Visual processing

Last updated

Visual processing is the brain's ability to use and interpret visual information from the world. The process of converting light energy into a meaningful image is a complex process that is facilitated by numerous brain structures and higher level cognitive processes.

Contents

On an anatomical level, light energy first enters the eye through the cornea, where the light is bent. After passing through the cornea, light passes through the pupil and then the lens of the eye, where it is bent to a greater degree and focused upon the retina. The retina is where a group of light-sensing cells called photoreceptors are located. There are two types of photoreceptors: rods and cones. Rods are sensitive to dim light, and cones are better able to transduce bright light. Photoreceptors connect to bipolar cells, which induce action potentials in retinal ganglion cells. These retinal ganglion cells form a bundle at the optic disc, which is a part of the optic nerve.

The two optic nerves from each eye meet at the optic chiasm, where nerve fibers from each nasal retina cross. This results in the right half of each eye's visual field being represented in the left hemisphere and the left half of each eye's visual fields being represented in the right hemisphere. The optic tract then diverges into two visual pathways, the geniculostriate pathway and the tectopulvinar pathway, which send visual information to the visual cortex of the occipital lobe for higher level processing (Whishaw and Kolb, 2015).

Top-down and bottom-up representations

The visual system is organized hierarchically, with anatomical areas that have specialized functions in visual processing. Low-level visual processing is concerned with determining different types of contrast among images projected onto the retina whereas high-level visual processing refers to the cognitive processes that integrate information from a variety of sources into the visual information that is represented in one's consciousness. Object processing, including tasks such as object recognition and location, is an example of higher-level visual processing. High-level visual processing depends on both top-down and bottom-up processes. Bottom-up processing refers to the visual system's ability to use the incoming visual information, flowing in a unidirectional path from the retina to higher cortical areas. Top-down processing refers to the use of prior knowledge and context to process visual information and change the information conveyed by neurons, altering the way they are tuned to a stimulus. All areas of the visual pathway except for the retina are able to be influenced by top-down processing.

There is a traditional view that visual processing follows a feedforward system where there is a one-way process by which light is sent from the retina to higher cortical areas, however, there is increasing evidence that visual pathways operate bidirectionally, with both feedforward and feedback mechanisms in place that transmit information to and from lower and higher cortical areas. [1] Various studies have demonstrated this idea that visual processing relies on both feedforward and feedback systems (Jensen et al., 2015; Layher et al., 2014; Lee, 2002). Various studies that recorded from early visual neurons in macaque monkeys found evidence that early visual neurons are sensitive to features both within their receptive fields and the global context of a scene. [2] Two other monkey studies used electrophysiology to find different frequencies that are associated with feedforward and feedback processing in monkeys (Orban, 2008; Schenden & Ganis, 2005). Studies with monkeys have also shown that neurons in higher level visual areas are selective to certain stimuli. One study that used single unit recordings in macaque monkeys found that neurons in middle temporal visual area, also known as area MT or V5, were highly selective for both direction and speed (Maunsell & Van Essen, 1983).

Disorders of higher-level visual processing

There are various disorders that are known the cause deficits in higher-level visual processing, including visual object agnosia, prosopagnosia, topographagnosia, alexia, achromatopsia, akinetopsia, Balint syndrome, and astereopsis. These deficits are caused by damage to brain structure implicated in either the ventral or dorsal visual stream (Barton 2011).

Processing of face and place stimuli

Past models of visual processing have distinguished certain areas of the brain by the specific stimuli that they are most responsive to; for example, the parahippocampal place area (PPA) has been shown to have heightened activation when presented with buildings and place scenes (Epstein & Kanwisher, 1998), whereas the fusiform face area (FFA) responds mostly strongly to faces and face-like stimuli (Kanwisher et al., 1997).

