Shocked quartz

Last updated
Photomicrograph of shocked quartz Suvasvesi shocked quartz.jpg
Photomicrograph of shocked quartz

Shocked quartz is a form of quartz that has a microscopic structure that is different from normal quartz. Under intense pressure (but limited temperature), the crystalline structure of quartz is deformed along planes inside the crystal. These planes, which show up as lines under a microscope, are called planar deformation features (PDFs), or shock lamellae.

Contents

Discovery

Shocked quartz was discovered following underground nuclear weapons testing, which generated the intense pressures required to alter the quartz lattice. Eugene Shoemaker showed that shocked quartz is also found inside craters created by meteor impact, such as the Barringer Crater and Chicxulub crater. [1] The presence of shocked quartz supports that such craters were formed by impact, because a volcanic eruption would not generate the required pressure. [2]

Lightning is now known to contribute to the surface record of shocked quartz grains, complicating identification of hypervelocity impact features. [3]

Formation

Photomicrograph of a shocked quartz grain (0.13 mm across) from the Chesapeake Bay impact crater, showing shock lamellae 820qtz.jpg
Photomicrograph of a shocked quartz grain (0.13 mm across) from the Chesapeake Bay impact crater, showing shock lamellae

Shocked quartz is usually associated in nature with two high-pressure polymorphs of silicon dioxide: coesite and stishovite. These polymorphs have a crystal structure different from standard quartz. This structure can be formed only by intense pressure (more than 2 gigapascals), but at moderate temperatures. Coesite and stishovite are usually viewed as indicative of impact events or eclogite facies metamorphism (or nuclear explosion), but are also found in sediments prone to lightning strikes and in fulgurites. [4] [3]

Occurrence

Shocked quartz is found worldwide, and occurs in the thin Cretaceous–Paleogene boundary layer, which occurs at the contact between Cretaceous and Paleogene rocks. This is further evidence (in addition to iridium enrichment) that the transition between the two geologic periods was caused by a large impact. [5]

Lightning also generates planar deformation features in quartz and is capable of propagating appropriate pressure/temperature gradients in rocks and sediments alike. [6] This very common mechanism may significantly contribute to the accumulation of shocked quartz in the geologic record. Mantle xenoliths and sediments derived from them may contain coesite or stishovite. [7]

Though shocked quartz is only recently recognized, Eugene Shoemaker discovered it prior to its crystallographic description in building stones in the Bavarian town of Nördlingen, derived from shock-metamorphic rocks, such as breccia and pseudotachylite, of Ries crater. [8] [9]

See also

Related Research Articles

<span class="mw-page-title-main">Impact crater</span> Circular depression in a solid astronomical body formed by the impact of a smaller object

An impact crater is a circular depression in the surface of a solid astronomical object formed by the hypervelocity impact of a smaller object. In contrast to volcanic craters, which result from explosion or internal collapse, impact craters typically have raised rims and floors that are lower in elevation than the surrounding terrain. Lunar impact craters range from microscopic craters on lunar rocks returned by the Apollo program and small, simple, bowl-shaped depressions in the lunar regolith to large, complex, multi-ringed impact basins. Meteor Crater is a well-known example of a small impact crater on Earth.

<span class="mw-page-title-main">Metamorphic rock</span> Rock that was subjected to heat and pressure

Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than 150 to 200 °C and, often, elevated pressure of 100 megapascals (1,000 bar) or more, causing profound physical or chemical changes. During this process, the rock remains mostly in the solid state, but gradually recrystallizes to a new texture or mineral composition. The protolith may be an igneous, sedimentary, or existing metamorphic rock.

<span class="mw-page-title-main">Meteor Crater</span> Meteorite impact crater in northern Arizona

Meteor Crater or Barringer Crater is a meteorite impact crater about 37 mi (60 km) east of Flagstaff and 18 mi (29 km) west of Winslow in the desert of northern Arizona, United States. The site had several earlier names, and fragments of the meteorite are officially called the Canyon Diablo Meteorite, after the adjacent Cañon Diablo.

<span class="mw-page-title-main">Nördlinger Ries</span> Meteorite impact crater in Bavaria, Germany

The Nördlinger Ries is an impact crater and large circular depression in western Bavaria and eastern Baden-Württemberg. It is located north of the Danube in the district of Donau-Ries. The city of Nördlingen is located within the depression, about 6 kilometres (3.7 mi) south-west of its centre.

<span class="mw-page-title-main">Fulgurite</span> Rock type formed by lightning strike

Fulgurites, commonly called "fossilized lightning", are natural tubes, clumps, or masses of sintered, vitrified, and/or fused soil, sand, rock, organic debris and other sediments that sometimes form when lightning discharges into ground. When composed of silica, fulgurites are classified as a variety of the mineraloid lechatelierite.

