Shortness of breath

Last updated
Shortness of breath
Other namesDyspnea, dyspnoea, breathlessness, difficulty (in/of) breathing; respiratory distress
SymptomsFeverCoughSOB (cropped).jpg
Pronunciation
Specialty Pulmonology

Shortness of breath (SOB), known as dyspnea (in AmE) or dyspnoea (in BrE), is an uncomfortable feeling of not being able to breathe well enough. The American Thoracic Society defines it as "a subjective experience of breathing discomfort that consists of qualitatively distinct sensations that vary in intensity", and recommends evaluating dyspnea by assessing the intensity of its distinct sensations, the degree of distress and discomfort involved, and its burden or impact on the patient's activities of daily living. Distinct sensations include effort/work to breathe, chest tightness or pain, and "air hunger" (the feeling of not enough oxygen). [1] The tripod position is often assumed to be a sign.

Contents

Dyspnea is a normal symptom of heavy physical exertion but becomes pathological if it occurs in unexpected situations, [2] when resting or during light exertion. In 85% of cases it is due to asthma, pneumonia, cardiac ischemia, COVID-19, interstitial lung disease, congestive heart failure, chronic obstructive pulmonary disease, or psychogenic causes, [2] [3] such as panic disorder and anxiety (see Psychogenic disease and Psychogenic pain). [4] The best treatment to relieve or even remove shortness of breath [5] typically depends on the underlying cause. [6]

Definition

Dyspnea, in medical terms, is "shortness of breath".

The American Thoracic Society defines dyspnea as:

A subjective experience of breathing discomfort that consists of qualitatively distinct sensations that vary in intensity. [7]

Other definitions describe it as "difficulty in breathing", [8] "disordered or inadequate breathing", [9] "uncomfortable awareness of breathing", [3] and as the experience of "breathlessness" (which may be either acute or chronic). [2] [6] [10]

Causes

While shortness of breath is generally caused by disorders of the cardiac or respiratory system, others such as the neurological, [11] musculoskeletal, endocrine, hematologic, and psychiatric systems may be the cause. [12] DiagnosisPro, an online medical expert system, listed 497 distinct causes in October 2010. [13] The most common cardiovascular causes are myocardial infarction and heart failure while common pulmonary causes include chronic obstructive pulmonary disease, asthma, pneumothorax, pulmonary edema and pneumonia. [2] On a pathophysiological basis the causes can be divided into (1) increased awareness of normal breathing such as during an anxiety attack, (2) an increase in the work of breathing and (3) an abnormality in the ventilatory or respiratory system. [11] Ischemic strokes, hemorrhages, tumors, infections, seizures, and traumas at the brain stem can also cause shortness of breath, making them the only neurological causes of shortness of breath.

The tempo of onset and the duration of dyspnea are useful in knowing the etiology of dyspnea. Acute shortness of breath is usually connected with sudden physiological changes, such as laryngeal edema, bronchospasm, myocardial infarction, pulmonary embolism, or pneumothorax. Patients with COPD and idiopathic pulmonary fibrosis (IPF) have a mild onset and gradual progression of dyspnea on exertion, punctuated by acute exacerbations of shortness of breath. In contrast, most asthmatics do not have daily symptoms, but have intermittent episodes of dyspnea, cough, and chest tightness that are usually associated with specific triggers, such as an upper respiratory tract infection or exposure to allergens. [14]

Acute coronary syndrome

Acute coronary syndrome frequently presents with retrosternal chest discomfort and difficulty catching the breath. [2] It however may atypically present with shortness of breath alone. [15] Risk factors include old age, smoking, hypertension, hyperlipidemia, and diabetes. [15] An electrocardiogram and cardiac enzymes are important both for diagnosis and directing treatment. [15] Treatment involves measures to decrease the oxygen requirement of the heart and efforts to increase blood flow. [2]

COVID-19

People that have been infected by COVID-19 may have symptoms such as a fever, dry cough, loss of smell and taste, and in moderate to severe cases, shortness of breath.[ citation needed ]

Congestive heart failure

Congestive heart failure frequently presents with shortness of breath with exertion, orthopnea, and paroxysmal nocturnal dyspnea. [2] It affects between 1 and 2% of the general United States population and occurs in 10% of those over 65 years old. [2] [15] Risk factors for acute decompensation include high dietary salt intake, medication noncompliance, cardiac ischemia, abnormal heart rhythms, kidney failure, pulmonary emboli, hypertension, and infections. [15] Treatment efforts are directed toward decreasing lung congestion. [2]

Chronic obstructive pulmonary disease

People with chronic obstructive pulmonary disease (COPD), most commonly emphysema or chronic bronchitis, frequently have chronic shortness of breath and a chronic productive cough. [2] An acute exacerbation presents with increased shortness of breath and sputum production. [2] COPD is a risk factor for pneumonia; thus this condition should be ruled out. [2] In an acute exacerbation treatment is with a combination of anticholinergics, beta2-adrenoceptor agonists, steroids and possibly positive pressure ventilation. [2]

Asthma

Asthma is the most common reason for presenting to the emergency room with shortness of breath. [2] It is the most common lung disease in both developing and developed countries affecting about 5% of the population. [2] Other symptoms include wheezing, tightness in the chest, and a nonproductive cough. [2] Inhaled corticosteroids are the preferred treatment for children, however, these drugs can reduce the growth rate. [16] Acute symptoms are treated with short-acting bronchodilators.[ citation needed ]

