem, G.; Tengoe, J.; Reith, W.; Francke, W. Multicomponent mandibular gland secretions in three species of Andrena bees (Hym., Apoida). Z. Naturforsch., C, J. Biosci. 1982, 37C, 1124–1129. [Google Scholar]
- Saikia, A. K.; Hazarika, M. J.; Barua, N. C.; Bezbarua, Maitreyee, S.; Sharma, R. P.; Ghosh, A. C. Direct synthesis of keto nitroaliphatics via retro-Henry reaction of cyclic 2-nitroalcohols by anhydrous copper sulfate adsorbed on silica gel. A short synthesis of (±)-phoracantholide I. Synthesis 1996, 981–985. [Google Scholar]
- Occhiato, E. G.; Guranna, A.; Descrlo, F.; Scarpi, D. Baker’s yeast reduction of prochiral γ-nitroketones.II. straightforward enantioselective synthesis of 2,7-dimethyl-1,6-dioxaspiro[4.4]nonanes. Tetrahedron: Asymmetry 1995, 6, 2971–2976. [Google Scholar] [CrossRef]
- Ghosh, S. K.; Hsung, R. P.; Wang, J. Ketal-tethered ring-closing metathesis. An unconventional approach to constructing spiroketals and total synthesis of an insect pheromone. Tetrahedron Lett. 2004, 45, 5505–5510. [Google Scholar] [CrossRef]
- Tengoe, J.; Bergstroem, G.; Borg-Karlson, A. K.; Groth, I.; Francke, W. Volatile compounds from cephalic secretions of females in two cleptoparacite bee genera, Epeolus (Hym., Anthophoridea) and Coelioxys (Hym.’ Megachilidae). Z. Naturforsch., C, J. Biosci. 1982, 37, 376–380. [Google Scholar]
- Isaksson, R.; Liljefors, L.; Reinholdsson, P. Preparative separation of the enantiomers of trans,trans- and cis,trans-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, main pheromone components of Adrena bees, by liquid chromatography on triacetycellulose. J. Chem. Soc. Chem. Commun. 1984, 137–138. [Google Scholar]
- Boeckman, R. K., Jr.; Bruza, K. J. A simplified isoquinoline synthesis. Tetrahedron 1981, 37, 39–97. [Google Scholar]
- Ballini, R.; Bosica, G.; Schaafstra, R. Nitroketones in organic synthesis: a new short synthesis of racemic trans 2-methyl-1,7-dioxaspiro[5.5]undecane, trans, trans-and trans, cis-2,78-dimethyl-1,7-dioxaspiro[5.5]undecane by Henry reaction. Liebig Ann. chem. 1994, 1235–1237. [Google Scholar] [CrossRef]
- Weber, G. F.; Hall, S. S. The chemistry of 2-alkoxy-3, 4-dihydro-2H-pyrans. 7. Effect of substituents on the reactivity of various alkyl- and phenyl-substituted 3, 4-dihydro-2H-pyrans with tert-butyl hypochlorite. J. Org. Chem. 1979, 44, 364–368. [Google Scholar] [CrossRef]
- Takahashi, H.; Osada, H.; Koshino, H.; Kudo, T.; Amano, S.; Shimizu, S.; Yoshihama, M.; Isono, K. Reveromycins, new inhibitors of eukaryotic cell growth. J. Antibiot. 1992, 45, 1409–1413. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Machida, K.; Mizunuma, M.; Emoto, Y.; Sato, N.; Miyahara, K.; Hirata, D.; Usui, T.; Takahashi, H.; Osada, H.; Miyakawa, T. Identification of saccharomyces cerevisiae isoleucyl-tRNA synthetase as a target of the G1-specific inhibitor reveromycin A. J. Biol. Chem. 2002, 277, 28810–28814. [Google Scholar] [CrossRef]
- Sous, M. E.; Ganame, D.; Tregloan, P. A.; Rizzacasa, M. A. Total synthesis of (-)-reveromycin A. Org. Lett. 2004, 6, 3001–3004. [Google Scholar] [CrossRef]
- Bednarski, M.; Danishefsky, S. J. Mild Lewis acid catalysis: tris(6,6,7,7,8,8,8- heptafluoro-2,2-dimethyl-3,5-octanedionato)europium-mediated hetero-Diels-Alder reaction. J. Am. Chem. Soc. 1983, 105, 3716–3717. [Google Scholar] [CrossRef]
- Cuzzupe, A. N.; Hutton, C. A.; Lilly, M. J.; Mann, R. K.; Rizzacasa, M. A.; Zammit, S. C. Total synthesis of (-)-reveromycin B. Org. Lett. 2000, 2, 191–194. [Google Scholar] [CrossRef]
- Dess, D. B.; Martin, J. C. A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species. J. Am. Chem. Soc. 1991, 113, 7277–7287. [Google Scholar] [CrossRef]
- Nagao, Y.; Hagiwara, Y.; Kumagi, T.; Ochiai, M.; Inoue, T.; Hashimoto, K.; Fujita, E. New C-4-chiral 1, 3-thiazolidine-2-thiones: excellent chiral auxiliaries for highly diastereo-controlled aldol-type reactions of acetic acid and α,β-unsaturated aldehydes. J. Org. Chem. 1986, 51, 2391–2393. [Google Scholar] [CrossRef]
