Verma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics.
Verma modules can be used in the classification of irreducible representations of a complex semisimple Lie algebra. Specifically, although Verma modules themselves are infinite dimensional, quotients of them can be used to construct finite-dimensional representations with highest weight , where is dominant and integral. [1] Their homomorphisms correspond to invariant differential operators over flag manifolds.
We can explain the idea of a Verma module as follows. [2] Let be a semisimple Lie algebra (over , for simplicity). Let be a fixed Cartan subalgebra of and let be the associated root system. Let be a fixed set of positive roots. For each , choose a nonzero element for the corresponding root space and a nonzero element in the root space . We think of the 's as "raising operators" and the 's as "lowering operators."
Now let be an arbitrary linear functional, not necessarily dominant or integral. Our goal is to construct a representation of with highest weight that is generated by a single nonzero vector with weight . The Verma module is one particular such highest-weight module, one that is maximal in the sense that every other highest-weight module with highest weight is a quotient of the Verma module. It will turn out that Verma modules are always infinite dimensional; if is dominant integral, however, one can construct a finite-dimensional quotient module of the Verma module. Thus, Verma modules play an important role in the classification of finite-dimensional representations of . Specifically, they are an important tool in the hard part of the theorem of the highest weight, namely showing that every dominant integral element actually arises as the highest weight of a finite-dimensional irreducible representation of .
We now attempt to understand intuitively what the Verma module with highest weight should look like. Since is to be a highest weight vector with weight , we certainly want
and
Then should be spanned by elements obtained by lowering by the action of the 's:
We now impose only those relations among vectors of the above form required by the commutation relations among the 's. In particular, the Verma module is always infinite-dimensional. The weights of the Verma module with highest weight will consist of all elements that can be obtained from by subtracting integer combinations of positive roots. The figure shows the weights of a Verma module for .
A simple re-ordering argument shows that there is only one possible way the full Lie algebra can act on this space. Specifically, if is any element of , then by the easy part of the Poincaré–Birkhoff–Witt theorem, we can rewrite
as a linear combination of products of Lie algebra elements with the raising operators acting first, the elements of the Cartan subalgebra, and last the lowering operators . Applying this sum of terms to , any term with a raising operator is zero, any factors in the Cartan act as scalars, and thus we end up with an element of the original form.
To understand the structure of the Verma module a bit better, we may choose an ordering of the positive roots as and we denote the corresponding lowering operators by . Then by a simple re-ordering argument, every element of the above form can be rewritten as a linear combination of elements with the 's in a specific order:
where the 's are non-negative integers. Actually, it turns out that such vectors form a basis for the Verma module.
Although this description of the Verma module gives an intuitive idea of what looks like, it still remains to give a rigorous construction of it. In any case, the Verma module gives—for any, not necessarily dominant or integral—a representation with highest weight . The price we pay for this relatively simple construction is that is always infinite dimensional. In the case where is dominant and integral, one can construct a finite-dimensional, irreducible quotient of the Verma module. [3]
Let be the usual basis for :
with the Cartan subalgebra being the span of . Let be defined by for an arbitrary complex number . Then the Verma module with highest weight is spanned by linearly independent vectors and the action of the basis elements is as follows: [4]
(This means in particular that and that .) These formulas are motivated by the way the basis elements act in the finite-dimensional representations of , except that we no longer require that the "chain" of eigenvectors for has to terminate.
In this construction, is an arbitrary complex number, not necessarily real or positive or an integer. Nevertheless, the case where is a non-negative integer is special. In that case, the span of the vectors is easily seen to be invariant—because . The quotient module is then the finite-dimensional irreducible representation of of dimension
There are two standard constructions of the Verma module, both of which involve the concept of universal enveloping algebra. We continue the notation of the previous section: is a complex semisimple Lie algebra, is a fixed Cartan subalgebra, is the associated root system with a fixed set of positive roots. For each , we choose nonzero elements and .
The first construction [5] of the Verma module is a quotient of the universal enveloping algebra of . Since the Verma module is supposed to be a -module, it will also be a -module, by the universal property of the enveloping algebra. Thus, if we have a Verma module with highest weight vector , there will be a linear map from into given by
Since is supposed to be generated by , the map should be surjective. Since is supposed to be a highest weight vector, the kernel of should include all the root vectors for in . Since, also, is supposed to be a weight vector with weight , the kernel of should include all vectors of the form
Finally, the kernel of should be a left ideal in ; after all, if then for all .
The previous discussion motivates the following construction of Verma module. We define as the quotient vector space
where is the left ideal generated by all elements of the form
and
Because is a left ideal, the natural left action of on itself carries over to the quotient. Thus, is a -module and therefore also a -module.