Pneumothorax

Pneumothorax presents typically with pleuritic chest pain of acute onset and shortness of breath not improved with oxygen. [2] Physical findings may include absent breath sounds on one side of the chest, jugular venous distension, and tracheal deviation. [2]

Pneumonia

The symptoms of pneumonia are fever, productive cough, shortness of breath, and pleuritic chest pain. [2] Inspiratory crackles may be heard on exam. [2] A chest x-ray can be useful to differentiate pneumonia from congestive heart failure. [2] As the cause is usually a bacterial infection, antibiotics are typically used for treatment. [2]

Pulmonary embolism

Pulmonary embolism classically presents with an acute onset of shortness of breath. [2] Other presenting symptoms include pleuritic chest pain, cough, hemoptysis, and fever. [2] Risk factors include deep vein thrombosis, recent surgery, cancer, and previous thromboembolism. [2] It must always be considered in those with acute onset of shortness of breath owing to its high risk of mortality. [2] Diagnosis, however, may be difficult [2] and Wells Score is often used to assess the clinical probability. Treatment, depending on the severity of symptoms, typically starts with anticoagulants; the presence of ominous signs (low blood pressure) may warrant the use of thrombolytic drugs. [2]

Anemia

Anemia that develops gradually usually presents with exertional dyspnea, fatigue, weakness, and tachycardia. [17] It may lead to heart failure. [17] Anaemia is often a cause of dyspnea. Menstruation, particularly if excessive, can contribute to anaemia and consequential dyspnea in women. Headaches are a symptom of dyspnea in patients with anaemia. Some patients report a numb sensation in their head, and others have reported blurred vision caused by hypotension behind the eye due to a lack of oxygen and pressure; these patients have reported severe head pains, which can lead to permanent brain damage. Symptoms can include loss of concentration, focus, fatigue, language faculty impairment, and memory loss. [18] [ citation needed ]

Cancer

Shortness of breath is common in people with cancer and may be caused by numerous different factors. In people with advanced cancer, periods with severe shortness of breath may occur, along with a more continuous feeling of breathlessness. [19] Treatments include both nonpharmacological and pharmacological interventions. Nonpharmacological interventions that showed improvement in breathlessness include fans, behavioral and pyschoeducational approaches, exercise, and pulmonary rehabilitation. Integrative medicine options include acupuncture/acupressure/reflexology, meditation, and music therapy, with acupuncture/reflexology found to have a beneficial effect. [20]

Other

Other important or common causes of shortness of breath include cardiac tamponade, anaphylaxis, interstitial lung disease, panic attacks, [6] [12] [17] and pulmonary hypertension. It is more common among people with relatively small lungs. [21] Around 2/3 of women experience shortness of breath as a part of a normal pregnancy. [9]

Cardiac tamponade presents with dyspnea, tachycardia, elevated jugular venous pressure, and pulsus paradoxus. [17] The gold standard for diagnosis is ultrasound. [17]

Anaphylaxis typically begins over a few minutes in a person with a previous history of the same. [6] Other symptoms include urticaria, throat swelling, and gastrointestinal upset. [6] The primary treatment is epinephrine. [6]

Interstitial lung disease presents with a gradual onset of shortness of breath typically with a history of predisposing environmental exposure. [12] Shortness of breath is often the only symptom in those with tachydysrhythmias. [15]

Panic attacks typically present with hyperventilation, sweating, and numbness. [6] They are however a diagnosis of exclusion. [12]

Neurological conditions such as spinal cord injury, phrenic nerve injuries, Guillain–Barré syndrome, amyotrophic lateral sclerosis, multiple sclerosis and muscular dystrophy can all cause an individual to experience shortness of breath. [11] Shortness of breath can also occur as a result of vocal cord dysfunction (VCD). [22]

Sarcoidosis is an inflammatory disease of unknown etiology that generally presents with dry cough, fatigue, and shortness of breath, although multiple organ systems may be affected, with the involvement of sites such as the eyes, the skin, and the joints. [23]

Pathophysiology

Different physiological pathways may lead to shortness of breath including via ASIC chemoreceptors, mechanoreceptors, and lung receptors. [15]

It is thought that three main components contribute to dyspnea: afferent signals, efferent signals, and central information processing. It is believed the central processing in the brain compares the afferent and efferent signals; and dyspnea results when a "mismatch" occurs between the two: such as when the need for ventilation (afferent signaling) is not being met by physical breathing (efferent signaling). [24]

Afferent signals are sensory neuronal signals that ascend to the brain. Afferent neurons significant in dyspnea arise from a large number of sources including the carotid bodies, medulla, lungs, and chest wall. Chemoreceptors in the carotid bodies and medulla supply information regarding the blood gas levels of O2, CO2 and H+. [25] In the lungs, juxtacapillary (J) receptors are sensitive to pulmonary interstitial edema, while stretch receptors signal bronchoconstriction. Muscle spindles in the chest wall signal the stretch and tension of the respiratory muscles. Thus, poor ventilation leads to hypercapnia, left heart failure leading to interstitial edema (impairing gas exchange), asthma causing bronchoconstriction (limiting airflow) and muscle fatigue leading to ineffective respiratory muscle action could all contribute to a feeling of dyspnea. [24]

