Site-directed spin labeling

Last updated • 2 min readFrom Wikipedia, The Free Encyclopedia

Site-directed spin labeling (SDSL) is a technique for investigating the structure and local dynamics of proteins using electron spin resonance. The theory of SDSL is based on the specific reaction of spin labels with amino acids. A spin label's built-in protein structure can be detected by EPR spectroscopy. SDSL is also a useful tool in examinations of the protein folding process. [1]

Spin labeling

EPR spectrum of proxyl-MTS spin labeled yeast iso-1-cytochrome c. Spin label is attached to Cysteine 102 residue. Epr spectrum.jpg
EPR spectrum of proxyl-MTS spin labeled yeast iso-1-cytochrome c. Spin label is attached to Cysteine 102 residue.

Site-directed spin labeling (SDSL) was pioneered in the laboratory of Dr. W.L. Hubbell. [2] [3] In SDSL, sites for attachment of spin labels are introduced into recombinantly expressed proteins by site-directed mutagenesis. Functional groups contained within the spin label determine their specificity. At neutral pH, protein thiol groups specifically react with the functional groups methanethiosulfonate, maleimide, and iodoacetamide, creating a covalent bond with the amino acid Cys. [4] Spin labels are a unique molecular reporter, in that they are paramagnetic (contain an unpaired electron). Spin labels were first synthesized in the laboratory of H. M. McConnell in 1965. [5] Since then, a variety of nitroxide spin labels have enjoyed widespread use for the study of macromolecular structure and dynamics because of their stability and simple EPR signal. The nitroxyl radical (N-O) is usually incorporated into a heterocyclic ring (e.g. pyrrolidine), and the unpaired electron is predominantly localized to the N-O bond. Once incorporated into the protein, a spin label's motions are dictated by its local environment. Because spin labels are exquisitely sensitive to motion, this has profound effects on its EPR spectrum. [4] [6]

The assembly of multi-subunit membrane protein complexes has also been studied using spin labeling. The binding of the PsaC subunit to the PsaA and PsaB subunits of the photosynthetic reaction center, Photosystem I, has been analyzed in great detail using this technique. [7]

Dr. Ralf Langen's group showed that SDSL with EPR (University of Southern California, Los Angeles) can be used to understand the structure of amyloid fibrils and the structure of membrane bound Parkinson's disease protein alpha-synuclein. [8] A 2012 study generated a high resolution structure of IAPP fibrils using a combination of SDSL, pulse EPR and computational biology. [9]

Related Research Articles

Peripheral membrane protein membrane proteins that adhere temporarily to membranes with which they are associated

Peripheral membrane proteins are membrane proteins that adhere only temporarily to the biological membrane with which they are associated. These proteins attach to integral membrane proteins, or penetrate the peripheral regions of the lipid bilayer. The regulatory protein subunits of many ion channels and transmembrane receptors, for example, may be defined as peripheral membrane proteins. In contrast to integral membrane proteins, peripheral membrane proteins tend to collect in the water-soluble component, or fraction, of all the proteins extracted during a protein purification procedure. Proteins with GPI anchors are an exception to this rule and can have purification properties similar to those of integral membrane proteins.

Thylakoid part of a plant

Thylakoids are membrane-bound compartments inside chloroplasts and cyanobacteria. They are the site of the light-dependent reactions of photosynthesis. Thylakoids consist of a thylakoid membrane surrounding a thylakoid lumen. Chloroplast thylakoids frequently form stacks of disks referred to as grana. Grana are connected by intergranal/ stroma thylakoids, which join granum stacks together as a single functional compartment.

Amyloid insoluble protein aggregate

Amyloids are aggregates of proteins characterised by a fibrillar morphology of 7–13 nm in diameter, a β-sheet secondary structure and ability to be stained by particular dyes, such as Congo red. In the human body, amyloids have been linked to the development of various diseases. Pathogenic amyloids form when previously healthy proteins lose their normal structure and physiological functions (misfolding) and form fibrous deposits in plaques around cells which can disrupt the healthy function of tissues and organs.

Bacteriorhodopsin is a protein used by Archaea, most notably by haloarchaea, a class of the Euryarchaeota. It acts as a proton pump; that is, it captures light energy and uses it to move protons across the membrane out of the cell. The resulting proton gradient is subsequently converted into chemical energy.

Alpha-synuclein Protein encoded by the SNCA gene found in humans

Alpha-synuclein is a protein that, in humans, is encoded by the SNCA gene. It is abundant in the brain, while smaller amounts are found in the heart, muscle and other tissues. In the brain, alpha-synuclein is found mainly at the tips of neurons in specialized structures called presynaptic terminals. Within these structures, alpha-synuclein interacts with phospholipids and proteins. Presynaptic terminals release chemical messengers, called neurotransmitters, from compartments known as synaptic vesicles. The release of neurotransmitters relays signals between neurons and is critical for normal brain function.