- Cuzzupe, A. N.; Hutton, C. A.; Lilly, M. J.; Mann, R. K.; McRae, K. J.; Rizzacasa, M. A.; Zammit, S. C. Total synthesis of the epidermal growth factor inhibitor (-)-reveromycin B. J. Org. Chem. 2001, 66, 2382–2393. [Google Scholar] [CrossRef]
- Zhang, H. X.; Guibe, F.; Balavoine, G. Palladium- and molybdenum-catalyzed hydrostannation of alkynes. A novel access to regio- and stereodefined vinylstannanes. J. Org. Chem. 1990, 55, 1857–1867. [Google Scholar] [CrossRef]
- Hungerbuhler, E.; Seebach, D.; Wasmuth, D. Enantiomerically pure synthetic building blocks with four C-atoms and two or three functional groups from β -hydroxybutanoic, malic, and tartaric acids. Helv. Chim. Acta 1981, 64, 1467–1487. [Google Scholar] [CrossRef]
- Shimizu, T.; Masuda, T.; Hiromoto, K.; Nakata, T. Total synthesis of reveromycin A. Org. Lett. 2000, 2, 2153–2156. [Google Scholar] [CrossRef]
- Shimizu, T.; Kobayashi, R.; Ohmori, H.; Nakata, T. Synthesis of dicarboxylic monoesters with cyclic anhydrides under high pressure. Synlett 1995, 650–652. [Google Scholar]
- Tsunoda, T.; Yamamiya, Y.; Yumi Kawamura, Y.; Itô, S. Mitsunobu acylation of sterically congested secondary alcohols by N,N,N’,N’-tetramethylazodicarboxamide-tributylphosphine reagents. Tetrahedron Lett. 1995, 36, 2529–2530. [Google Scholar] [CrossRef]
- Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. Stereochemistry of the olefin formation from anti and syn heterocyclic β-hydroxy sulfones. Bull. Soc. Chim. Fr. 1993, 130, 336–357. [Google Scholar]
- McRae, K. J.; Rizzacasa, M. A. Synthetic Studies toward the reveromycins: Asymmetric synthesis of the spiroketal segment of reveromycin B. J. Org. Chem. 1997, 62, 1196–1197. [Google Scholar] [CrossRef]
- Cuzzupe, A. N.; Hutton, C. A.; Lilly, M. J.; Mann, R. K.; Rizzacasa, M. A.; Zammit, S. C. Total synthesis of (-)-reveromycin B. Org. Lett. 2000, 2, 191–192. [Google Scholar] [CrossRef]
- McRae, K. J.; Rizzacasa, M. A. Synthetic studies toward the reveromycins: Asymmetric synthesis of the spiroketal segment of reveromycin B. J. Org. Chem. 1997, 62, 1196–1197. [Google Scholar] [CrossRef]
- Murray, R. W.; Jeyaraman, R. J. Dioxiranes: synthesis and reactions of methyldioxiranes. J. Org. Chem. 1985, 50, 2847–2853. [Google Scholar] [CrossRef]
- Zhang, H. X.; Guibe, F.; Balavoine, G. Palladium- and molybdenum-catalyzed hydrostannation of alkynes. A novel access to regio- and stereodefined vinylstannanes. J. Org. Chem. 1990, 55, 1857–1867. [Google Scholar] [CrossRef]
- LeNoble, W. J. The configurations of some substituted β-haloacyrlic acids. J. Am. Chem. Soc. 1961, 83, 3897–3899. [Google Scholar] [CrossRef]
- Farina, V.; Krishnan, B. Large rate accelerations in the Stille reaction with tri-2-furylphosphine and triphenylarsine as palladium ligands: mechanistic and synthetic implications. J. Am. Chem. Soc. 1991, 113, 9585–9595. [Google Scholar] [CrossRef]
- Guzzo, P. R.; Miller, M. J. Catalytic, Asymmetric synthesis of the carbacephem framework. J. Org. Chem. 1994, 59, 4862–4867. [Google Scholar] [CrossRef]
- Drouet, K. E.; Theodorakis, E. A. Enantioselective total synthesis of reveromycin B. J. Am. Chem. Soc. 1999, 121, 456–457. [Google Scholar] [CrossRef]
- Shimizu, T.; Kobayashi, R.; Osaka, K.; Osada, H.; Nakata, T. Synthetic studies on reveromycin A: Stereoselective synthesis of the spiroketal system. Tetrahedron Lett. 1996, 37, 6755–6758. [Google Scholar] [CrossRef]
- Corey, E. J.; Fuchs, P. L. A synthetic method for formyl→ethynyl conversion (RCHO→RC CH or RC CR′). Tetrahedron Lett. 1972, 3769–3772. [Google Scholar] [CrossRef]
- Evans, D. A.; Ennis, M. D.; Mathre, D. J. Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of alpha.-substituted carboxylic acid derivatives. J. Am. Chem. Soc. 1982, 104, 1737–1739. [Google Scholar] [CrossRef]
- Negishi, E.; Okukado, N.; King, A. O.; Van, Horn, D. E.; Spiegel, B. I. Selective carbon-carbon bond formation via transition metal catalysts. 9. Double metal catalysis in the cross-coupling reaction and its application to the stereo- and regioselective synthesis of trisubstituted olefins. J. Am. Chem. Soc. 1978, 100, 2254–2256. [Google Scholar]