Efferent signals are the motor neuronal signals descending to the respiratory muscles. The most important respiratory muscle is the diaphragm. Other respiratory muscles include the external and internal intercostal muscles, the abdominal muscles, and the accessory breathing muscles. [26] As the brain receives its plentiful supply of afferent information relating to ventilation, it can compare it to the current level of respiration as determined by the efferent signals. If the level of respiration is inappropriate for the body's status then dyspnea might occur. There is also a psychological component to dyspnea, as some people may become aware of their breathing in such circumstances but not experience the typical distress of dyspnea. [24]

Diagnosis

MRC breathlessness scale
GradeDegree of dyspnea
1no dyspnea except with strenuous exercise
2dyspnea when walking up an incline or hurrying on the level
3walks slower than most on the level, or stops after 15 minutes of walking on the level
4stops after a few minutes of walking on the level
5with minimal activity such as getting dressed, too dyspneic to leave the house
Signs of respiratory distress illustration Signs of respiratory distress illustration.png
Signs of respiratory distress illustration

The initial approach to evaluation begins with an assessment of the airway, breathing, and circulation followed by a medical history and physical examination. [2] Signs and symptoms that represent significant severity include hypotension, hypoxemia, tracheal deviation, altered mental status, unstable dysrhythmia, stridor, intercostal indrawing, cyanosis, tripod positioning, pronounced use of accessory muscles (sternocleidomastoid, scalenes) and absent breath sounds. [12]

A number of scales may be used to quantify the degree of shortness of breath. [27] It may be subjectively rated on a scale from 1 to 10 with descriptors associated with the number (The Modified Borg Scale). [27] The MRC breathlessness scale suggests five grades of dyspnea based on the circumstances and severity in which it arises. [28]

Blood tests

Several labs may help determine the cause of shortness of breath. D-dimer, while useful to rule out a pulmonary embolism in those who are at low risk, is not of much value if it is positive, as it may be positive in several conditions that lead to shortness of breath. [15] A low level of brain natriuretic peptide is useful in ruling out congestive heart failure; however, a high level, while supportive of the diagnosis, could also be due to advanced age, kidney failure, acute coronary syndrome, or a large pulmonary embolism. [15]

Imaging

A chest x-ray is useful to confirm or rule out a pneumothorax, pulmonary edema, or pneumonia. [15] Spiral computed tomography with intravenous radiocontrast is the imaging study of choice to evaluate for pulmonary embolism. [15]

Treatment

The primary treatment of shortness of breath is directed at its underlying cause. [6] Extra supplemental oxygen is effective in those with hypoxia; however, this has no effect in those with normal blood oxygen saturations. [3] [29]

Physiotherapy

Individuals can benefit from a variety of physical therapy interventions. [30] Persons with neurological/neuromuscular abnormalities may have breathing difficulties due to weak or paralyzed intercostal, abdominal and/or other muscles needed for ventilation. [31] Some physical therapy interventions for this population include active assisted cough techniques, [32] volume augmentation such as breath stacking, [33] education about body position and ventilation patterns [34] and movement strategies to facilitate breathing. [33] Pulmonary rehabilitation may alleviate symptoms in some people, such as those with COPD, but will not cure the underlying disease. [35] [36] Fan therapy to the face has been shown to relieve shortness of breath in patients with a variety of advanced illnesses including cancer. [37] The mechanism of action is thought to be stimulation of the trigeminal nerve.

Palliative medicine

Systemic immediate release opioids are beneficial in emergently reducing the symptom severity of shortness of breath due to both cancer and non-cancer causes; [3] [38] long-acting/sustained-release opioids are also used to prevent/continue treatment of dyspnea in palliative setting. There is a lack of evidence to recommend midazolam, nebulised opioids, the use of gas mixtures, or cognitive-behavioral therapy yet. [39]

Non-pharmacological techniques

Non-pharmacological interventions provide key tools for the management of breathlessness. [19] Potentially beneficial approaches include active management of psychosocial issues (anxiety, depression, etc.), and implementation of self-management strategies, such as physical and mental relaxation techniques, pacing techniques, energy conservation techniques, learning exercises to control breathing, and education. [19] The use of a fan may be beneficial. [19] Cognitive behavioural therapy may also be helpful. [19]

Pharmacological treatment

For people with severe, chronic, or uncontrollable breathlessness, non-pharmacological approaches to treating breathlessness may be combined with medication. For people who have cancer that is causing the breathlessness, medications that have been suggested include opioids, benzodiazepines, oxygen, and steroids. [19] Results of recent systematic reviews and meta-analyses found opioids were not necessarily associated with more effectiveness in treatment for patients with advanced cancer. [40] [41]

Ensuring that the balance between side effects and adverse effects from medications and potential improvements from medications needs to be carefully considered before prescribing medication. [19] The use of systematic corticosteroids in palliative care for people with cancer is common, however, the effectiveness and potential adverse effects of this approach in adults with cancer have not been well studied. [19]

Epidemiology

Shortness of breath is the primary reason 3.5% of people present to the emergency department in the United States. Of these individuals, approximately 51% are admitted to the hospital and 13% die within a year. [42] Some studies have suggested that up to 27% of hospitalized people develop dyspnea, [43] while in dying patients 75% will experience it. [24] Acute shortness of breath is the most common reason people requiring palliative care visit an emergency department. [3] Up to 70% of adults with advanced cancer also experience dyspnoea. [19]

