Sodium phosphate

Last updated
Sodium dihydrogen phosphate Monosodium phosphate.png
Sodium dihydrogen phosphate
Sodium hydrogen phosphate Disodium hydrogen phosphate.png
Sodium hydrogen phosphate
Trisodium phosphate Trisodium phosphate.png
Trisodium phosphate

A sodium phosphate is a generic variety of salts of sodium (Na+) and phosphate (PO3−4). Phosphate also forms families or condensed anions including di-, tri-, tetra-, and polyphosphates. Most of these salts are known in both anhydrous (water-free) and hydrated forms. The hydrates are more common than the anhydrous forms. [1]

Contents

Uses

Sodium phosphates have many applications in food and for water treatment. For example, sodium phosphates are often used as emulsifiers (as in processed cheese), [2] thickening agents, and leavening agents for baked goods. They are also used to control pH of processed foods. [3] They are also used in medicine for constipation and to prepare the bowel for medical procedures. They are also used in detergents for softening water and as an efficient anti-rust solution.

Adverse effects

Sodium phosphates are popular in commerce in part because they are inexpensive and because they are nontoxic at normal levels of consumption. [4] However, oral sodium phosphates when taken at high doses for bowel preparation for colonoscopy may in some individuals carry a risk of kidney injury under the form of phosphate nephropathy. There are several oral phosphate formulations which are prepared extemporaneously. Oral phosphate prep drugs have been withdrawn in the United States, although evidence of causality is equivocal. [5] Since safe and effective replacements for phosphate purgatives are available, several medical authorities have recommended general disuse of oral phosphates. [6]

Monophosphates

Three families of sodium monophosphates are common, those derived from orthophosphate (PO3−4), hydrogen phosphate (HPO2−4), and dihydrogenphosphate (H2PO4). Some of the best known salts are shown in the following table.

nameformula CAS registry number
monosodium phosphate (anhydrous)NaH2PO47558-80-7
monosodium phosphate monohydrateNaH2PO4·H2O10049-21-5
monosodium phosphate dihydrateNaH2PO4·2H2O13472-35-0
disodium phosphate (anhydrous)Na2HPO47558–79–4
disodium phosphate dihydrateNa2HPO4·2H2O10028-24-7
disodium phosphate heptahydrateNa2HPO4·7H2O7782–85–6
disodium phosphate octahydrateNa2HPO4·8H2O
disodium phosphate dodecahydrateNa2HPO4·12H2O10039–32–4
trisodium phosphate (anhydrous, hexagonal)Na3PO4
trisodium phosphate (anhydrous, cubic)Na3PO47601–54–9
trisodium phosphate hemihydrateNa3PO4·0.5H2O
trisodium phosphate hexahydrateNa3PO4·6H2O
trisodium phosphate octahydrateNa3PO4·8H2O
trisodium phosphate dodecahydrateNa3PO4·12H2O10101-89-0

Di- and polyphosphates

In addition to these phosphates, sodium forms a number of useful salts with pyrophosphates (also called diphosphates), triphosphates and high polymers. Of these salts, those of the diphosphates are particularly common commercially.

nameformulaCAS Registry number
monosodium diphosphate (anhydrous)NaH3P2O7
disodium diphosphate (anhydrous)Na2H2P2O77758-16-9
disodium diphosphate hexahydrateNa2H2P2O7·6H2O
trisodium diphosphate (anhydrous)Na3HP2O7
trisodium diphosphate monohydrateNa3HP2O7·H2O
trisodium diphosphate nonahydrateNa3HP2O7·9H2O
tetrasodium diphosphate (anhydrous)Na4P2O77722-88-5
tetrasodium diphosphate decahydrateNa4P2O7·10H2O13472-36-1

Beyond the diphosphates, sodium salts are known triphosphates, e.g. sodium triphosphate and tetraphosphates. The cyclic polyphosphates, called metaphosphates, include the trimer sodium trimetaphosphate and the tetramer, Na3P3O9 and Na4P4O12, respectively.