- Panek, J. S.; Hu, T. Stereo- and Regiocontrolled synthesis of branched trisubstituted conjugated dienes by palladium(0)-catalyzed cross-coupling reaction. J. Org. Chem. 1997, 62, 4912–4913. [Google Scholar] [CrossRef]
- Kishi, Y. Applications of nickel(II)/chromium(II)-mediated coupling reactions to natural products syntheses. Pure Appl. Chem. 1992, 64, 343–350. [Google Scholar] [CrossRef]
- Masuda, T.; Osaka, K.; Shimizu, T.; Nakata, T. Total synthesis of reveromycin B. Org. Lett. 1999, 1, 941–944. [Google Scholar] [CrossRef]
- Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. A greatly improved procedure for ruthenium tetroxide catalyzed oxidations of organic compounds. J. Org. Chem. 1981, 46, 3936–3938. [Google Scholar] [CrossRef]
- Shimizu, T.; Osaka, K.; Nakata, T. Reactions of perfluoro-1-chloro-2-trimethylsilylcyclobutene. Tetrahedron Lett. 1997, 38, 1685–2688. [Google Scholar] [CrossRef]
- Evans, D. A.; Bartoli, J.; Shih, T. L. Enantioselective aldol condensations. 2. erythro-selective chiral aldol condensations via boron enolates. J. Am. Chem. Soc. 1981, 103, 2127–2129. [Google Scholar]
- Tsuji, J.; Minami, I.; Shimizu, I. Preparation of 1-alkenes by the palladium-catalyzed hydrogenolysis of terminal allylic carbonates and acetates with formic acid-triethylamine. Synthesis 1986, 623–627. [Google Scholar]
- Gouiffes, D.; Moreau, S.; Helbecque, N.; Bernier, J. L.; Henichart, J. P.; Barbin, Y.; Laurent, D.; Verbist, J. F. Proton nuclear magnetic study of bistramide A, a new cytotoxic drug isolated from Lissoclinum Bistratum Sluiter. Tetrahedron 1988, 44, 451–459. [Google Scholar] [CrossRef]
- Riou, D.; Roussakis, C.; Robillard, N.; Biard, J. F.; Verbist, J. F. Bistramide A-induced irreversible arrest of cell proliferation in a non-small-cell bronchopulmonary carcinoma is similar to induction of terminal maturation. Biol. Cell. 1993, 77, 261–264. [Google Scholar]
- Sauviat, M. P.; Gouiffes-Barbin, D.; Ecault, E.; Verbist, J. F. Blokage of sodium channels by bistramide A in voltage-clamped frog skeletal muscle fibres. Biochim. Biophys. Acta 1992, 1103, 109–114. [Google Scholar] [CrossRef]
- Freya, M. R.; Leontieva, O.; Watters, D. J.; Black, J. D. Stimulation of protein kinase C-dependent and -independent signaling pathways by bistratene A in intestinal epithelial cells. Biochem. Pharm. 2001, 61, 1093–1100. [Google Scholar] [CrossRef]
- Wipf, P.; Hopkins, T. D. Total synthesis and structure validation of (+)-bistramide C. Chem. Commun. 2005, 3421–3423. [Google Scholar]
- Novak, T.; Tan, Z.; Liang, B.; Negishi, E. All-catalytic, efficient, and asymmetric synthesis of α,ω-diheterofunctional reduced polypropionates via "One-Pot" Zr-catalyzed asymmetric carboalumination-Pd-catalyzed cross-coupling tandem process. J. Am. Chem. Soc. 2005, 127, 2838–2839. [Google Scholar] [CrossRef]
- Evans, P. A.; Cui, J.; Gharpure, S. J.; Hinkle, R. J. Stereoselective construction of cyclic ethers using a tandem two-component etherification: Elucidation of the role of bismuth tribromide. J. Am. Chem. Soc. 2003, 125, 11456–11457. [Google Scholar] [CrossRef]
- Wipf, P.; Uto, Y.; Yoshimura, S. Total synthesis of a stereoisomer of bistramide C and assignment of configuration of the natural product. Chem. Eur. J. 2002, 8, 1670–1681. [Google Scholar] [CrossRef]
- Lipshutz, B. H. Elworthy, Intermolecular couplings between vinyl triflates and allylic cuprates: a mild and rapid atypical route to 1,4-dienes. J. Org. Chem. 1990, 55, 1695–1696. [Google Scholar] [CrossRef]
- Nelson, S. G.; Peelen, T. J.; Wan, Z. Catalytic asymmetric acyl halide-aldehyde cyclocondensations. A strategy for enantioselective catalyzed cross aldol reactions. J. Am. Chem. Soc. 1999, 121, 9742–9743. [Google Scholar]
- Dorta, R. L.; Martin, A.; Salazar, J. A.; Suarez, E.; Prange, T. An enantioselective synthesis of D-(-)-2-amino-5-phosphonopentanoic acid. J. Org. Chem. 1998, 63, 2251–2261. [Google Scholar]
- Broka, C. A.; Ehrler, J. Enantioselective total syntheses of bengamides B and E. Tetrahedron Lett. 1991, 32, 5907–5910. [Google Scholar] [CrossRef]