Etymology and pronunciation

English dyspnea comes from Latin dyspnoea, from Greek dyspnoia, from dyspnoos, which literally means "disordered breathing". [12] [44] Its combining forms ( dys- + -pnea ) are familiar from other medical words, such as dysfunction ( dys- + function ) and apnea ( a- + -pnea ). The most common pronunciation in medical English is /dɪspˈnə/ disp-NEE, with the p expressed and the stress on the /niː/ syllable. But pronunciations with a silent p in pn (as also in pneumo- ) are common ( /dɪsˈnə/ or /ˈdɪsniə/ ), [45] as are those with the stress on the first syllable [45] ( /ˈdɪspniə/ or /ˈdɪsniə/ ).

In English, the various -pnea-suffixed words commonly used in medicine do not follow one clear pattern as to whether the /niː/ syllable or the one preceding it is stressed; the p is usually expressed but is sometimes silent depending on the word. The following collation or list shows the preponderance of how major dictionaries pronounce and transcribe them (less-used variants are omitted):

GroupTermCombining formsPreponderance of transcriptions (major dictionaries)
good eupnea eu- + -pnea /jpˈnə/ yoop-NEE [46] [47] [45] [48]
bad dyspnea dys- + -pnea /dɪspˈnə/ disp-NEE, [47] [48] [49] /ˈdɪspniə/ DISP-nee-ə [46] [45]
fast tachypnea tachy- + -pnea /ˌtækɪpˈnə/ TAK-ip-NEE [46] [47] [45] [48] [49]
slow bradypnea brady- + -pnea /ˌbrdɪpˈnə/ BRAY-dip-NEE [47] [45] [48]
upright orthopnea ortho- + -pnea /ɔːrˈθɒpniə/ or-THOP-nee-ə, [47] [45] [49] [46] :audio /ɔːrθəpˈnə/ or-thəp-NEE [45] [46] :print
supine platypnea platy- + -pnea /pləˈtɪpniə/ plə-TIP-nee-ə [46] [47]
bent over bendopnea bend + -o- + -pnea /bɛndˈɒpniə/ bend-OP-nee-ə
excessive hyperpnea hyper- + -pnea /ˌhpərpˈnə/ HY-pərp-NEE [46] [47] [45] [48]
insufficient hypopnea hypo- + -pnea /hˈpɒpniə/ hy-POP-nee-ə, [46] [47] [48] [49] /ˌhpˈnə/ high-poh-NEE [50] [48]
absent apnea a- + -pnea /ˈæpniə/ AP-nee-ə, [46] [47] [45] [48] [49] :US /æpˈnə/ ap-NEE [45] [48] [49] :UK

See also

Related Research Articles

<span class="mw-page-title-main">Respiratory failure</span> Inadequate gas exchange by the respiratory system

Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide, or both cannot be kept at normal levels. A drop in the oxygen carried in the blood is known as hypoxemia; a rise in arterial carbon dioxide levels is called hypercapnia. Respiratory failure is classified as either Type 1 or Type 2, based on whether there is a high carbon dioxide level, and can be acute or chronic. In clinical trials, the definition of respiratory failure usually includes increased respiratory rate, abnormal blood gases, and evidence of increased work of breathing. Respiratory failure causes an altered state of consciousness due to ischemia in the brain.

<span class="mw-page-title-main">Cough</span> Sudden expulsion of air from the lungs as a reflex to clear irritants

A cough is a sudden expulsion of air through the large breathing passages which can help clear them of fluids, irritants, foreign particles and microbes. As a protective reflex, coughing can be repetitive with the cough reflex following three phases: an inhalation, a forced exhalation against a closed glottis, and a violent release of air from the lungs following opening of the glottis, usually accompanied by a distinctive sound.

Orthopnea or orthopnoea is shortness of breath (dyspnea) that occurs when lying flat, causing the person to have to sleep propped up in bed or sitting in a chair. It is commonly seen as a late manifestation of heart failure, resulting from fluid redistribution into the central circulation, causing an increase in pulmonary capillary pressure and causing difficulty in breathing. It is also seen in cases of abdominal obesity or pulmonary disease. Orthopnea is the opposite of platypnea, shortness of breath that worsens when sitting or standing upright.

<span class="mw-page-title-main">Chest pain</span> Discomfort or pain in the chest as a medical symptom

Chest pain is pain or discomfort in the chest, typically the front of the chest. It may be described as sharp, dull, pressure, heaviness or squeezing. Associated symptoms may include pain in the shoulder, arm, upper abdomen, or jaw, along with nausea, sweating, or shortness of breath. It can be divided into heart-related and non-heart-related pain. Pain due to insufficient blood flow to the heart is also called angina pectoris. Those with diabetes or the elderly may have less clear symptoms.

<span class="mw-page-title-main">Atelectasis</span> Partial collapse of a lung causing reduced gas exchange

Atelectasis is the partial collapse or closure of a lung resulting in reduced or absent gas exchange. It is usually unilateral, affecting part or all of one lung. It is a condition where the alveoli are deflated down to little or no volume, as distinct from pulmonary consolidation, in which they are filled with liquid. It is often referred to informally as a collapsed lung, although more accurately it usually involves only a partial collapse, and that ambiguous term is also informally used for a fully collapsed lung caused by a pneumothorax.