Parahippocampal Place Area (PPA)

The parahippocampal place area (PPA) is located in the posterior parahippocampal gyrus, which itself is contained in the medial temporal lobe with close proximity to the hippocampus. Its name comes from the increased neural response in the PPA when viewing places, like buildings, houses, and other structures, and when viewing environmental scenes, both indoors and outdoors (Epstein & Kanwisher, 1998). This is not to say that the PPA does not show activation when presented with other visual stimuli – when presented with familiar objects that are neither buildings nor faces, like chairs, there is also some activation within the PPA (Ishai et al., 2000). It does however appear that the PPA is associated with visual processing of buildings and places, as patients who have experienced damage to the parahippocampal area demonstrate topographic disorientation, in other words, unable to navigate familiar and unfamiliar surroundings (Habib & Sirigu, 1987). Outside of visual processing, the parahippocampal gyrus is involved in both spatial memory and spatial navigation (Squire & Zola-Morgan, 1991).

Fusiform Face Area (FFA)

The fusiform face area is located within the inferior temporal cortex in the fusiform gyrus. Similar to the PPA, the FFA exhibits higher neural activation when visually processing faces more so than places or buildings (Kanwisher et al., 1997). However, the fusiform area also shows activation for other stimuli and can be trained to specialize in the visual processing of objects of expertise. Past studies have investigated the activation of the FFA in people with specialized visual training, like bird watchers or car experts who have adapted a visual skill in identifying traits of birds and cars respectively. It has been shown that these experts have developed FFA activation for their specific visual expertise. Other experiments have studied the ability to develop expertise in the FFA using 'greebles', a visual stimulus generated to have a few components that can be combined to make a series of different configurations, much like how a variety of slightly different facial features can be used to construct a unique face. Participants were trained on their ability to distinguish greebles by differing features and had activation in the FFA measured periodically through their learning – the results after training demonstrated that greeble activation in the FFA increased over time whereas FFA responses to faces actually decreased with increased greeble training. These results suggested three major findings in regards to FFA in visual processing: firstly, the FFA does not exclusively process faces; secondly, the FFA demonstrates activation for 'expert' visual tasks and can be trained over time to adapt to new visual stimuli; lastly, the FFA does not maintain constant levels of activation for all stimuli and instead seems to 'share' activation in such a way that the most frequently viewed stimuli receives the greatest activation in the FFA as seen in the greebles study (Gauthier et al., 2000).  

Development of the FFA and PPA in the brain

Some research suggests that the development of the FFA and the PPA is due to the specialization of certain visual tasks and their relation to other visual processing patterns in the brain. [2] In particular, existing research shows that FFA activation falls within the area of the brain that processes the immediate field of vision, whereas PPA activation is located in areas of the brain that handle peripheral vision and vision just out of the direct field of vision (Levy et al., 2001). This suggests that the FFA and PPA may have developed certain specializations due to the common visual tasks within those fields of view. Because faces are commonly processed in the immediate field of vision, the parts of the brain that process the direct field of vision eventually also specialize in more detailed tasks like face recognition. The same concept applies to place: because buildings and locations are often viewed in their entirety either right outside of the field of vision or in an individual's periphery, any building or location visual specialization will be processed within the areas of the brain handling peripheral vision. As such, commonly seen shapes like houses and buildings become specialized in certain regions of the brain, i.e. the PPA.

See also

Related Research Articles

<span class="mw-page-title-main">Visual cortex</span> Region of the brain that processes visual information

The visual cortex of the brain is the area of the cerebral cortex that processes visual information. It is located in the occipital lobe. Sensory input originating from the eyes travels through the lateral geniculate nucleus in the thalamus and then reaches the visual cortex. The area of the visual cortex that receives the sensory input from the lateral geniculate nucleus is the primary visual cortex, also known as visual area 1 (V1), Brodmann area 17, or the striate cortex. The extrastriate areas consist of visual areas 2, 3, 4, and 5.

<span class="mw-page-title-main">Visual system</span> Body parts responsible for vision

The visual system is the physiological basis of visual perception. The system detects, transduces and interprets information concerning light within the visible range to construct an image and build a mental model of the surrounding environment. The visual system is associated with the eye and functionally divided into the optical system and the neural system.