- Tanaka, N.; Suenaga, K.; Yamada, K.; Shu-zhen Zheng, S.-Z.; Chen, H.-S.; Daisuke Uemura, D. Isolation and structures of attenols A and B. Novel bicyclic triols from the chinese bivalve Pinna attenuata. Chem. Lett. 1999, 1025–1026. [Google Scholar]
- Weghe, P. V. de.; Aoun, D.; Boiteau, J.-G.; Eustache, J. Silicon tether-aided coupling metathesis: Application to the synthesis of attenol A. Org. Lett. 2002, 4, 4105–4108. [Google Scholar] [CrossRef]
- Oikawa, M.; Ueno, T.; Oikawa, H.; Ichihara, A. Total synthesis of tautomycin. J. Org. Chem. 1995, 60, 5048–5068. [Google Scholar] [CrossRef]
- Rychnovsky, S. D.; Griesgraber, G.; Zeller, S.; Skalitzky, D. J. Optically pure 1,3-diols from (2R,4R)- and (2S,4S)-1,2:4,5-diepoxypentane. J. Org. Chem. 1991, 56, 5161–5169. [Google Scholar] [CrossRef]
- Jung, M. E.; Karama, U.; Marquez, R. Conversion of homoallylic alcohols with alkene protection to the corresponding methyl ketones. J. Org. Chem. 1999, 64, 663–665. [Google Scholar] [CrossRef]
- Enders, D.; Lenzen, A. Asymmetric total synthesis of attenol A and B. Synlett 2003, 2185–2187. [Google Scholar] [CrossRef]
- Job, A.; Janeck, C. F.; Bettray, W.; Peters, R.; Enders, D. The SAMP-/RAMP-hydrazone methodology in asymmetric synthesis. Tetrahedron 2002, 58, 2253–2329. [Google Scholar] [CrossRef]
- Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Catalytic asymmetric dihydroxylation. Chem. Rev. 1994, 94, 2483. [Google Scholar] [CrossRef]
- Suenaga, K.; Araki, K.; Sengoku, T.; Uemura, D. Enantioselective synthesis of attenols A and B. Org. Lett. 2001, 3, 527–529. [Google Scholar] [CrossRef]
- Posner, G. H.; Weitzberg, M.; Hamill, T. G.; Asirvatham, E.; Cun-heng, H.; Clardy, J. Asymmetric michael additions of ester enolates to enantiomerically pure vinylic sulfoxides: synthesis of 3-substituted glutarate esters in high enantiomeric purity. Tetrahedron 1986, 42, 2919–2929. [Google Scholar] [CrossRef]
- La Cruz, T. E.; Rychnovsky, S. D. A reductive cyclisation approach to attenol A. J. Org. Chem. 2007, 72, 2602–2611. [Google Scholar] [CrossRef]
- Takaoka, L. R.; Buckmelter, A. J.; La Cruz, T. E.; Rychnovsky, S. D. Rational synthesis of contra-thermodynamic spiroacetals by reductive cyclizations. J. Am. Chem. Soc. 2005, 127, 528–529. [Google Scholar] [CrossRef]
- Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. Highly selective hydrolytic kinetic resolution of terminal epoxides catalyzed by chiral (salen)CoIII complexes. Practical synthesis of enantioenriched terminal epoxides and 1,2-diols. J. Am. Chem. Soc. 2002, 124, 1307–1315. [Google Scholar] [CrossRef]
- Schneider, C.; Klapa, K.; Hansch, M. Zr (Ot-Bu) 4-catalyzed Tishchenko reduction of β-hydroxy ketones. Synlett 2005, 91–95. [Google Scholar] [CrossRef]
- Takami, K.; Yorimitsu, H.; Oshima, K. Trans-Hydrometalation of Alkynes by a Combination of InCl3 and DIBALH: One-pot access to functionalized (Z)-alkenes. Org. Lett. 2004, 4, 2993–2995. [Google Scholar]
- Louie, J.; Bielawski, C. W.; Grubbs, R. H. Tandem Catalysis: The sequential mediation of olefin metathesis, hydrogenation, and hydrogen transfer with single-component Ru complexes. J. Am. Chem. Soc. 2001, 123, 11312–11313. [Google Scholar] [CrossRef]
- Milne, J. E.; Kocienski, P. J. A Synthesis of α-lithiated enol ethers from α-arenesulfinyl enol ethers: Ni(0)- and Pd(0)-catalysed coupling of enol triflates and phosphates derived from lactones with sodium arenethiolates gives α-arenesulfanyl enol ethers. Synthesis 2003, 584–592. [Google Scholar]
- Calaza, M. I.; Hupe, E.; Knochel, P. Highly anti-Selective SN2' Substitutions of chiral cyclic 2-iodo-allylic alcohol derivatives with mixed zinc-copper reagents. Org. Lett. 2003, 5, 1059–1061. [Google Scholar] [CrossRef]
- Guijarro, D.; Mancheno, B.; Yus, M. Direct transformation of trialkyl phosphates into organolithium compounds by a DTBB-catalysed lithiation. Tetrahedron 1994, 50, 8551–8558. [Google Scholar] [CrossRef]
- Kolb, H. C.; Sharpless, K. B. A simplified procedure for the stereospecific transformation of 1,2-diols into epoxides. Tetrahedron 1992, 48, 10515–10530. [Google Scholar] [CrossRef]