The "extension of scalars" procedure is a method for changing a left module over one algebra (not necessarily commutative) into a left module over a larger algebra that contains as a subalgebra. We can think of as a right -module, where acts on by multiplication on the right. Since is a left -module and is a right -module, we can form the tensor product of the two over the algebra :
Now, since is a left -module over itself, the above tensor product carries a left module structure over the larger algebra , uniquely determined by the requirement that
for all and in . Thus, starting from the left -module , we have produced a left -module .
We now apply this construction in the setting of a semisimple Lie algebra. We let be the subalgebra of spanned by and the root vectors with . (Thus, is a "Borel subalgebra" of .) We can form a left module over the universal enveloping algebra as follows:
The motivation for this formula is that it describes how is supposed to act on the highest weight vector in a Verma module.
Now, it follows from the Poincaré–Birkhoff–Witt theorem that is a subalgebra of . Thus, we may apply the extension of scalars technique to convert from a left -module into a left -module as follow:
Since is a left -module, it is, in particular, a module (representation) for .
Whichever construction of the Verma module is used, one has to prove that it is nontrivial, i.e., not the zero module. Actually, it is possible to use the Poincaré–Birkhoff–Witt theorem to show that the underlying vector space of is isomorphic to
where is the Lie subalgebra generated by the negative root spaces of (that is, the 's). [6]
Verma modules, considered as -modules, are highest weight modules, i.e. they are generated by a highest weight vector. This highest weight vector is (the first is the unit in and the second is the unit in the field , considered as the -module ) and it has weight .
Verma modules are weight modules, i.e. is a direct sum of all its weight spaces. Each weight space in is finite-dimensional and the dimension of the -weight space is the number of ways of expressing as a sum of positive roots (this is closely related to the so-called Kostant partition function). This assertion follows from the earlier claim that the Verma module is isomorphic as a vector space to , along with the Poincaré–Birkhoff–Witt theorem for .
Verma modules have a very important property: If is any representation generated by a highest weight vector of weight , there is a surjective -homomorphism That is, all representations with highest weight that are generated by the highest weight vector (so called highest weight modules) are quotients of
contains a unique maximal submodule, and its quotient is the unique (up to isomorphism) irreducible representation with highest weight [7] If the highest weight is dominant and integral, one then proves that this irreducible quotient is actually finite dimensional. [8]
As an example, consider the case discussed above. If the highest weight is "dominant integral"—meaning simply that it is a non-negative integer—then and the span of the elements is invariant. The quotient representation is then irreducible with dimension . The quotient representation is spanned by linearly independent vectors . The action of is the same as in the Verma module, except that in the quotient, as compared to in the Verma module.
The Verma module itself is irreducible if and only if is antidominant. [9] Consequently, when is integral, is irreducible if and only if none of the coordinates of in the basis of fundamental weights is from the set , while in general, this condition is necessary but insufficient for to be irreducible.
The Verma module is called regular, if its highest weight λ is on the affine Weyl orbit of a dominant weight . In other word, there exist an element w of the Weyl group W such that
where is the affine action of the Weyl group.
The Verma module is called singular, if there is no dominant weight on the affine orbit of λ. In this case, there exists a weight so that is on the wall of the fundamental Weyl chamber (δ is the sum of all fundamental weights).
For any two weights a non-trivial homomorphism
may exist only if and are linked with an affine action of the Weyl group of the Lie algebra . This follows easily from the Harish-Chandra theorem on infinitesimal central characters.
Each homomorphism of Verma modules is injective and the dimension
for any . So, there exists a nonzero if and only if is isomorphic to a (unique) submodule of .
The full classification of Verma module homomorphisms was done by Bernstein–Gelfand–Gelfand [10] and Verma [11] and can be summed up in the following statement:
There exists a nonzero homomorphism if and only if there exists
a sequence of weights
such that for some positive roots (and is the corresponding root reflection and is the sum of all fundamental weights) and for each is a natural number ( is the coroot associated to the root ).
If the Verma modules and are regular, then there exists a unique dominant weight and unique elements w, w′ of the Weyl group W such that
and
where is the affine action of the Weyl group. If the weights are further integral, then there exists a nonzero homomorphism
if and only if
in the Bruhat ordering of the Weyl group.
Let
be a sequence of -modules so that the quotient B/A is irreducible with highest weight μ. Then there exists a nonzero homomorphism .
An easy consequence of this is, that for any highest weight modules such that
there exists a nonzero homomorphism .