<span class="mw-page-title-main">Fusiform gyrus</span> Gyrus of the temporal and occipital lobes of the brain

The fusiform gyrus, also known as the lateral occipitotemporal gyrus,is part of the temporal lobe and occipital lobe in Brodmann area 37. The fusiform gyrus is located between the lingual gyrus and parahippocampal gyrus above, and the inferior temporal gyrus below. Though the functionality of the fusiform gyrus is not fully understood, it has been linked with various neural pathways related to recognition. Additionally, it has been linked to various neurological phenomena such as synesthesia, dyslexia, and prosopagnosia.

The receptive field, or sensory space, is a delimited medium where some physiological stimuli can evoke a sensory neuronal response in specific organisms.

<span class="mw-page-title-main">Superior colliculus</span> Structure in the midbrain

In neuroanatomy, the superior colliculus is a structure lying on the roof of the mammalian midbrain. In non-mammalian vertebrates, the homologous structure is known as the optic tectum or optic lobe. The adjective form tectal is commonly used for both structures.

<span class="mw-page-title-main">Parahippocampal gyrus</span> Grey matter region surrounding the hippocampus

The parahippocampal gyrus is a grey matter cortical region of the brain that surrounds the hippocampus and is part of the limbic system. The region plays an important role in memory encoding and retrieval. It has been involved in some cases of hippocampal sclerosis. Asymmetry has been observed in schizophrenia.

In neuroscience, neuronal tuning refers to the hypothesized property of brain cells by which they selectively represent a particular type of sensory, association, motor, or cognitive information. Some neuronal responses have been hypothesized to be optimally tuned to specific patterns through experience. Neuronal tuning can be strong and sharp, as observed in primary visual cortex, or weak and broad, as observed in neural ensembles. Single neurons are hypothesized to be simultaneously tuned to several modalities, such as visual, auditory, and olfactory. Neurons hypothesized to be tuned to different signals are often hypothesized to integrate information from the different sources. In computational models called neural networks, such integration is the major principle of operation. The best examples of neuronal tuning can be seen in the visual, auditory, olfactory, somatosensory, and memory systems, although due to the small number of stimuli tested the generality of neuronal tuning claims is still an open question.

<span class="mw-page-title-main">Inferior temporal gyrus</span> One of three gyri of the temporal lobe of the brain

The inferior temporal gyrus is one of three gyri of the temporal lobe and is located below the middle temporal gyrus, connected behind with the inferior occipital gyrus; it also extends around the infero-lateral border on to the inferior surface of the temporal lobe, where it is limited by the inferior sulcus. This region is one of the higher levels of the ventral stream of visual processing, associated with the representation of objects, places, faces, and colors. It may also be involved in face perception, and in the recognition of numbers and words.

<span class="mw-page-title-main">Colour centre</span> Brain region responsible for colour processing

The colour centre is a region in the brain primarily responsible for visual perception and cortical processing of colour signals received by the eye, which ultimately results in colour vision. The colour centre in humans is thought to be located in the ventral occipital lobe as part of the visual system, in addition to other areas responsible for recognizing and processing specific visual stimuli, such as faces, words, and objects. Many functional magnetic resonance imaging (fMRI) studies in both humans and macaque monkeys have shown colour stimuli to activate multiple areas in the brain, including the fusiform gyrus and the lingual gyrus. These areas, as well as others identified as having a role in colour vision processing, are collectively labelled visual area 4 (V4). The exact mechanisms, location, and function of V4 are still being investigated.

<span class="mw-page-title-main">Fusiform face area</span> Part of the human visual system that is specialized for facial recognition

The fusiform face area is a part of the human visual system that is specialized for facial recognition. It is located in the inferior temporal cortex (IT), in the fusiform gyrus.

In cognitive neuroscience, visual modularity is an organizational concept concerning how vision works. The way in which the primate visual system operates is currently under intense scientific scrutiny. One dominant thesis is that different properties of the visual world require different computational solutions which are implemented in anatomically/functionally distinct regions that operate independently – that is, in a modular fashion.

<span class="mw-page-title-main">Neural correlates of consciousness</span> Neuronal events sufficient for a specific conscious percept

The neural correlates of consciousness (NCC) are the minimal set of neuronal events and mechanisms sufficient for the occurrence of the mental states to which they are related. Neuroscientists use empirical approaches to discover neural correlates of subjective phenomena; that is, neural changes which necessarily and regularly correlate with a specific experience. The set should be minimal because, under the materialist assumption that the brain is sufficient to give rise to any given conscious experience, the question is which of its components are necessary to produce it.

