Discovery [1] [2] | |
---|---|
Discovered by | XO Project |
Discovery site | XO telescope Maui, Hawaii |
Discovery date | May 30, 2007 |
Transit, Radial velocity | |
Orbital characteristics | |
0.0454 ± 0.00082 AU (6,792,000 ± 123,000 km) [3] | |
Eccentricity | 0.2883 ± 0.0025 [4] |
3.1915289 ± 0.0000032 [5] d | |
Inclination | 84.20 ± 0.54 [3] |
346.1+1.2 −1.1 [4] | |
Semi-amplitude | 1494.0 ± 9.5 [4] |
Star | XO-3 |
Physical characteristics | |
1.217 ± 0.073 [3] RJ | |
Mass | 11.79 ± 0.59 [3] MJ |
Albedo | 0.106+0.008 −0.106 [6] |
Temperature | 1400-2000 K [6] |
XO-3b is an exoplanet with about 11.79 times the mass of Jupiter, and it orbits its parent star XO-3 in about 3.2 days. [7] The radius of this object is 1.217 times that of Jupiter. Astronomers announced their discovery on May 30, 2007, at the American Astronomical Society in Honolulu, Hawaii. Its discovery is attributed to the combined effort of amateur and professional astronomers working together on the XO Project using a telescope located on the Haleakala summit in Hawaii. [2]
Dubbed an "oddball" planet, at the time of its discovery the planet was the most massive planet found in close proximity to a star, yet the orbit is significantly elliptical instead of circular, as would be expected. [2] It is also considered a transiting planet, passing in front of its parent star during each orbit. It is the third such planet to be found by the XO Project which was specifically created to locate them. [8]
Measurements of the Rossiter–McLaughlin effect allow a determination of the angle between the planet's orbital plane and the equator of the parent star. Initial reports suggested this angle was very large, at 70 ± 15 degrees, [9] which is significantly larger than that of the other transiting planets for which this measurement has been made. [10] The authors cautioned that systematic effects may have affected the measurements, and a later determination by an independent group of astronomers determined a reduced value of 37.3±3.0°. [11] This value is, however, still larger than the misalignment between the Sun's equator and the orbital plane of Jupiter, which is only 6°. [5]
The misalignment may indicate that in the past an encounter with another planet altered its orbit, kicking it out of the plane of the planetary system. Its orbital eccentricity is very large (e = 0.2883). Since tidal forces should have reduced the orbital eccentricity of this planet it is possible that there is another massive planet outside the orbit of XO-3 that is in orbital resonance with XO-3b. [12] Another planetary system that may have also undergone such planet–planet interactions is Upsilon Andromedae. [13]
Due to tidal dissipation, the planetary orbital period is decaying at a rate of (6.2±0.29)×10−9, or about 1.7 ms per orbit. At this rate, the planet will be engulfed by its star in about 1.4 million years. However, unlike the similar planet WASP-12b, it is unlikely to be experiencing significant mass loss. [14] [15]
Observations of several transits in the near ultraviolet by the Neil Gehrels Swift Observatory results in a measured planetary radius, in the near ultraviolet, of 2.54 times that of Jupiter. [16]
There is currently a debate over the classification of this object as either a planet or a brown dwarf. One of the leading astronomers in this discussion is Christopher Johns-Krull, who indicated that the debate is still quite lively. This is not particularly unusual or strange, as it would not be the first of many brown dwarfs orbiting mother stars. [7]
The light curve that best matches the steepness of ingress and egress implies a planetary radius of 1.32 ± 0.15 RJ and a mass of 11.71 ± 0.46 MJ. [1]
TrES-1b is an extrasolar planet approximately 523 light-years away in the constellation of Lyra. The planet's mass and radius indicate that it is a Jovian planet with a similar bulk composition to Jupiter. Unlike Jupiter, but similar to many other planets detected around other stars, TrES-1 is located very close to its star, and belongs to the class of planets known as hot Jupiters. The planet was discovered orbiting around GSC 02652-01324.
Hot Jupiters are a class of gas giant exoplanets that are inferred to be physically similar to Jupiter but that have very short orbital periods. The close proximity to their stars and high surface-atmosphere temperatures resulted in their informal name "hot Jupiters".
HD 149026 b, formally named Smertrios, is an extrasolar planet and hot Jupiter approximately 250 light-years from the Sun in the constellation of Hercules.
HAT-P-1b is an extrasolar planet orbiting the Sun-like star HAT-P-1, also known as ADS 16402 B. HAT-P-1 is the dimmer component of the ADS 16402 binary star system. It is located roughly 521 light years away from Earth in the constellation Lacerta. HAT-P-1b is among the least dense of any of the known extrasolar planets.