Photosystem A complex located in a photosynthetic membrane that consists of a photoreaction center associated with accessory pigments and electron carriers. Examples of this component are found in Arabidopsis thaliana and in photosynthetic bacterial and archaeal

Photosystems are functional and structural units of protein complexes involved in photosynthesis that together carry out the primary photochemistry of photosynthesis: the absorption of light and the transfer of energy and electrons. Photosystems are found in the thylakoid membranes of plants, algae and cyanobacteria. They are located in the chloroplasts of plants and algae, and in the cytoplasmic membrane of photosynthetic bacteria. There are two kinds of photosystems: II and I.

Photosystem I Second protein complex in photosynthetic light reactions

Photosystem I is one of two photosystems in the photosynthetic light reactions of algae, plants, and cyanobacteria. Photosystem I is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin. Ultimately, the electrons that are transferred by Photosystem I are used to produce the high energy carrier NADPH. The combined action of the entire photosynthetic electron transport chain also produces a proton-motive force that is used to generate ATP. PSI is composed of more than 110 cofactors, significantly more than Photosystem II.

Spin label

A spin label (SL) is an organic molecule which possesses an unpaired electron, usually on a nitrogen atom, and the ability to bind to another molecule. Spin labels are normally used as tools for probing proteins or biological membrane-local dynamics using electron paramagnetic resonance spectroscopy. The site-directed spin labeling (SDSL) technique allows one to monitor a specific region within a protein. In protein structure examinations, amino acid-specific SLs can be used.

Proteorhodopsin family of transmembrane proteins

Proteorhodopsin is a family of over 50 photoactive retinylidene proteins, a larger family of transmembrane proteins that use retinal as a chromophore for light-mediated functionality, in this case, a proton pump. Some homologues exist as pentamers or hexamers. pRhodopsin is found in marine planktonic bacteria, archaea and eukaryotes (protae), but was first discovered in bacteria.

Photosynthetic reaction centre the molecular unit responsible for absorbing light in photosynthesis

A photosynthetic reaction center is a complex of several proteins, pigments and other co-factors that together execute the primary energy conversion reactions of photosynthesis. Molecular excitations, either originating directly from sunlight or transferred as excitation energy via light-harvesting antenna systems, give rise to electron transfer reactions along the path of a series of protein-bound co-factors. These co-factors are light-absorbing molecules such as chlorophyll and phaeophytin, as well as quinones. The energy of the photon is used to excite an electron of a pigment. The free energy created is then used to reduce a chain of nearby electron acceptors, which have progressively higher redox-potentials. These electron transfer steps are the initial phase of a series of energy conversion reactions, ultimately resulting in the conversion of the energy of photons to the storage of that energy by the production of chemical bonds.

A light-harvesting complex has a complex of subunit proteins that may be part of a larger supercomplex of a photosystem, the functional unit in photosynthesis. It is used by plants and photosynthetic bacteria to collect more of the incoming light than would be captured by the photosynthetic reaction center alone. Light-harvesting complexes are found in a wide variety among the different photosynthetic species. The complexes consist of proteins and photosynthetic pigments and surround a photosynthetic reaction center to focus energy, attained from photons absorbed by the pigment, toward the reaction center using Förster resonance energy transfer.

Conformational change

In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors.

MTSL chemical compound

MTSL is an organosulfur compound that is used as a nitroxide spin label. MTSL is bifunctional, consisting of the nitroxide and the thiosulfonate ester functional groups. The nitroxide label is sterically protected, so it is relatively unreactive.

Wayne L. Hubbell is an American biochemist and member of the National Academy of Sciences. He is Professor of Biochemistry and Jules Stein Professor of Ophthalmology at the University of California, Los Angeles. His research focuses on the visual system, and is primarily supported by a grant from the National Eye Institute.

Photosynthetic reaction centre protein family InterPro Family

Photosynthetic reaction centre proteins are main protein components of photosynthetic reaction centres (RCs) of bacteria and plants. They are transmembrane proteins embedded in the chloroplast thylakoid or bacterial cell membrane.

Orientations of Proteins in Membranes (OPM) database provides spatial positions of membrane protein structures with respect to the lipid bilayer. Positions of the proteins are calculated using an implicit solvation model of the lipid bilayer. The results of calculations were verified against experimental studies of spatial arrangement of transmembrane and peripheral proteins in membranes.