Discrete categories of objects such as faces, body parts, tools, animals and buildings have been associated with preferential activation in specialised areas of the cerebral cortex, leading to the suggestion that they may be produced separately in discrete neural regions.

Visual object recognition refers to the ability to identify the objects in view based on visual input. One important signature of visual object recognition is "object invariance", or the ability to identify objects across changes in the detailed context in which objects are viewed, including changes in illumination, object pose, and background context.

<span class="mw-page-title-main">Functional specialization (brain)</span> Theory that regions of the brain are specialized for functions

In neuroscience, functional specialization is a theory which suggests that different areas in the brain are specialized for different functions. It is opposed to the anti-localizationist theories and brain holism and equipotentialism.

Form perception is the recognition of visual elements of objects, specifically those to do with shapes, patterns and previously identified important characteristics. An object is perceived by the retina as a two-dimensional image, but the image can vary for the same object in terms of the context with which it is viewed, the apparent size of the object, the angle from which it is viewed, how illuminated it is, as well as where it resides in the field of vision. Despite the fact that each instance of observing an object leads to a unique retinal response pattern, the visual processing in the brain is capable of recognizing these experiences as analogous, allowing invariant object recognition. Visual processing occurs in a hierarchy with the lowest levels recognizing lines and contours, and slightly higher levels performing tasks such as completing boundaries and recognizing contour combinations. The highest levels integrate the perceived information to recognize an entire object. Essentially object recognition is the ability to assign labels to objects in order to categorize and identify them, thus distinguishing one object from another. During visual processing information is not created, but rather reformatted in a way that draws out the most detailed information of the stimulus.

The extrastriate body area (EBA) is a subpart of the extrastriate visual cortex involved in the visual perception of human body and body parts, akin in its respective domain to the fusiform face area, involved in the perception of human faces. The EBA was identified in 2001 by the team of Nancy Kanwisher using fMRI.

Biased competition theory advocates the idea that each object in the visual field competes for cortical representation and cognitive processing. This theory suggests that the process of visual processing can be biased by other mental processes such as bottom-up and top-down systems which prioritize certain features of an object or whole items for attention and further processing. Biased competition theory is, simply stated, the competition of objects for processing. This competition can be biased, often toward the object that is currently attended in the visual field, or alternatively toward the object most relevant to behavior.

Biological motion perception is the act of perceiving the fluid unique motion of a biological agent. The phenomenon was first documented by Swedish perceptual psychologist, Gunnar Johansson, in 1973. There are many brain areas involved in this process, some similar to those used to perceive faces. While humans complete this process with ease, from a computational neuroscience perspective there is still much to be learned as to how this complex perceptual problem is solved. One tool which many research studies in this area use is a display stimuli called a point light walker. Point light walkers are coordinated moving dots that simulate biological motion in which each dot represents specific joints of a human performing an action.

The Fusiform body area (FBA) is a part of the extrastriate visual cortex, an object representation system involved in the visual processing of human bodies in contrast to body parts. Its function is similar to but distinct from the extrastriate body area (EBA), which perceives bodies in relation body parts, and the fusiform face area (FFA), which is involved in the perception of faces. Marius Peelen and Paul Downing identified this brain region in 2004 through an fMRI study.; in 2005 Rebecca Schwarzlose and a team of cognitive researchers named this brain region the fusiform body area.

References

  1. Gilbert, Charles D.; Li, Wu (May 2013). "Top-down influences on visual processing". Nature Reviews Neuroscience. 14 (5): 350–363. doi:10.1038/nrn3476. ISSN   1471-0048. PMC   3864796 . PMID   23595013.
  2. 1 2 Allman, J.; Miezin, F.; McGuinness, E. (1985). "Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons". Annual Review of Neuroscience. 8: 407–430. doi:10.1146/annurev.ne.08.030185.002203. ISSN   0147-006X. PMID   3885829.