Polymeric sodium phosphates are formed upon heating mixtures of NaH2PO4 and Na2HPO4, which induces a condensation reaction. The specific polyphosphate generated depends on the details of the heating and annealing. One derivative is the glassy (i.e., amorphous) Graham's salt (sodium hexametaphosphate). It is a cyclic polyphosphate with the formula Na6[(PO3)6]. Crystalline high molecular weight polyphosphates include Kurrol's salt and Maddrell's salt (CAS#10361-03-2). These species have the formula [NaPO3]n[NaPO3(OH)]2 where n can be as great as 2000, and it is a white powder practically insoluble in water. In terms of their structures, these polymers consist of PO3 units, with the chains are terminated by protonated phosphates. [1] [7]

Related Research Articles

Hydrolysis is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile.

<span class="mw-page-title-main">Pyrophosphate</span> Class of chemical compounds

In chemistry, pyrophosphates are phosphorus oxyanions that contain two phosphorus atoms in a P−O−P linkage. A number of pyrophosphate salts exist, such as disodium pyrophosphate and tetrasodium pyrophosphate, among others. Often pyrophosphates are called diphosphates. The parent pyrophosphates are derived from partial or complete neutralization of pyrophosphoric acid. The pyrophosphate bond is also sometimes referred to as a phosphoanhydride bond, a naming convention which emphasizes the loss of water that occurs when two phosphates form a new P−O−P bond, and which mirrors the nomenclature for anhydrides of carboxylic acids. Pyrophosphates are found in ATP and other nucleotide triphosphates, which are important in biochemistry. The term pyrophosphate is also the name of esters formed by the condensation of a phosphorylated biological compound with inorganic phosphate, as for dimethylallyl pyrophosphate. This bond is also referred to as a high-energy phosphate bond.

A polyphosphate is a salt or ester of polymeric oxyanions formed from tetrahedral PO4 (phosphate) structural units linked together by sharing oxygen atoms. Polyphosphates can adopt linear or a cyclic (also called, ring) structures. In biology, the polyphosphate esters ADP and ATP are involved in energy storage. A variety of polyphosphates find application in mineral sequestration in municipal waters, generally being present at 1 to 5 ppm. GTP, CTP, and UTP are also nucleotides important in the protein synthesis, lipid synthesis, and carbohydrate metabolism, respectively. Polyphosphates are also used as food additives, marked E452.

<span class="mw-page-title-main">Magnesium sulfate</span> Chemical compound with formula MgSO4

Magnesium sulfate or magnesium sulphate is a chemical compound, a salt with the formula MgSO4, consisting of magnesium cations Mg2+ (20.19% by mass) and sulfate anions SO2−4. It is a white crystalline solid, soluble in water but not in ethanol.

An oxyanion, or oxoanion, is an ion with the generic formula A
x
Oz
y
. Oxyanions are formed by a large majority of the chemical elements. The formulae of simple oxyanions are determined by the octet rule. The corresponding oxyacid of an oxyanion is the compound H
z
A
x
O
y
. The structures of condensed oxyanions can be rationalized in terms of AOn polyhedral units with sharing of corners or edges between polyhedra. The oxyanions adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP) are important in biology.

<span class="mw-page-title-main">Sodium hexametaphosphate</span> Chemical compound

Sodium hexametaphosphate (SHMP) is a salt of composition Na6[(PO3)6]. Sodium hexametaphosphate of commerce is typically a mixture of metaphosphates (empirical formula: NaPO3), of which the hexamer is one, and is usually the compound referred to by this name. Such a mixture is more correctly termed sodium polymetaphosphate. They are white solids that dissolve in water.