<span class="mw-page-title-main">Interstitial lung disease</span> Diseases of the space or tissue between the alveoli of the lungs

Interstitial lung disease (ILD), or diffuse parenchymal lung disease (DPLD), is a group of respiratory diseases affecting the interstitium and space around the alveoli of the lungs. It concerns alveolar epithelium, pulmonary capillary endothelium, basement membrane, and perivascular and perilymphatic tissues. It may occur when an injury to the lungs triggers an abnormal healing response. Ordinarily, the body generates just the right amount of tissue to repair damage, but in interstitial lung disease, the repair process is disrupted, and the tissue around the air sacs (alveoli) becomes scarred and thickened. This makes it more difficult for oxygen to pass into the bloodstream. The disease presents itself with the following symptoms: shortness of breath, nonproductive coughing, fatigue, and weight loss, which tend to develop slowly, over several months. The average rate of survival for someone with this disease is between three and five years. The term ILD is used to distinguish these diseases from obstructive airways diseases.

Chemical pneumonitis is inflammation of the lung caused by aspirating or inhaling irritants. It is sometimes called a "chemical pneumonia", though it is not infectious. There are two general types of chemical pneumonitis: acute and chronic.

<span class="mw-page-title-main">Pneumonitis</span> General inflammation of lung tissue

Pneumonitis describes general inflammation of lung tissue. Possible causative agents include radiation therapy of the chest, exposure to medications used during chemo-therapy, the inhalation of debris, aspiration, herbicides or fluorocarbons and some systemic diseases. If unresolved, continued inflammation can result in irreparable damage such as pulmonary fibrosis.

Eosinophilic pneumonia is a disease in which an eosinophil, a type of white blood cell, accumulates in the lungs. These cells cause disruption of the normal air spaces (alveoli) where oxygen is extracted from the atmosphere. Several different kinds of eosinophilic pneumonia exist and can occur in any age group. The most common symptoms include cough, fever, difficulty breathing, and sweating at night. Eosinophilic pneumonia is diagnosed by a combination of characteristic symptoms, findings on a physical examination by a health provider, and the results of blood tests and X-rays. Prognosis is excellent once most eosinophilic pneumonia is recognized and treatment with corticosteroids is begun.

Cardiac asthma is the medical condition of intermittent wheezing, coughing, and shortness of breath that is associated with underlying congestive heart failure (CHF). Symptoms of cardiac asthma are related to the heart's inability to effectively and efficiently pump blood in a CHF patient. This can lead to accumulation of fluid in and around the lungs, disrupting the lung's ability to oxygenate blood.

Acute severe asthma, also known as status asthmaticus, is an acute exacerbation of asthma that does not respond to standard treatments of bronchodilators (inhalers) and corticosteroids. Asthma is caused by multiple genes, some having protective effect, with each gene having its own tendency to be influenced by the environment although a genetic link leading to acute severe asthma is still unknown. Symptoms include chest tightness, rapidly progressive dyspnea, dry cough, use of accessory respiratory muscles, fast and/or labored breathing, and extreme wheezing. It is a life-threatening episode of airway obstruction and is considered a medical emergency. Complications include cardiac and/or respiratory arrest. The increasing prevalence of atopy and asthma remains unexplained but may be due to infection with respiratory viruses.

<span class="mw-page-title-main">Farmer's lung</span> Hypersensitivity pneumonitis

Farmer's lung is a hypersensitivity pneumonitis induced by the inhalation of biologic dusts coming from hay dust or mold spores or any other agricultural products. It results in a type III hypersensitivity inflammatory response and can progress to become a chronic condition which is considered potentially dangerous.

Chalicosis is a form of pneumoconiosis affecting the lungs or bronchioles, found mainly among stonecutters. The disease is caused by the inhalation of fine particles of stone. The term is from Greek, χάλιξ, gravel.

<span class="mw-page-title-main">Bird fancier's lung</span> Type of hypersensitivity pneumonitis

Bird fancier's lung (BFL), also known as bird breeder's lung, is a type of hypersensitivity pneumonitis. It can cause shortness of breath, fever, dry cough, chest pain, anorexia and weight loss, fatigue, and progressive pulmonary fibrosis. It is triggered by exposure to avian proteins present in the dry dust of droppings or feathers of a variety of birds. The lungs become inflamed, with granuloma formation. It mostly affects people who work with birds or own many birds.

Restrictive lung diseases are a category of extrapulmonary, pleural, or parenchymal respiratory diseases that restrict lung expansion, resulting in a decreased lung volume, an increased work of breathing, and inadequate ventilation and/or oxygenation. Pulmonary function test demonstrates a decrease in the forced vital capacity.

Paroxysmal nocturnal dyspnea or paroxysmal nocturnal dyspnoea (PND) is an attack of severe shortness of breath and coughing that generally occurs at night. It usually awakens the person from sleep, and may be quite frightening. PND, as well as simple orthopnea, may be relieved by sitting upright at the side of the bed with legs dangling, as symptoms typically occur when the person is recumbent, or lying down.

