BACKGROUND. In type 1 diabetes (T1D), impaired insulin sensitivity may contribute to the development of diabetic kidney disease (DKD) through alterations in kidney oxidative metabolism. METHODS. Young adults with T1D (n = 30) and healthy controls (HC, n = 20) underwent hyperinsulinemic-euglycemic clamp studies, MRI, 11C-acetate PET, kidney biopsies, single-cell RNA sequencing, and spatial metabolomics to assess this relationship. RESULTS. Participants with T1D had significantly higher glomerular basement membrane thickness compared to HC. T1D participants exhibited lower insulin sensitivity and cortical oxidative metabolism, correlating with higher insulin sensitivity. Proximal tubular transcripts of TCA cycle and oxidative phosphorylation enzymes were lower in T1D. Spatial metabolomics showed reductions in tubular TCA cycle intermediates, indicating mitochondrial dysfunction. The Slingshot algorithm identified a lineage of proximal tubular cells progressing from stable to adaptive/maladaptive subtypes, using pseudotime trajectory analysis, which computationally orders cells along a continuum of states. This analysis revealed distinct distribution patterns between T1D and HC, with attenuated oxidative metabolism in T1D attributed to a greater proportion of adaptive/maladaptive subtypes with low expression of TCA cycle and oxidative phosphorylation transcripts. Pseudotime progression associated with higher HbA1c, BMI, GBM, and lower insulin sensitivity and cortical oxidative metabolism. CONCLUSION. These early structural and metabolic changes in T1D kidneys may precede clinical DKD. TRIAL REGISTRATION. ClinicalTrials.gov NCT04074668
Ye Ji Choi, Gabriel Richard, Guanshi Zhang, Jeffrey B. Hodgin, Dawit S. Demeke, Yingbao Yang, Jennifer A. Schaub, Ian M. Tamayo, Bhupendra K. Gurung, Abhijit S. Naik, Viji Nair, Carissa Birznieks, Alexis MacDonald, Phoom Narongkiatikhun, Susan Gross, Lynette Driscoll, Maureen Flynn, Kalie Tommerdahl, Kristen J. Nadeau, Viral N. Shah, Tim Vigers, Janet K. Snell-Bergeon, Jessica Kendrick, Daniel H. van Raalte, Lu-Ping Li, Pottumarthi Prasad, Patricia Ladd, Bennett B. Chin, David Z. Cherney, Phillip J. McCown, Fadhl Alakwaa, Edgar A. Otto, Frank C. Brosius, Pierre Jean Saulnier, Victor G. Puelles, Jesse A. Goodrich, Kelly Street, Manjeri A. Venkatachalam, Aaron Ruiz, Ian H. de Boer, Robert G. Nelson, Laura Pyle, Denis P. Blondin, Kumar Sharma, Matthias Kretzler, Petter Bjornstad
Dysfunctional adipose tissue is believed to promote the development of hepatic steatosis and systemic insulin resistance, but many of the mechanisms involved are still unclear. Lipin 1 catalyzes the conversion of phosphatidic acid to diacylglycerol (DAG), the penultimate step of triglyceride synthesis, which is essential for lipid storage. Herein we found that adipose tissue LPIN1 expression is decreased in people with obesity compared to lean subjects, and low LPIN1 expression correlated with multi-tissue insulin resistance and increased rates of hepatic de novo lipogenesis. Comprehensive metabolic and multi-omic phenotyping demonstrated that adipocyte-specific Lpin1–/– mice had a metabolically-unhealthy phenotype, including liver and skeletal muscle insulin resistance, hepatic steatosis, increased hepatic de novo lipogenesis, and transcriptomic signatures of metabolically associated steatohepatitis that was exacerbated by high-fat diets. We conclude that adipocyte lipin 1-mediated lipid storage is vital for preserving adipose tissue and systemic metabolic health, and its loss predisposes mice to metabolically associated steatohepatitis.