<span class="mw-page-title-main">Calcium phosphate</span> Chemical compound

The term calcium phosphate refers to a family of materials and minerals containing calcium ions (Ca2+) together with inorganic phosphate anions. Some so-called calcium phosphates contain oxide and hydroxide as well. Calcium phosphates are white solids of nutritional value and are found in many living organisms, e.g., bone mineral and tooth enamel. In milk, it exists in a colloidal form in micelles bound to casein protein with magnesium, zinc, and citrate–collectively referred to as colloidal calcium phosphate (CCP). Various calcium phosphate minerals are used in the production of phosphoric acid and fertilizers. Overuse of certain forms of calcium phosphate can lead to nutrient-containing surface runoff and subsequent adverse effects upon receiving waters such as algal blooms and eutrophication (over-enrichment with nutrients and minerals).

<span class="mw-page-title-main">Sodium triphosphate</span> Chemical compound

Sodium triphosphate (STP), also sodium tripolyphosphate (STPP), or tripolyphosphate (TPP),) is an inorganic compound with formula Na5P3O10. It is the sodium salt of the polyphosphate penta-anion, which is the conjugate base of triphosphoric acid. It is produced on a large scale as a component of many domestic and industrial products, especially detergents. Environmental problems associated with eutrophication are attributed to its widespread use.

Phospho soda was an over the counter saline laxative produced by the C.B. Fleet Company in Lynchburg, Virginia. Phospho soda consisted mostly of monobasic sodium phosphate monohydrate and dibasic sodium phosphate heptahydrate. Phospho soda is often taken in a double dose, to prepare for colonoscopy. It is still used outside the US.

<span class="mw-page-title-main">Phosphoric acids and phosphates</span> Class of chemical species; phosphorus oxoacids and their deprotonated derivatives

In chemistry, a phosphoric acid, in the general sense, is a phosphorus oxoacid in which each phosphorus (P) atom is in the oxidation state +5, and is bonded to four oxygen (O) atoms, one of them through a double bond, arranged as the corners of a tetrahedron. Two or more of these PO4 tetrahedra may be connected by shared single-bonded oxygens, forming linear or branched chains, cycles, or more complex structures. The single-bonded oxygen atoms that are not shared are completed with acidic hydrogen atoms. The general formula of a phosphoric acid is Hn+2−2xPnO3n+1−x, where n is the number of phosphorus atoms and x is the number of fundamental cycles in the molecule's structure, between 0 and n + 2/2.

<span class="mw-page-title-main">Sodium thioantimoniate</span> Chemical compound

Sodium thioantimoniate or sodium tetrathioantimonate(V) is an inorganic compound with the formula Na3SbS4. The nonahydrate of this chemical, Na3SbS4·9H2O, is known as Schlippe's salt, named after Johann Karl Friedrich von Schlippe (1799–1867). These compounds are examples of sulfosalts. They were once of interest as species generated in qualitative inorganic analysis.

Phosphate nephropathy or nephrocalcinosis is an adverse renal condition that arises with a formation of phosphate crystals within the kidney's tubules. This renal insufficiency is associated with the use of oral sodium phosphate (OSP) such as C.B. Fleet's Phospho soda and Salix's Visocol, for bowel cleansing prior to a colonoscopy.   

<span class="mw-page-title-main">Sodium metasilicate</span> Chemical compound

Sodium metasilicate is the chemical substance with formula Na
2
SiO
3
, which is the main component of commercial sodium silicate solutions. It is an ionic compound consisting of sodium cations Na+
and the polymeric metasilicate anions [–SiO2−
3
–]n. It is a colorless crystalline hygroscopic and deliquescent solid, soluble in water but not in alcohols.

<span class="mw-page-title-main">Magnesium citrate</span> Chemical compound

Magnesium citrates are metal-organic compounds formed from citrate and magnesium ions. They are salts. One form is the 1:1 magnesium preparation in salt form with citric acid in a 1:1 ratio. It contains 11.33% magnesium by weight. Magnesium citrate is used medicinally as a saline laxative and to completely empty the bowel prior to a major surgery or colonoscopy. It is available without a prescription, both as a generic and under various brand names. It is also used in the pill form as a magnesium dietary supplement. As a food additive, magnesium citrate is used to regulate acidity and is known as E number E345.