Pulmonary rehabilitation, also known as respiratory rehabilitation, is an important part of the management and health maintenance of people with chronic respiratory disease who remain symptomatic or continue to have decreased function despite standard medical treatment. It is a broad therapeutic concept. It is defined by the American Thoracic Society and the European Respiratory Society as an evidence-based, multidisciplinary, and comprehensive intervention for patients with chronic respiratory diseases who are symptomatic and often have decreased daily life activities. In general, pulmonary rehabilitation refers to a series of services that are administered to patients of respiratory disease and their families, typically to attempt to improve the quality of life for the patient. Pulmonary rehabilitation may be carried out in a variety of settings, depending on the patient's needs, and may or may not include pharmacologic intervention.

<span class="mw-page-title-main">Acute exacerbation of chronic obstructive pulmonary disease</span> Medical condition

An acute exacerbation of chronic obstructive pulmonary disease, or acute exacerbations of chronic bronchitis (AECB), is a sudden worsening of chronic obstructive pulmonary disease (COPD) symptoms including shortness of breath, quantity and color of phlegm that typically lasts for several days.

<span class="mw-page-title-main">Chronic obstructive pulmonary disease</span> Lung disease involving long-term poor airflow

Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease characterized by chronic respiratory symptoms and airflow limitation. GOLD 2024 defined COPD as a heterogeneous lung condition characterized by chronic respiratory symptoms due to abnormalities of the airways and/or alveoli (emphysema) that cause persistent, often progressive, airflow obstruction.

<span class="mw-page-title-main">Asbestos-related diseases</span> Disorders of the lung and pleura caused by the inhalation of asbestos fibres

Asbestos-related diseases are disorders of the lung and pleura caused by the inhalation of asbestos fibres. Asbestos-related diseases include non-malignant disorders such as asbestosis, diffuse pleural thickening, pleural plaques, pleural effusion, rounded atelectasis and malignancies such as lung cancer and malignant mesothelioma.