- Statsuk, A. V.; Bai, R.; Baryza, J. L.; Verma, V. A.; Hamel, E.; Wender, P. A.; Kozmin, S. A. Actin is the primary cellular recepter of bistramide A. Nat. Chem. Biol. 2005, 1, 383–388. [Google Scholar]
- Yadav, J. S.; Chetia, L. Stereoselective total synthesis of bistramide A. Org. Lett. 2007, 9, 4587–4589. [Google Scholar] [CrossRef]
- Yadav, J. S.; Joyasawal, S.; Dutta, S. K.; Kunwar, A. C. Stereoselective synthesis of the ABCD ring framework of azaspiracids. Tetrahedron Lett. 2007, 48, 5335–5340. [Google Scholar] [CrossRef]
- Yadav, J. S.; Gadgil, V. R. Effect of substituents on radical induced cyclization of bromoacetals of 3-hydroxyhexa-1,5-dienes. J. Chem. Soc. Chem. Commun. 1989, 1824–1825. [Google Scholar] [CrossRef]
- Smith, A. B., III; Condon, S. M.; McCauley, J. A.; Leazer, J. L., Jr.; Leahy, J. W.; Maleczka, R. E., Jr. A unified total synthesis of the immunomodulators (-)-rapamycin and (-)-27-demethoxy-rapamycin: Construction of the C (21-42) Perimeters. J. Am. Chem. Soc. 1997, 119, 947–961. [Google Scholar] [CrossRef]
- Yadav, J. S.; Gadgil, V. R. TosMIC in the preparation of spiroacetals: synthesis of pheromone components of olive fruit fly. Tetrahedron Lett. 1990, 31, 6217–6218. [Google Scholar] [CrossRef]
- Paterson, I.; Yeung, K. S.; Smaill, J. B. The Horner-Wordsworth-Emmons reaction in natural product synthesis: Expedient construction of complex (E)-enones using barium hydroxide. Synlett. 1993, 774–776. [Google Scholar] [CrossRef]
- Corey, E. J.; Helal, C. J. Reduction of carbonyl compounds with chiral oxazaborolidine catalysts: A new paradigm for enantioselective catalysis and a powerful new synthetic method. Angew. Chem. Int. Ed. Engl. 1998, 37, 1986–2012. [Google Scholar] [CrossRef]
- Lowe, J. T.; Wrona, I. E.; Panek, J. S. Total synthesis of bistramide A. Org. Lett. 2007, 9, 327–330. [Google Scholar] [CrossRef]
- Evans, D. A.; Downey, C. W.; Shaw, J. T.; Tedrow, J. S. Magnesium halide-catalyzed anti-aldol reactions of chiral N-acylthiazolidinethiones. Org. Lett. 2002, 4, 1127–1130. [Google Scholar] [CrossRef]
- Basha, A.; Lipton, M.; Weinreb, S. M. A mild, general method for conversion of esters to amides. Tetrahedron Lett. 1977, 18, 4171–4172. [Google Scholar] [CrossRef]
- Schomaker, J. M.; Pulgam, V. R.; Borhan, B. Synthesis of diastereomerically and enantiomerically pure 2,3-disubstituted tetrahydrofurans using a sulfoxonium ylide. J. Am. Chem. Soc. 2004, 126, 13600–13601. [Google Scholar] [CrossRef]
- Miyashita, M.; Hoshino, M.; Yoshikoshi, A. Stereospecific methylation of γ, δ-epoxy acrylates by trimethyl aluminum: a method for the iterative construction of polypropionate chains. J. Org. Chem. 1991, 56, 6483–6485. [Google Scholar] [CrossRef]
- Crimmins, M. T.; DeBaillie, A. C. Enantioselective total synthesis of bistramide A. J. Am. Chem. Soc. 2006, 128, 4936–4937. [Google Scholar] [CrossRef]
- Kopecky, D. J.; Rychnovsky, S. D. Improved procedure for the reductive acetylation of Acyclic esters and a new synthesis of ethers. J. Org. Chem. 2000, 65, 191–198. [Google Scholar] [CrossRef]
- Statsuk, A. V.; Liu, D.; Kozmin, S. A. Synthesis of bistramide A. J. Am. Chem. Soc. 2004, 126, 9546–9547. [Google Scholar] [CrossRef]
- Bringer, P.; Muller, B. R.; Mynott, R. Vinylcarbene complexes of titanocene. Angew. Chem., Int. Ed. Engl. 1989, 28, 610–611. [Google Scholar] [CrossRef]
- Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands. Org. Lett. 1999, 1, 953–956. [Google Scholar] [CrossRef]
- Barma, D. K.; Kundu, A.; Zhang, H. M.; Mioskowski, C.; Falck, J. R. (Z)-α -Haloacrylates: An exceptionally stereoselective preparation via Cr(II)-mediated olefination of aldehydes with trihaloacetates. J. Am. Chem. Soc. 2003, 125, 3218–3219. [Google Scholar] [CrossRef]
- Corey, E. J.; Helal, C. J. Reduction of carbonyl compounds with chiral oxazaborolidine catalysts: A new Paradigm for enantioselective catalysis and a powerful new synthetic method. Angew. Chem. Int. Ed. Engl. 1998, 37, 1986–2012. [Google Scholar] [CrossRef]