<span class="mw-page-title-main">Disodium phosphate</span> Chemical compound

Disodium phosphate (DSP), or disodium hydrogen phosphate, or sodium phosphate dibasic, is an inorganic compound with the chemical formula Na2HPO4. It is one of several sodium phosphates. The salt is known in anhydrous form as well as hydrates Na2HPO4·nH2O, where n is 2, 7, 8, and 12. All are water-soluble white powders. The anhydrous salt is hygroscopic.

<span class="mw-page-title-main">Sodium picosulfate</span> Chemical compound

Sodium picosulfate is a contact stimulant laxative used as a treatment for constipation or to prepare the large bowel before colonoscopy or surgery.

<span class="mw-page-title-main">Monosodium phosphate</span> Chemical compound

Monosodium phosphate (MSP), also known as monobasic sodium phosphate and sodium dihydrogen phosphate, is an inorganic compound with the chemical formula NaH2PO4. It is a sodium salt of phosphoric acid. It consists of sodium cations (Na+) and dihydrogen phosphate anions (H2PO−4). One of many sodium phosphates, it is a common industrial chemical. The salt exists in an anhydrous form, as well as monohydrate and dihydrate (NaH2PO4·H2O and NaH2PO4·2H2O respectively).

Thiophosphates (or phosphorothioates, PS) are chemical compounds and anions with the general chemical formula PS
4−x
O3−
x
(x = 0, 1, 2, or 3) and related derivatives where organic groups are attached to one or more O or S. Thiophosphates feature tetrahedral phosphorus(V) centers.

<span class="mw-page-title-main">Barium metaphosphate</span> Chemical compound

Barium metaphosphate is an inorganic substance with the molecular formula Ba(PO3)2. It is a colourless solid that is insoluble in water, though is soluble in acidic solutions through "slow dissolution". X-ray crystallography shows that this material is composed of Ba2+ cations attached to a polyphosphate ((PO3)n) anion. A number of hydrated forms are known which are actually cyclic metaphosphates, Ba2(P4O12)·3.5H2O, Ba3(P3O9)2·6H2O.

<span class="mw-page-title-main">Diamidophosphate</span> Chemical compound

Diamidophosphate (DAP) is the simplest phosphorodiamidate ion, with formula PO2(NH2)2. It is a phosphorylating ion and was first used for the phosphorylation of sugars in aqueous medium. DAP has attracted interest in the area of primordial chemistry.

References

  1. 1 2 Klaus Schrödter; Gerhard Bettermann; Thomas Staffel; Friedrich Wahl; Thomas Klein; Thomas Hofmann (2012). "Phosphoric Acid and Phosphates". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a19_465.pub3. ISBN   978-3527306732.
  2. "Monosodium Phosphate | Sodium Phosphate Formula". Archived from the original on 2015-04-02.
  3. Lampila, Lucina E. (2013). "Applications and functions of food-grade phosphates". Ann. N.Y. Acad. Sci. 1301 (1): 37–44. Bibcode:2013NYASA1301...37L. doi: 10.1111/nyas.12230 . PMID   24033359. S2CID   206223856.
  4. Razzaque, M. S. (2011). "Phosphate toxicity: New insights into an old problem". Clinical Science. 120 (3): 91–97. doi:10.1042/CS20100377. PMC   3120105 . PMID   20958267.
  5. Markawitz, GB; Parezelli, MA (Aug 12, 2007), "Acute Phosphate Nephropathyl", Kidney Int., vol. 76, no. 10, pp. 1027–34, doi: 10.1038/ki.2009.308 , PMID   19675530
  6. Mackey, AC; Breen, L; Amand, KS; Evigan, M (August 2007), "Sodium phosphate tablets and acute Phosphate Nephropathy", Am J Gastroenterol, vol. 104, no. 8, pp. 1903–6, doi:10.1038/ajg.2009.342, PMID   19661931, S2CID   12551005
  7. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 530. ISBN   978-0-08-037941-8.