Andrew LaPoint, Jason M. Singer, Daniel Ferguson, Trevor M. Shew, M. Katie Renkemeyer, Hector H. Palacios, Rachael L. Field, Sireeesha Yerrathota, Roshan Kumari, Mahalakshmi Shankaran, Gordon I. Smith, Jun Yoshino, Mai He, Gary J. Patti, Marc K. Hellerstein, Samuel Klein, E. Matthew Morris, Jonathan R. Brestoff, Brian N. Finck, Andrew Lutkewitte
Current research reports that lactate affects Treg metabolism, although the precise mechanism has only been partially elucidated. In this study, we presented evidence demonstrating that elevated lactate levels enhanced cell proliferation, suppressive capabilities, and oxidative phosphorylation (OXPHOS) in human Tregs. The expression levels of Monocarboxylate Transporters 1/2/4 (MCT1/2/4) regulate intracellular lactate concentration, thereby influencing the varying responses observed in naive Tregs and memory Tregs. Through mitochondrial isolation, sequencing, and analysis of human Tregs, we determined that Alpha-1,3-Mannosyl-Glycoprotein 2-Beta-N-Acetylglucosaminyltransferase (MGAT1) served as the pivotal driver initiating downstream N-glycosylation events involving progranulin (GRN) and hypoxia-upregulated 1 (HYOU1), consequently enhancing Treg OXPHOS. The mechanism by which MGAT1 was upregulated in mitochondria depended on elevated intracellular lactate that promoted the activation of XBP1s, which, in turn, supported MGAT1 transcription as well as the interaction of lactate with the translocase of the mitochondrial outer membrane 70 (TOM70) import receptor, facilitating MGAT1 translocation into mitochondria. Pre-treatment of Tregs with lactate reduced mortality in a xenogeneic graft-versus-host disease (GvHD) model. Together, these findings underscored the active regulatory role of lactate in human Treg metabolism through the upregulation of MGAT1 transcription and its facilitated translocation into the mitochondria.
Jinren Zhou, Jian Gu, Qufei Qian, Yigang Zhang, Tianning Huang, Xiangyu Li, Zhuoqun Liu, Qing Shao, Yuan Liang, Lei Qiao, Xiaozhang Xu, Qiuyang Chen, Zibo Xu, Yu Li, Ji Gao, Yufeng Pan, Yiming Wang, Roddy O'Connor, Keli L. Hippen, Ling Lu, Bruce R. Blazar
BACKGROUND. Bariatric surgery is a potent therapeutic approach for obesity and type 2 diabetes but can be complicated by post-bariatric hypoglycemia (PBH). PBH typically occurs 1 to 3 hours after meals, in association with exaggerated postprandial levels of incretins and insulin. METHODS. To identify mediators of disordered metabolism in PBH, we analyzed plasma metabolome in fasting state and 30 and 120 minutes after mixed meal in 3 groups: PBH (n = 13), asymptomatic post-RYGB (n = 10), and non-surgical controls (n = 8). RESULTS. In the fasting state, multiple tricarboxylic acid cycle intermediates and the ketone beta-hydroxybutyrate were increased by 30% to 80% in PBH vs. asymptomatic. Conversely, multiple amino acids (BCAA, tryptophan) and polyunsaturated lipids were reduced by 20% to 50% in PBH versus asymptomatic. Tryptophan-related metabolites, including kynurenate, xanthurenate, and serotonin, were reduced by 2- to 10-fold in PBH in fasting state. Postprandially, plasma serotonin was uniquely increased by 1.9-fold in PBH versus asymptomatic post-RYGB. In mice, serotonin administration lowered glucose and increased plasma insulin and GLP-1. Moreover, serotonin-induced hypoglycemia in mice was blocked by the nonspecific serotonin receptor antagonist cyproheptadine and the specific serotonin receptor 2 antagonist ketanserin. CONCLUSION. Together these data suggest that increased postprandial serotonin may contribute to the pathophysiology of PBH and provide a potential therapeutic target. FUNDING. NIH grant R01 DK121995, NIH grant P30 DK036836 (Diabetes Research Center grant, Joslin Diabetes Center), and Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP grant 2018/22111-2.
Rafael Ferraz-Bannitz, Berkcan Ozturk, Cameron J. Cummings, Vissarion Efthymiou, Pilar Casanova Querol, Lindsay Poulos, Hanna J. Wang, Valerie Navarrete, Hamayle Saeed, Christopher M. Mulla, Hui Pan, Jonathan M. Dreyfuss, Donald C. Simonson, Darleen A. Sandoval, Mary-Elizabeth Patti
BACKGROUND. Recent studies conducted in COVID-19 survivors suggest that SARS-CoV-2 infection is associated with an increased risk of dyslipidemia. However, it remains unclear whether this augmented risk is confirmed in the general population and how this phenomenon is impacting the overall burden of cardiometabolic diseases. METHODS. To address these aspects, we conducted a 6-year longitudinal study to examine the broader effects of COVID-19 on dyslipidemia incidence within a real-world population (228,266 subjects) residing in Naples, Southern Italy. The pre-COVID-19 and the COVID-19 groups were balanced for demographic and clinical factors using propensity score matching. RESULTS. Our analysis spans over a period of three years during the pandemic (2020–2022), comparing dyslipidemia incidence with pre-pandemic data (2017–2019), with a follow-up time of at least 1,095 days corresponding to 21,349,215 person-years. During the COVID-19 period we detected an increased risk of developing any dyslipidemia when compared with the pre-COVID-19 triennium (OR = 1.29, 95% CI 1.19–1.39). Importantly, these estimates were adjusted for comorbidities by a multivariate analysis. CONCLUSIONS. Taken together, our data reveal a notable rise in dyslipidemia incidence amid the COVID-19 pandemic, suggesting to establish specialized clinical monitoring protocols for COVID-19 survivors to mitigate the risk of dyslipidemia development.