- Brown, H. C.; Bhat, K. S. Enantiomeric Z- and E-crotyldiisopinocampheylboranes. Synthesis in high optical purity of all four possible stereoisomers of β-methylhomoallyl alcohols. J. Am. Chem. Soc. 1986, 108, 293. [Google Scholar] [CrossRef]
- Crimmins, M. T.; DeBaillie, A. C. Enantioselective total synthesis of bistramide A. J. Am. Chem. Soc. 2006, 128, 4936–4937. [Google Scholar] [CrossRef]
- Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. Asymmetric Aldol Additions: Use of titanium tetrachloride and (-)-sparteine for the soft enolization of N-acyl oxazolidinones, oxazolidinethiones, and thiazolidinethiones. J. Org. Chem. 2001, 66, 894–902. [Google Scholar] [CrossRef]
- Lowe, J. T.; Wrona, I. E.; Panek, J. S. Total synthesis of bistramide A. Org. Lett. 2007, 9, 327–330. [Google Scholar] [CrossRef]
- Huang, H.; Panek, J. S. Stereoselective synthesis of functonalized dihydropyrans via a formal [4+2]-annulation of chiral crotylsilanes. J. Am. Chem. Soc. 2000, 122, 9836. [Google Scholar] [CrossRef]
- Cloarec, J.-M.; Charette, A. B. Highly efficient two-step synthesis of C-sp3-centered geminal diiodides. Org. Lett. 2004, 6, 4731–4734. [Google Scholar] [CrossRef]
- Holtzel, A.; Kempter, C.; Metzger, J. W.; Jung, G.; Groth, I.; Fritz, T.; Fiedler, H.-P. Spirofungin, a new antifungal antibiotic from Streptomyces violaceusniger. J. Antibiot. 1998, 51, 699–707. [Google Scholar] [CrossRef]
- Takahashi, H.; Osada, H.; Koshino, H.; Kudo, T.; Amano, S.; Shimizu, S.; Yoshihama, M.; Isono, K. Revermycins, new inhibitors of eukaryotic cell growth. J. Antibiot. 1992, 45, 1409–1413. [Google Scholar] [CrossRef]
- Takahashi, H.; Osada, H.; Koshino, H.; Sasaki, M.; Onose, R.; Nakakoshi, M.; Yoshihama, M.; Isono, K. Revermycins, new inhibitors of eukaryotic cell growth. J. Antibiot. 1992, 45, 1414–1419. [Google Scholar] [CrossRef]
- Koshino, H.; Takahashi, H.; Osada, H.; Isono, K. Reveromycins, new inhibitors of eukaryotic cell growth. J. Antibiot. 1992, 45, 1420–1427. [Google Scholar] [CrossRef]
- Ubukata, M.; Koshino, H.; Osada, H.; Isono, K. Absolute configuration of reveromycin A, an inhibitor of the signal transduction of epidermal growth factor. J. Chem. Soc., Chem. Commun. 1994, 1877–1878. [Google Scholar]
- Shimizu, T.; Satoh, T.; Murakoshi, K.; Sodeoka, M. Asymmetric total synthesis of (-)-spirofungin A and (+)-spirofungin B. Org. Lett. 2005, 7, 5573–5576. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Hirao, I. An efficient method for the alkynylation of oxiranes using alkynyl boranes. Tetrahedron Lett. 1983, 24, 391–394. [Google Scholar] [CrossRef]
- Takai, K.; Nitta, K.; Utimoto, K. Simple and selective method for aldehydes (RCHO) (E) -haloalkenes (RCH:CHX) conversion by means of a haloform-chromous chloride system. J. Am. Chem. Soc. 1986, 108, 7408–7410. [Google Scholar] [CrossRef]
- Takagi, J.; Takahashi, K.; Isiyama, T.; Miyaura, N. Palladium-catalyzed cross-coupling reaction of bis(pinacolato)diboron with 1-alkenyl halides or triflates: convenient synthesis of unsymmetrical 1,3-dienes via the borylation-coupling sequence. J. Am. Chem. Soc. 2002, 124, 8001–8006. [Google Scholar] [CrossRef]
- Corey, E. J.; Katzenellenbogen, J. A.; Roman, S. A.; Gilman, N. W. Stereospecific synthesis of a biologically active dehydro derivative of the C18-juvenile hormone of cecropia. New routes to a key C12-intermediate. Tetrahedron Lett. 1971, 21, 1821–1824. [Google Scholar]
- Miyaura, N.; Suginome, H.; Suzuki, A. A stereospecific synthesis of conjugated (E,Z)- and (Z,Z)-alkadienes by a palladium-catalyzed cross-coupling reaction of 1-alkenylboranes with 1-alkenyl bromides. Tetrahedron Lett. 1981, 22, 127–130. [Google Scholar] [CrossRef]
- Kato, y.; Kusetani, N.; Matsunaga, S.; Hashimoto, K.; Furuya, T. Bioactive marine metabolites. Part 16. Calyculin A. A novel antitumor metabolite from the marine sponge discodermia calyx. J. Am. Chem. Soc. 1986, 108, 2780–2781. [Google Scholar] [CrossRef]
- Evans, D. A.; Gage, J. R.; Leighton, J. L. Total synthesis of (+)-calyculin A. J. Am. Chem Soc. 1992, 114, 9434–9453. [Google Scholar] [CrossRef]