References

  1. Donald A. Mahler; Denis E. O'Donnell (2014). Dyspnea: Mechanisms, Measurement, and Management, Third Edition. CRC Press. p. 3. ISBN   978-1-4822-0869-6. Archived from the original on 2023-01-14. Retrieved 2016-02-01.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Shiber JR, Santana J (May 2006). "Dyspnea". Med. Clin. North Am. 90 (3): 453–79. doi:10.1016/j.mcna.2005.11.006. PMID   16473100.
  3. 1 2 3 4 5 Schrijvers D, van Fraeyenhove F (2010). "Emergencies in palliative care". Cancer J. 16 (5): 514–20. doi:10.1097/PPO.0b013e3181f28a8d. PMID   20890149.
  4. Mukerji, Vaskar (1990). "11". Dyspnea, Orthopnea, and Paroxysmal Nocturnal Dyspnea. Butterworth Publishers. ISBN   9780409900774. PMID   21250057. Archived from the original on 27 April 2018. Retrieved 15 August 2014. In addition, dyspnea may occur in febrile and hypoxic states and in association with some psychiatric conditions such as anxiety and panic disorder.
  5. Kelvin, Joanne Frankel; Tyson, Leslie B. 100 Questions & Answers About Cancer Symptoms and Cancer Treatment Side Effects. 2nd Edition. 2011. [ ISBN missing ][ page needed ]
  6. 1 2 3 4 5 6 7 8 Zuberi, T.; et al. (2009). "Acute breathlessness in adults". InnovAiT. 2 (5): 307–15. doi:10.1093/innovait/inp055.
  7. American Heart Society (1999). "Dyspnea mechanisms, assessment, and management: a consensus statement". American Journal of Respiratory and Critical Care Medicine. 159 (1): 321–40. doi:10.1164/ajrccm.159.1.ats898. PMID   9872857.
  8. TheFreeDictionary Archived 2019-06-05 at the Wayback Machine , retrieved on Dec 12, 2009. Citing: The American Heritage Dictionary of the English Language, Fourth Edition by Houghton Mifflin Company. Updated in 2009. Ologies & -Isms. The Gale Group 2008
  9. 1 2 "UpToDate". www.uptodate.com. Archived from the original on 2020-03-26. Retrieved 2022-04-25.
  10. "Dyspnea – General Practice Notebook". Archived from the original on 2011-06-13.
  11. 1 2 3 Frownfelter, Donna; Dean, Elizabeth (2006). "8". In Willy E. Hammon III (ed.). Cardiovascular and Pulmonary Physical Therapy. Vol. 4. Mosby Elsevier. p. 139.
  12. 1 2 3 4 5 6 Sarkar S, Amelung PJ (September 2006). "Evaluation of the dyspneic patient in the office". Prim. Care. 33 (3): 643–57. doi:10.1016/j.pop.2006.06.007. PMID   17088153.
  13. "Differential Diagnosis for Dyspnea: Poisoning (Specific Agent)". Archived from the original on 2010-11-16. Retrieved 2012-08-23.
  14. D. L. Kasper et al. (ed), Harrison's Principles of Internal Medicine, 20th edition (2018), p. 1943
  15. 1 2 3 4 5 6 7 8 9 10 11 Torres M, Moayedi S (May 2007). "Evaluation of the acutely dyspneic elderly patient". Clin. Geriatr. Med. 23 (2): 307–25, vi. doi:10.1016/j.cger.2007.01.007. PMID   17462519.
  16. "How Is Asthma Treated and Controlled?". Archived from the original on 2012-09-04.
  17. 1 2 3 4 5 Wills CP, Young M, White DW (February 2010). "Pitfalls in the evaluation of shortness of breath". Emerg. Med. Clin. North Am. 28 (1): 163–81, ix. doi:10.1016/j.emc.2009.09.011. PMID   19945605.
  18. "Anemia Affects Body...And Maybe The Mind". Johns Hopkins medicine. 2006. Archived from the original on 21 October 2020. Retrieved 15 May 2020.
  19. 1 2 3 4 5 6 7 8 9 Haywood, Alison; Duc, Jacqueline; Good, Phillip; Khan, Sohil; Rickett, Kirsty; Vayne-Bossert, Petra; Hardy, Janet R. (2019-02-20). "Systemic corticosteroids for the management of cancer-related breathlessness (dyspnoea) in adults". The Cochrane Database of Systematic Reviews. 2 (2): CD012704. doi:10.1002/14651858.CD012704.pub2. ISSN   1469-493X. PMC   6381295 . PMID   30784058.
  20. Dy, Sydney M.; Gupta, Arjun; Waldfogel, Julie M.; Sharma, Ritu; Zhang, Allen; Feliciano, Josephine L.; Sedhom, Ramy; Day, Jeff; Gersten, Rebecca A.; Davidson, Patricia M.; Bass, Eric B. (2020-11-19). "Interventions for Breathlessness in Patients With Advanced Cancer: A Systematic Review". doi: 10.23970/ahrqepccer232 . S2CID   229502187. Archived from the original on 2021-05-23. Retrieved 2021-05-23 via Agency for Healthcare Research and Quality.{{cite journal}}: Cite journal requires |journal= (help)
  21. Müller, A.; Wouters, E.F.; Koul, P.; Welte, T.; Harrabi, I.; Rashid, A.; Loh, L.C.; Al Ghobain, M.; Elsony, A.; Ahmed, R.; Potts, J.; Mortimer, K.; Rodrigues, F.; Paraguas, S.N.; Juvekar, S.; Agarwal, D.; Obaseki, D.; Gislason, T.; Seemungal, T.; Nafees, A.A.; Jenkins, C.; Dias, H.B.; Franssen, F.M.E.; Studnicka, M.; Janson, C.; Cherkaski, H.H.; El Biaze, M.; Mahesh, P.A.; Cardoso, J.; Burney, P.; Hartl, S.; Janssen, D.J.A.; Amaral, A.F.S. (April 2024). "Association between lung function and dyspnoea and its variation in the multinational Burden of Obstructive Lung Disease (BOLD) study". Pulmonology. doi:10.1016/J.PULMOE.2024.03.005. hdl: 20.500.11815/4902 .
  22. Ibrahim, Wanis H.; Gheriani, Heitham A.; Almohamed, Ahmed A.; Raza, Tasleem (2007-03-01). "Paradoxical vocal cord motion disorder: past, present and future". Postgraduate Medical Journal. 83 (977): 164–72. doi:10.1136/pgmj.2006.052522. ISSN   1469-0756. PMC   2599980 . PMID   17344570. Archived from the original on 2016-11-08.
  23. Bokhari, SRA; Zulfiqar, H; Mansur, A (January 2021). Sarcoidosis in StatPearls. PMID   28613460.
  24. 1 2 3 4 Harrison's Principles of Internal Medicine (Kasper DL, Fauci AS, Longo DL, et al. (eds)) (16th ed.). New York: McGraw-Hill.
  25. "Dyspnea". www.mywhatever.com. Archived from the original on 2022-07-06. Retrieved 2022-04-21.
  26. "Unit V - Respiration". www3.nd.edu. Archived from the original on 2022-07-03. Retrieved 2022-04-21.