Valentina Trimarco, Raffaele Izzo, Stanislovas S. Jankauskas, Mario Fordellone, Giuseppe Signoriello, Maria Virginia Manzi, Maria Lembo, Paola Gallo, Giovanni Esposito, Roberto Piccinocchi, Francesco Rozza, Carmine Morisco, Pasquale Mone, Gaetano Piccinocchi, Fahimeh Varzideh, Bruno Trimarco, Gaetano Santulli
Translation of mRNA to protein is tightly regulated by tRNAs, which are subject to various chemical modifications that maintain the structure, stability and function. Deficiency of tRNA N7-methylguanosine (m7G) modification in patients causes a type of primordial dwarfism, but the underlying mechanism remains unknown. Here we report the loss of m7G rewires cellular metabolism, leading to the pathogenesis of primordial dwarfism. Conditional deletion of the catalytic enzyme Mettl1 or missense mutation of the scaffold protein Wdr4 severely impaired endochondral bone formation and bone mass accrual. Mechanistically, Mettl1 knockout decreased abundance of m7G-modified tRNAs and inhibited translation of mRNAs relating to cytoskeleton and Rho GTPase signaling. Meanwhile, Mettl1 knockout enhanced cellular energy metabolism despite of incompetent proliferation and osteogenic commitment. Further exploration revealed that impaired Rho GTPase signaling upregulated branched-chain amino acid transaminase 1 (BCAT1) level that rewired cell metabolism and restricted intracellular α-ketoglutarate (αKG). Supplementation of αKG ameliorated the skeletal defect of Mettl1-deficient mice. In addition to the selective translation of metabolism-related mRNAs, we further revealed that Mettl1 knockout globally regulated translation via integrated stress response (ISR) and mammalian target of rapamycin complex 1 (mTORC1) signaling. Restoring translation either by targeting ISR or mTORC1 aggravated bone defects of Mettl1-deficient mice. Overall, our study unveils a critical role of m7G tRNA modification in bone development by regulating cellular metabolism, and indicates that suspension of translation initiation as quality control mechanism in response to tRNA dysregulation.
Qiwen Li, Shuang Jiang, Kexin Lei, Hui Han, Yaqian Chen, Weimin Lin, Qiuchan Xiong, Xingying Qi, Xinyan Gan, Rui Sheng, Yuan Wang, Yarong Zhang, Jieyi Ma, Tao Li, Shuibin Lin, Chenchen Zhou, Demeng Chen, Quan Yuan
Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, is approved for obesity treatment, but the specific neuronal sites that contribute to its therapeutic effects remain elusive. Here, we show that GLP-1 receptor–positive (GLP-1R–positive) neurons in the lateral septum (LSGLP-1R) play a critical role in mediating the anorectic and weight-loss effects of liraglutide. LSGLP-1R neurons were robustly activated by liraglutide, and chemogenetic activation of these neurons dramatically suppressed feeding. Targeted knockdown of GLP-1 receptors within the LS, but not in the hypothalamus, substantially attenuated liraglutide’s ability to inhibit feeding and lower body weight. The activity of LSGLP-1R neurons rapidly decreased during naturalistic feeding episodes, while synaptic inactivation of LSGLP-1R neurons diminished the anorexic effects triggered by liraglutide. Together, these findings offer critical insights into the functional role of LSGLP-1R neurons in the physiological regulation of energy homeostasis and delineate their instrumental role in mediating the pharmacological efficacy of liraglutide.