Let be a finite-dimensional irreducible representation of the Lie algebra with highest weight λ. We know from the section about homomorphisms of Verma modules that there exists a homomorphism
if and only if
in the Bruhat ordering of the Weyl group. The following theorem describes a projective resolution of in terms of Verma modules (it was proved by Bernstein – Gelfand – Gelfand in 1975 [12] ) :
There exists an exact sequence of -homomorphisms
where n is the length of the largest element of the Weyl group.
A similar resolution exists for generalized Verma modules as well. It is denoted shortly as the BGG resolution.
In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.
In the mathematical field of representation theory, a weight of an algebra A over a field F is an algebra homomorphism from A to F, or equivalently, a one-dimensional representation of A over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space.
In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.
In mathematics, the Borel–Weil–Bott theorem is a basic result in the representation theory of Lie groups, showing how a family of representations can be obtained from holomorphic sections of certain complex vector bundles, and, more generally, from higher sheaf cohomology groups associated to such bundles. It is built on the earlier Borel–Weil theorem of Armand Borel and André Weil, dealing just with the space of sections, the extension to higher cohomology groups being provided by Raoul Bott. One can equivalently, through Serre's GAGA, view this as a result in complex algebraic geometry in the Zariski topology.
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.
In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.
In mathematics, specifically the theory of Lie algebras, Lie's theorem states that, over an algebraically closed field of characteristic zero, if is a finite-dimensional representation of a solvable Lie algebra, then there's a flag of invariant subspaces of with , meaning that for each and i.
In conformal field theory and representation theory, a W-algebra is an associative algebra that generalizes the Virasoro algebra. W-algebras were introduced by Alexander Zamolodchikov, and the name "W-algebra" comes from the fact that Zamolodchikov used the letter W for one of the elements of one of his examples.
In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.
In mathematics, the Harish-Chandra isomorphism, introduced by Harish-Chandra , is an isomorphism of commutative rings constructed in the theory of Lie algebras. The isomorphism maps the center of the universal enveloping algebra of a reductive Lie algebra to the elements of the symmetric algebra of a Cartan subalgebra that are invariant under the Weyl group .
An algebraic character is a formal expression attached to a module in representation theory of semisimple Lie algebras that generalizes the character of a finite-dimensional representation and is analogous to the Harish-Chandra character of the representations of semisimple Lie groups.
In mathematics, generalized Verma modules are a generalization of a (true) Verma module, and are objects in the representation theory of Lie algebras. They were studied originally by James Lepowsky in the 1970s. The motivation for their study is that their homomorphisms correspond to invariant differential operators over generalized flag manifolds. The study of these operators is an important part of the theory of parabolic geometries.
In mathematics, the Plancherel theorem for spherical functions is an important result in the representation theory of semisimple Lie groups, due in its final form to Harish-Chandra. It is a natural generalisation in non-commutative harmonic analysis of the Plancherel formula and Fourier inversion formula in the representation theory of the group of real numbers in classical harmonic analysis and has a similarly close interconnection with the theory of differential equations. It is the special case for zonal spherical functions of the general Plancherel theorem for semisimple Lie groups, also proved by Harish-Chandra. The Plancherel theorem gives the eigenfunction expansion of radial functions for the Laplacian operator on the associated symmetric space X; it also gives the direct integral decomposition into irreducible representations of the regular representation on L2(X). In the case of hyperbolic space, these expansions were known from prior results of Mehler, Weyl and Fock.
In representation theory, a branch of mathematics, the Kostant partition function, introduced by Bertram Kostant, of a root system is the number of ways one can represent a vector (weight) as a non-negative integer linear combination of the positive roots . Kostant used it to rewrite the Weyl character formula as a formula for the multiplicity of a weight of an irreducible representation of a semisimple Lie algebra. An alternative formula, that is more computationally efficient in some cases, is Freudenthal's formula.
In the representation theory of semisimple Lie algebras, Category O is a category whose objects are certain representations of a semisimple Lie algebra and morphisms are homomorphisms of representations.
In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations. Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module
In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.
This is a glossary of representation theory in mathematics.
In representation theory, a branch of mathematics, the theorem of the highest weight classifies the irreducible representations of a complex semisimple Lie algebra . There is a closely related theorem classifying the irreducible representations of a connected compact Lie group . The theorem states that there is a bijection
In mathematics, the representation theory of semisimple Lie algebras is one of the crowning achievements of the theory of Lie groups and Lie algebras. The theory was worked out mainly by E. Cartan and H. Weyl and because of that, the theory is also known as the Cartan–Weyl theory. The theory gives the structural description and classification of a finite-dimensional representation of a semisimple Lie algebra ; in particular, it gives a way to parametrize irreducible finite-dimensional representations of a semisimple Lie algebra, the result known as the theorem of the highest weight.
This article incorporates material from Verma module on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.