  27. 1 2 Saracino A (October 2007). "Review of dyspnoea quantification in the emergency department: is a rating scale for breathlessness suitable for use as an admission prediction tool?". Emergency Medicine Australasia. 19 (5): 394–404. doi:10.1111/j.1742-6723.2007.00999.x. PMID   17919211. S2CID   29642138.
  28. Williams, N (2017-08-01). "The MRC breathlessness scale". Occupational Medicine (Oxford, England). 67 (6): 496–97. doi: 10.1093/occmed/kqx086 . PMID   28898975.
  29. Abernethy AP; McDonald CF; Frith PA; et al. (September 2010). "Effect of palliative oxygen versus medical (room) air in relieving breathlessness in patients with refractory dyspnea: a double-blind randomized controlled trial". Lancet. 376 (9743): 784–93. doi:10.1016/S0140-6736(10)61115-4. PMC   2962424 . PMID   20816546.
  30. Frownfelter, Donna; Dean, Elizabeth (2006). "8". In Willy E. Hammon III (ed.). Cardiovascular and Pulmonary Physical Therapy. Vol. 4. Mosby Elsevier.
  31. Frownfelter, Donna; Dean, Elizabeth (2006). "22". In Donna Frownfelter; Mary Massery (eds.). Cardiovascular and Pulmonary Physical Therapy. Vol. 4. Mosby Elsevier. p. 368.
  32. Frownfelter, Donna; Dean, Elizabeth (2006). "22". In Donna Frownfelter; Mary Massery (eds.). Cardiovascular and Pulmonary Physical Therapy. Vol. 4. Mosby Elsevier. pp. 368–71.
  33. 1 2 Frownfelter, Donna; Dean, Elizabeth (2006). "32". Cardiovascular and Pulmonary Physical Therapy. Vol. 4. Mosby Elsevier. pp. 569–81.
  34. Frownfelter, Donna; Dean, Elizabeth (2006). "23". In Donna Frownfelter; Mary Massery (eds.). Cardiovascular and Pulmonary Physical Therapy. Vol. 4. Mosby Elsevier.
  35. Puhan, Milo A.; Gimeno-Santos, Elena; Cates, Christopher J.; Troosters, Thierry (2016-12-08). "Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease". The Cochrane Database of Systematic Reviews. 12 (11): CD005305. doi:10.1002/14651858.CD005305.pub4. ISSN   1469-493X. PMC   6463852 . PMID   27930803.
  36. Zainuldin, Rahizan; Mackey, Martin G.; Alison, Jennifer A. (2011-11-09). "Optimal intensity and type of leg exercise training for people with chronic obstructive pulmonary disease". The Cochrane Database of Systematic Reviews. 2014 (11): CD008008. doi:10.1002/14651858.CD008008.pub2. ISSN   1469-493X. PMC   8939846 . PMID   22071841.
  37. Matsushima, Eisuke; Inoguchi, Hironobu; Uchitomi, Yosuke; Zenda, Sadamoto; Ogawa, Asao; Kinoshita, Hiroya; Sekimoto, Asuko; Kobayashi, Masamitsu; Yamaguchi, Takuhiro (2018-10-01). "Fan Therapy Is Effective in Relieving Dyspnea in Patients With Terminally Ill Cancer: A Parallel-Arm, Randomized Controlled Trial". Journal of Pain and Symptom Management. 56 (4): 493–500. doi: 10.1016/j.jpainsymman.2018.07.001 . ISSN   0885-3924. PMID   30009968. Archived from the original on 2021-08-29. Retrieved 2019-05-11.
  38. Naqvi F, Cervo F, Fields S (August 2009). "Evidence-based review of interventions to improve palliation of pain, dyspnea, depression". Geriatrics. 64 (8): 8–10, 12–14. PMID   20722311.
  39. DiSalvo, WM.; Joyce, MM.; Tyson, LB.; Culkin, AE.; Mackay, K. (Apr 2008). "Putting evidence into practice: evidence-based interventions for cancer-related dyspnea". Clin. J. Oncol. Nurs. 12 (2): 341–52. doi: 10.1188/08.CJON.341-352 . PMID   18390468.
  40. Feliciano, Josephine L.; Waldfogel, Julie M.; Sharma, Ritu; Zhang, Allen; Gupta, Arjun; Sedhom, Ramy; Day, Jeff; Bass, Eric B.; Dy, Sydney M. (2021-02-25). "Pharmacologic Interventions for Breathlessness in Patients With Advanced Cancer: A Systematic Review and Meta-analysis". JAMA Network Open. 4 (2): e2037632. doi:10.1001/jamanetworkopen.2020.37632. ISSN   2574-3805. PMC   7907959 . PMID   33630086. Archived from the original on 2021-05-23. Retrieved 2021-05-23.
  41. Dy, Sydney M.; Gupta, Arjun; Waldfogel, Julie M.; Sharma, Ritu; Zhang, Allen; Feliciano, Josephine L.; Sedhom, Ramy; Day, Jeff; Gersten, Rebecca A.; Davidson, Patricia M.; Bass, Eric B. (2020-11-19). "Interventions for Breathlessness in Patients With Advanced Cancer". doi: 10.23970/ahrqepccer232 . Archived from the original on 2021-05-23. Retrieved 2021-05-23 via Agency for Healthcare Research and Quality.{{cite journal}}: Cite journal requires |journal= (help)
  42. Stephen J. Dubner; Steven D. Levitt (2009). SuperFreakonomics: Tales of Altruism, Terrorism, and Poorly Paid Prostitutes . New York: William Morrow. pp.  77. ISBN   978-0-06-088957-9.
  43. Murray and Nadel's Textbook of Respiratory Medicine, 4th Ed. Robert J. Mason, John F. Murray, Jay A. Nadel, 2005, Elsevier
  44. "dyspnea", Wiktionary, 2022-04-21, archived from the original on 2022-04-21, retrieved 2022-04-21
  45. 1 2 3 4 5 6 7 8 9 10 11 Merriam-Webster, Merriam-Webster's Medical Dictionary, Merriam-Webster, archived from the original on 2020-10-10, retrieved 2015-04-21.
  46. 1 2 3 4 5 6 7 8 9 Elsevier, Dorland's Illustrated Medical Dictionary, Elsevier, archived from the original on 2014-01-11, retrieved 2016-09-21.
  47. 1 2 3 4 5 6 7 8 9 Wolters Kluwer, Stedman's Medical Dictionary, Wolters Kluwer, archived from the original on 2015-09-25.
  48. 1 2 3 4 5 6 7 8 9 Houghton Mifflin Harcourt, The American Heritage Dictionary of the English Language, Houghton Mifflin Harcourt, archived from the original on 2015-09-25.
  49. 1 2 3 4 5 6 Oxford Dictionaries, Oxford Dictionaries Online, Oxford University Press, archived from the original on 2014-10-22.
  50. https://www.merriam-webster.com/medical/hypopnea

Shortness Of Breath (Dyspnea) StatPearls