- Tanimoto, N.; Gerritz, S. W.; Sawabe, A.; Noda, T.; Filla, S. A.; Masamune, S. The synthesis of naturally occurring (-)-calyculin A. Angew. Chem. Int. Ed. Engl. 1994, 33, 673–675. [Google Scholar] [CrossRef]
- Yokokawa, F.; Hamada, Y.; Shioiri, T. Total synthesis of calyculin A: Construction of the C(9)-C(37) fragment. J. Chem. Soc., Chem. Commun. 1996, 871–872. [Google Scholar] [CrossRef]
- Smith, A. B., III; Friestad, G. K.; Duan, J. J.-W.; Barbosa, J.; Hull, K. G.; Iwashima, M.; Qiu, Y.; Spoors, P. G.; Bertounesque, E.; Salvatore, B. A. Total synthesis of (+)-calyculin A and (-) calyculin B. J. Org. Chem. 1998, 63, 7596–7597. [Google Scholar] [CrossRef]
- Hyuga, S.; Chiba, Y.; Yamashina, N.; Hara, S.; Suzuki, A. (E)-(2-Bromoethenyl)dibromoborane. A New precursor for (E)-1, 2-disubstituted ethenes. Chem. Lett. 1987, 1757–1760. [Google Scholar]
- Roush, W. R.; Palkowitz, A. D.; Ando, K. Acyclic diastereoselective synthesis using tartrate ester-modified crotylboronates. Double asymmetric reactions with α-methyl chiral aldehydes and synthesis of the C(19)-C(29) segment of rifamycin S. J. Am. Chem. Soc. 1990, 112, 6348–6359. [Google Scholar] [CrossRef]
- McMurry, J. E.; Scott, W. J. A method for the regiospecific synthesis of enol triflates by enolate trapping. Tetrahedron Lett. 1983, 24, 979–782. [Google Scholar] [CrossRef]
- Piers, E.; Tillyer, R. D. Dilithium (trimethylstannyl)(2-thienyl)(cyano)cuprate, a synthetically useful higher-order cuprate reagent. J. Org.Chem. 1988, 53, 5366–5369. [Google Scholar] [CrossRef]
- Smith, A. B., III; Salvatore, B. A.; Hull, K. G.; Duan, J. J.-W. Calyculin synthetic studies. 2. Stereocontrolled assembly of the C (9)-C(13) dithiane and C(26)-C(37) oxazole intermediates. Tetrahedron Lett. 1991, 32, 4859–4862. [Google Scholar] [CrossRef]
- Salvatore, B. A.; Smith, A. B., III. Calyculin synthetic studies. 3. Enantiomeric purity determination for the C(26)–C(32) oxazole segment via the silks-odom 77Se NMR method. Tetrahedron Lett. 1994, 35, 1329–1330. [Google Scholar] [CrossRef]
- Toshima, K.; Tatsuta, K.; Kinoshita, M. Total synthesis of elaiophylin (Azalomycin B). Bull. Chem. Soc. Jpn. 1988, 61, 2369–2381. [Google Scholar] [CrossRef]
- Lipshutz, B. H.; Sengupta, S. Organocopper reagents: substitutions, conjugate addition, carbo/metallocupration and other reactions. Org. React. 1992, 41, 135–631. [Google Scholar]
- Smith, A. B., III; Iwashima, M. Calyculin synthetic studies. 4. Remarkable reversal of diastereo-selectivity in payne epoxidation of vinyl spiroketal intermediates. Tetrahedron Lett. 1994, 35, 6051–6052. [Google Scholar] [CrossRef]
- Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Tetrapropylammonium perruthenate, Pr4N+RuO4-, TPAP: A catalytic oxidant for organic synthesis. Synthesis 1994, 639–666. [Google Scholar]
- Zhao, Z.; Scarlato, G. R.; Armstrong, R. W. Synthesis of trans-4-alkenyl oxazoles. Tetrahedron Lett. 1991, 32, 1609–1612. [Google Scholar] [CrossRef]
- Yamakado, Y.; Ishiguro, M.; Ikeda, N.; Yamamoto, H. Stereoselective carbonyl-olefination via organosilicon compounds. J. Am. Chem. Soc. 1981, 103, 5568–5570. [Google Scholar] [CrossRef]
- Huth, A.; Dettner, K. Defense chemicals from abdominal glands of 13 rove beetle species of subtribe staphylinina (Coleoptera: Staphylinidae, Staphylininae). J. Chem. Ecol. 1990, 16, 2691–2711. [Google Scholar] [CrossRef]
- Zhang, H.; Fletcher, M. T.; Dettner, K.; Francke, W.; Kitching, W. Synthesis and absolute stereochemistry of spiroacetals in rove beetles (Coleoptera: Staphylinidae). Tetrahedron Lett. 1999, 40, 7851–7854. [Google Scholar] [CrossRef]
- Bernardi, M. D.; Garlaschelli, L.; Toma, L.; Vidari, G.; Finzi, P. V. Fungal metabolites XXVI: The structure of saponaceolides B, C and D, new C-30 terpenoids from Tricholoma saponaceum. Tetrahedron 1991, 47, 7109–7116. [Google Scholar] [CrossRef]
- Vidari, G.; Lanfranchi, G.; Sartori, P.; Serra, S. Saponaceolides: differential cytotoxicity and enantioselective synthesis of the right-hand lactone moiety. Tetrahedron: Asymmetry 1995, 06, 2977–2990. [Google Scholar] [CrossRef]