HAT-P-2b is an extrasolar planet detected by the HATNet Project in May 2007. It orbits a class F star HAT-P-2,, located about 420 light-years away in the constellation Hercules.
The XO Project is an international team of amateur and professional astronomers tasked with identifying extrasolar planets. They are led by Peter R. McCullough of the Space Telescope Science Institute. It is primarily funded by NASA's Origins Program and the Director's Discretionary Fund of the Space Telescope Science Institute.
HAT-P-4b is a confirmed extrasolar planet orbiting the star HAT-P-4 over 1000 light years away in Boötes constellation. It was discovered by transit on October 2, 2007, which looks for slight dimming of stars caused by planets that passed in front of them. It is the fourth planet discovered by the HATNet Project. It is also called BD+36 2593b, TYC 2569-01599-1b, 2MASS J15195792+3613467b, SAO 64638b.
WASP-3b is an extrasolar planet orbiting the star WASP-3 located approximately 800 light-years away in the constellation Lyra. It was discovered via the transit method by SuperWASP, and follow up radial velocity observations confirmed that WASP-3b is a planet. The planet's mass and radius indicate that it is a gas giant with a similar bulk composition to Jupiter. WASP-3b has such an orbital distance around its star to classify it in the class of planets known as hot Jupiters and has an atmospheric temperature of approximately 1983 K.
WASP-4b is an exoplanet, specifically a hot Jupiter, approximately 891 light-years away in the constellation of Phoenix.
WASP-5b is an exoplanet orbiting the star WASP-5 located approximately 1000 light-years away in the constellation Phoenix. The planet's mass and radius indicate that it is a gas giant with a similar bulk composition to Jupiter. The small orbital distance of WASP-5 b around its star means it belongs to a class of planets known as hot Jupiters. The planetary equilibrium temperature would be 1717 K, but the measured dayside temperature is higher, with a 2015 study finding 2500±100 K and a 2020 study finding 2000±90 K.
WASP-7b is an extrasolar planet discovered in 2008. This 5-day period planet is slightly smaller than Jupiter, roughly the same mass and more dense.
WASP-14b is an extrasolar planet discovered in 2008 by SuperWASP using the transit method. Follow-up radial velocity measurements showed that the mass of WASP-14b is almost eight times larger than that of Jupiter. The radius found by the transit observations show that it has a radius 25% larger than Jupiter. This makes WASP-14b one of the densest exoplanets known. Its radius best fits the model of Jonathan Fortney.
CoRoT-3b is a brown dwarf or massive extrasolar planet with a mass 21.66 times that of Jupiter. The object orbits an F-type star in the constellation of Aquila. The orbit is circular and takes 4.2568 days to complete. It was discovered by the French-led CoRoT mission which detected the dimming of the parent star's light as CoRoT-3b passes in front of it.
XO-4b is an extrasolar planet approximately 956 light years away in the constellation of Lynx. This planet was found by the transit method by McCullough in May 2008. The planet has mass 1.72 MJ and radius 1.34 RJ. This planet orbits very close to the F-type parent star, as it is typical for transiting planets, classing this planet as Hot Jupiter.
XO-3 is a star in the constellation Camelopardalis. The star has a magnitude of 10 and is not visible to the naked eye but is visible through a small telescope. A search for a binary companion star using adaptive optics at the MMT Observatory was negative.
HAT-P-8b is an extrasolar planet located approximately 720 light years away in the constellation of Pegasus, orbiting the 10th magnitude star GSC 02757-01152. This planet was discovered by transit on December 5, 2008. Despite the designation as HAT-P-8b, it is the 11th planet discovered by the HATNet Project. The mass of the planet is 50% more than Jupiter while the radius is also 50% more than Jupiter. The mass of this planet is exact since the inclination of the orbit is known, typical for transiting planets. This is a so-called “hot Jupiter” because this Jupiter-like gas giant planet orbits in a really close torch orbit around the star, making this planet extremely hot. The distance from the star is roughly 20 times smaller than that of Earth from the Sun, which places the planet roughly 8 times closer to its star than Mercury is from the Sun. The “year” on this planet lasts only 3 days, 1 hour, 49 minutes, and 54 seconds, compared with Earth's 365 days, 6 hours, 9 minutes, and 10 seconds in a sidereal year.
Kepler-13 or KOI-13 is a stellar triple star system consisting of Kepler-13A, around which an orbiting hot Jupiter exoplanet was discovered with the Kepler spacecraft in 2011, and Kepler-13B a common proper motion companion star which has an additional star orbiting it.
WASP-72 is the primary of a binary star system. It is an F7 class dwarf star, with an internal structure just on the verge of the Kraft break. It is orbited by a planet WASP-72b. The age of WASP-72 is younger than the Sun at 3.55±0.82 billion years.
Media related to XO-3b at Wikimedia Commons