Light-dependent reactions photosynthetic reactions

In photosynthesis, the light-dependent reactions take place on the thylakoid membranes. The inside of the thylakoid membrane is called the lumen, and outside the thylakoid membrane is the stroma, where the light-independent reactions take place. The thylakoid membrane contains some integral membrane protein complexes that catalyze the light reactions. There are four major protein complexes in the thylakoid membrane: Photosystem II (PSII), Cytochrome b6f complex, Photosystem I (PSI), and ATP synthase. These four complexes work together to ultimately create the products ATP and NADPH.

psaA RNA motif

The psaA RNA motif describes a class of RNAs with a common secondary structure. psaA RNAs are exclusively found in locations that presumably correspond to the 5' untranslated regions of operons formed of psaA and psaB genes. For this reason, it was hypothesized that psaA RNAs function as cis-regulatory elements of these genes. The psaAB genes encode proteins that form subunits in the photosystem I structure used for photosynthesis. psaA RNAs have been detected only in cyanobacteria, which is consistent with their association with photosynthesis.

Mei Hong (chemist) Chinese-American chemist

Mei Hong is a Chinese-American biophysical chemist and Professor of Chemistry at the Massachusetts Institute of Technology. She is known for her creative development and application of solid-state nuclear magnetic resonance (ssNMR) spectroscopy to elucidate the structures and mechanisms of membrane proteins, plant cell walls, and amyloid proteins. She has received a number of recognitions for her work, including the Günther Laukien Prize in 2014, the Founders Medal of International Council on Magnetic Resonance in Biological Systems in 2010, the Protein Society Young Investigator award in 2012, and the American Chemical Society’s Pure Chemistry award in 2003.

Wolfgang Lubitz researcher

Wolfgang Lubitz is a German chemist and biophysicist. He is currently a director emeritus at the Max Planck Institute for Chemical Energy Conversion. He is well known for his work on bacterial photosynthetic reaction centres, hydrogenase enzymes, and the oxygen-evolving complex using a variety of biophysical techniques. He has been recognized by a Festschrift for his contributions to electron paramagnetic resonance (EPR) and its applications to chemical and biological systems.

References

  1. Oda, Michael N (2003). "The C-terminal domain of apolipoprotein A-I contains a lipid-sensitive conformational trigger". Nature Structural & Molecular Biology. 10 (6): 455–60. doi:10.1038/nsb931. PMID   12754494. S2CID   25438936.
  2. Altenbach, C.; Flitsch, S.L.; Khorana, H.G.; Hubbell, W.L. (1989). "Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines". Biochemistry. 28 (19): 7806–7812. doi:10.1021/bi00445a042. PMID   2558712.
  3. Altenbach, C.; Marti, T.; Khorana, H.G.; Hubbell, W.L. (1990). "Transmembrane Protein Structure: Spin Labeling of Bacteriorhodopsin Mutants". Science. 248 (4959): 1088–192. Bibcode:1990Sci...248.1088A. doi:10.1126/science.2160734. PMID   2160734.
  4. 1 2 Klare, J.P.; Steinhoff, H.-J. (2009). "Spin Labeling EPR". Photosynthesis Research. 102 (2–3): 377–390. doi:10.1007/s11120-009-9490-7. PMID   19728138. S2CID   40673871.
  5. Stone, T.J.; Buckman, T.; Nordio, P.L.; McConnell, H.M. (1965). "Spin-labeled biomolecules". Proc. Natl. Acad. Sci. USA. 54 (4): 1010–1017. Bibcode:1965PNAS...54.1010S. doi:10.1073/pnas.54.4.1010. PMC   219782 . PMID   5219813.
  6. Bordignon, E.; Steinhoff, H.-J. (2007). "Membrane protein structure and dynamics studied by site-directed spin labeling ESR". In Biological Magnetic Resonance 27 - ESR Spectroscopy in Membrane Biophysics. Biological Magnetic Resonance. 27: 129–164. doi:10.1007/978-0-387-49367-1_5. ISBN   978-0-387-25066-3.
  7. Jagannathan, B; Dekat, S; Golbeck, JH; Lakshmi, KV (2010). "The Assembly of a Multisubunit Photosynthetic Membrane Protein Complex: A Site-Specific Spin Labeling EPR Spectroscopic Study of the PsaC Subunit in Photosystem I". Biochemistry. 49 (11): 2398–2408. doi:10.1021/bi901483f. PMID   20158221.
  8. Chen, M.; Margittai, M.; Chen, J.; Langen, R. (2007). "Investigation of alpha-Synuclein Fibril Structure by Site-directed Spin Labeling". J. Biol. Chem. 282 (34): 24970–24979. doi: 10.1074/jbc.M700368200 . PMID   17573347.
  9. Bedrood, Sahar; Yiyu Li; J. Mario Isas; Balachandra G. Hegde; Ulrich Baxa; Ian S. Haworth; Ralf Langen (February 2012). "Fibril Structure of Human Islet Amyloid Polypeptide". J. Biol. Chem. 287 (8): 5235–41. doi:10.1074/jbc.M111.327817. PMC   3285303 . PMID   22187437.