- Trost, B. M.; Corte, J. R. Total synthesis of (+)-saponaceolide B. Angew. Chem. Int. Ed. 1999, 38, 3664–3666. [Google Scholar] [CrossRef]
- Vidari, G.; Franzini, M.; Garlaschelli, L.; Maronati, A. diastereoselective synthesis of the saponaceolide tricyclic spiroketal substructure. Tetrahedron Lett. 1993, 34, 2685–2688. [Google Scholar] [CrossRef]
- Guertin, K. R.; Kende, A. S. Chemoselective catalytic oxidation of sulfides to sulfones with tetrapropylammonium perruthenate (TPAP). Tetrahedron Lett. 1993, 34, 5369–5372. [Google Scholar] [CrossRef]
- Lynn, D. G.; Phillips, N. J.; Hutton, W. C.; Shabanowitz, J.; Fennell, D. I.; Cole, R. J. Talaromycins: application of homonuclear spin correlation maps to structure assignment. J. Am. Chem. Soc. 1982, 104, 7319–7322. [Google Scholar] [CrossRef]
- Izquierdo, I.; Plaza, M. T.; Rodríguez, M.; Tamayo, J. A. Hexulose derivatives and lipase-mediated diastereomeric resolution in the enantiospecific total synthesis of (-)-talaromycins C and E. Eur. J. Org. Chem. 2002, 309–317. [Google Scholar]
- Izquierdo, I.; Plaza, M. T. An enantiospecific synthesis of (−)-talaromycins A and B from D-fructose. Carbohydr. Res. 1990, 205, 293–304. [Google Scholar] [CrossRef]
- Izquierdo, I.; Plaza, M. T.; Rodríguez, M.; Tamayo, J. A. Chiral building-blocks by chemoenzymatic desymmetrization of 2-ethyl-1,3-propanediol for the preparation of biologically active natural products. Tetrahedron: Asymmetry 1999, 10, 449–455. [Google Scholar] [CrossRef]
- Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C. Hypophosphorous acid and its salts: New reagents for radical chain deoxygenation, dehalogenation and deamination. Tetrahedron Lett. 1992, 33, 5709–5712. [Google Scholar] [CrossRef]
- Hochlowski, J. E.; Coll, J. C.; Faulkner, D. J.; Biskupiak, J. E.; Ireland, C. M.; Zheng, Q.; He, C.; Clardy, J. Novel metabolites of four Siphonaria species. J. Am. Chem. Soc. 1984, 106, 6748–6750. [Google Scholar] [CrossRef]
- Paterson, I.; Chen, D. Y.-K.; Franklin, A. S. Total synthesis of siphonarin B and dihydrosiphonarin B. Org. Lett. 2002, 4, 391–394. [Google Scholar] [CrossRef]
- Paterson, I.; Goodman, J. M.; Lister, M. A.; Schumann, R. C.; McClure, C. K.; Norcross, R. D. Enantio- and diastereoselective aldol reactions of achiral ethyl and methyl ketones with aldehydes: the use of enol diisopinocamphenylborinates. Tetrahedron 1990, 46, 4663–4684. [Google Scholar] [CrossRef]
- Narasaka, K.; Pai, F. C. Stereoselective reduction of β hydroxyketones to 1, 3-diols highly selective 1,3-asymmetric induction via boron chelates. Tetrahedron 1984, 40, 2233–2238. [Google Scholar] [CrossRef]
- Takai, K.; Taghashira, M.; Kuroda, T.; Oshima, K.; Utimoto, K.; Nozaki, H. Reactions of alkenylchromium reagents prepared from alkenyl trifluoromethanesulfonates (triflates) with chromium(II) chloride under nickel catalysis. J. Am. Chem. Soc. 1986, 108, 6048–6050. [Google Scholar] [CrossRef]
- Jin, H.; Uenishi, J.-I.; Christ, W. J.; Kishi, Y. Catalytic effect of nickel(II) chloride and palladium(II) acetate on chromium(II)-mediated coupling reaction of iodo olefins with aldehydes. J. Am. Chem. Soc. 1986, 108, 5644–5646. [Google Scholar] [CrossRef]
- Sample Availability: Not available
© 2008 by the authors. Licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Raju, B.R.; Saikia, A.K. Asymmetric Synthesis of Naturally Occuring Spiroketals. Molecules 2008, 13, 1942-2038. https://doi.org/10.3390/molecules13081942
Raju BR, Saikia AK. Asymmetric Synthesis of Naturally Occuring Spiroketals. Molecules. 2008; 13(8):1942-2038. https://doi.org/10.3390/molecules13081942
Chicago/Turabian StyleRaju, B. Rama, and Anil K. Saikia. 2008. "Asymmetric Synthesis of Naturally Occuring Spiroketals" Molecules 13, no. 8: 1942-2038. https://doi.org/10.3390/molecules13081942
APA StyleRaju, B. R., & Saikia, A. K. (2008). Asymmetric Synthesis of Naturally Occuring Spiroketals. Molecules, 13(8), 1942-2038. https://doi.org/10.3390/molecules13081942