Zijun Chen, Xiaofei Deng, Cuijie Shi, Haiyang Jing, Yu Tian, Jiafeng Zhong, Gaowei Chen, Yunlong Xu, Yixiao Luo, Yingjie Zhu
Tumor reliance on glycolysis is a hallmark of cancer. Immunotherapy is more effective in controlling glycolysis-low tumors lacking lactate dehydrogenase (LDH) due to reduced tumor lactate efflux and enhanced glucose availability within the tumor microenvironment (TME). LDH inhibitors (LDHi) reduce glucose uptake and tumor growth in preclinical models, but their impact on tumor-infiltrating T cells is not fully elucidated. Tumor cells have higher basal LDH expression and glycolysis levels compared with infiltrating T cells, creating a therapeutic opportunity for tumor-specific targeting of glycolysis. We demonstrate that LDHi treatment (a) decreases tumor cell glucose uptake, expression of the glucose transporter GLUT1, and tumor cell proliferation while (b) increasing glucose uptake, GLUT1 expression, and proliferation of tumor-infiltrating T cells. Accordingly, increasing glucose availability in the microenvironment via LDH inhibition leads to improved tumor-killing T cell function and impaired Treg immunosuppressive activity in vitro. Moreover, combining LDH inhibition with immune checkpoint blockade therapy effectively controls murine melanoma and colon cancer progression by promoting effector T cell infiltration and activation while destabilizing Tregs. Our results establish LDH inhibition as an effective strategy for rebalancing glucose availability for T cells within the TME, which can enhance T cell function and antitumor immunity.
Svena Verma, Sadna Budhu, Inna Serganova, Lauren Dong, Levi M. Mangarin, Jonathan F. Khan, Mamadou A. Bah, Anais Assouvie, Yacine Marouf, Isabell Schulze, Roberta Zappasodi, Jedd D. Wolchok, Taha Merghoub
The burden of senescent hepatocytes correlates with MASLD severity but mechanisms driving senescence, and how it exacerbates MASLD are poorly understood. Hepatocytes become senescent when Smoothened (Smo) is deleted to disrupt Hedgehog signaling. We aimed to determine if the secretomes of Smo-deficient hepatocytes perpetuate senescence to drive MASLD progression. RNA seq analysis confirmed that hepatocyte populations of MASLD livers are depleted of Smo(+) cells and enriched with senescent cells. When fed CDA-HFD, Smo(-) mice had lower antioxidant markers and developed worse DNA damage, senescence, MASH and liver fibrosis than Smo(+) mice. Sera and hepatocyte-conditioned medium from Smo(-) mice were depleted of thymidine phosphorylase (TP), a protein that maintains mitochondrial fitness. Treating Smo(-) hepatocytes with TP reduced senescence and lipotoxicity; inhibiting TP in Smo(+) hepatocytes had the opposite effects and exacerbated hepatocyte senescence, MASH, and fibrosis in CDA-HFD-fed mice. Therefore, we found that inhibiting Hedgehog signaling in hepatocytes promotes MASLD by suppressing hepatocyte production of proteins that prevent lipotoxicity and senescence.
Ji Hye Jun, Kuo Du, Rajesh Kumar Dutta, Raquel Maeso-Diaz, Seh-hoon Oh, Liuyang Wang, Guannan Gao, Ana Ferreira, Jon Hill, Steven S. Pullen, Anna Mae Diehl
Variants of the G protein-coupled receptor 75 (GPR75) are associated with lower BMI in large-scale human exome sequencing studies. However, how GPR75 regulates body weight remains poorly understood. Using random germline mutagenesis in mice, we identified a missense allele (Thinner) of Gpr75 that resulted in a lean phenotype and verified the decreased body weight and fat weight in Gpr75 knockout (Gpr75–/–) mice. Gpr75–/– mice displayed reduced food intake under a high-fat diet (HFD), and pair-feeding normalized their body weight. The endogenous GPR75 protein was exclusively expressed in the brains of 3xFlag tagged Gpr75 knock-in (3xFlag-Gpr75) mice, with consistent expression across different brain regions. GPR75 interacted with Gαq to activate various signaling pathways after HFD feeding. Additionally, GPR75 was localized in the primary cilia of hypothalamic cells, whereas the Thinner mutation (L144P) and human GPR75 variants with lower BMI failed to localize in the cilia. Loss of GPR75 selectively inhibited weight gain in HFD-fed mice but failed to suppress the development of obesity in Leptin ob mice and Adenylate cyclase 3 (Adcy3) mutant mice on a chow diet. Our data reveal that GPR75 is a ciliary protein expressed in the brain and plays an important role in regulating food intake.
Yiao Jiang, Yu Xun, Zhao Zhang