<span class="mw-page-title-main">Coesite</span> Silica mineral, rare polymorph of quartz

Coesite is a form (polymorph) of silicon dioxide (SiO2) that is formed when very high pressure (2–3 gigapascals), and moderately high temperature (700 °C, 1,300 °F), are applied to quartz. Coesite was first synthesized by Loring Coes, Jr., a chemist at the Norton Company, in 1953.

<span class="mw-page-title-main">Impactite</span> Rock created or modified by impact of a meteorite

Impactite is rock created or modified by one or more impacts of a meteorite. Impactites are considered metamorphic rock, because their source materials were modified by the heat and pressure of the impact. On Earth, impactites consist primarily of modified terrestrial material, sometimes with pieces of the original meteorite.

<span class="mw-page-title-main">Rochechouart impact structure</span> Asteroid impact structure in France

Rochechouart impact structure or Rochechouart astrobleme is an impact structure in France. Erosion has over the millions of years has mostly destroyed its impact crater, the initial surface expression of the asteroid impact leaving highly deformed bedrock and fragments of the crater's floor as evidence of it.

<span class="mw-page-title-main">Shatter cone</span> Geological feature in bedrock resulting from extreme mechanical shock

Shatter cones are rare geological features that are only known to form in the bedrock beneath meteorite impact craters or underground nuclear explosions. They are evidence that the rock has been subjected to a shock with pressures in the range of 2–30 GPa (290,000–4,350,000 psi).

<span class="mw-page-title-main">Lechatelierite</span>

Lechatelierite is silica glass, amorphous SiO2, non-crystalline mineraloid.

<span class="mw-page-title-main">Stishovite</span> Tetragonal form of silicon dioxide

Stishovite is an extremely hard, dense tetragonal form (polymorph) of silicon dioxide. It is very rare on the Earth's surface; however, it may be a predominant form of silicon dioxide in the Earth, especially in the lower mantle.

Edeowie glass is a natural glass, or lechatelierite, found in the Australian state of South Australia. It is slag-like, opaque material found as vesicular free forms or sheet-like/ropy masses. It is located throughout a semi-continuous swath in baked pod-like clay-bearing sediment in an area of about 55 kilometres (34 mi) long by 10 kilometres (6.2 mi) along the western side of the Flinders Ranges near Parachilna and east of Lake Torrens. The region in which this glass is found is mostly restricted to concentrations correlated to the ancient shoreline terrace sequence at the locality. It is typically black in appearance, but can occur as variegated grey-green with various streak-like impurities. Pale grey and red-brownish surfaces can be caused by chemical weathering and devitrification.

<span class="mw-page-title-main">Coconino Sandstone</span> Geologic formation

Coconino Sandstone is a geologic formation named after its exposure in Coconino County, Arizona. This formation spreads across the Colorado Plateau province of the United States, including northern Arizona, northwest Colorado, Nevada, and Utah.

Edward Ching-Te Chao was one of the founders of the field of impact metamorphism, the study of the effects of meteorite impacts on the Earth's crust.

<span class="mw-page-title-main">Suevite</span> Rock consisting partly of melted material formed during an impact event

Suevite is a rock consisting partly of melted material, typically forming a breccia containing glass and crystal or lithic fragments, formed during an impact event. It forms part of a group of rock types and structures that are known as impactites.

Shock metamorphism or impact metamorphism describes the effects of shock-wave related deformation and heating during impact events.

<span class="mw-page-title-main">Seifertite</span> Dense silica mineral

Seifertite is a silicate mineral with the formula SiO2 and is one of the densest polymorphs of silica. It has only been found in Martian and lunar meteorites, where it is presumably formed from either tridymite or cristobalite – other polymorphs of quartz – as a result of heating during the atmospheric re-entry and impact to the Earth, at an estimated minimal pressure of 35 GPa. It can also be produced in the laboratory by compressing cristobalite in a diamond anvil cell to pressures above 40 GPa. The mineral is named after Friedrich Seifert (born 1941), the founder of the Bayerisches Geoinstitut at University of Bayreuth, Germany, and is officially recognized by the International Mineralogical Association.

<span class="mw-page-title-main">Rieskrater Museum</span> Geological museum in Nördlingen, Germany

The Rieskrater Museum, sometimes known in English as the Ries Crater Museum, focuses on meteors and their collisions with Earth. The museum is housed in a 16th-century barn in Nördlingen, Germany which was part of the medieval city's center.

Bloody Creek crater, which is also known as the Bloody Creek structure, is a 420-by-350-meter in diameter elliptical feature that is located in southwestern Nova Scotia, Canada. It is argued to be either a possible extraterrestrial impact crater or an impact structure. It lies between Bridgetown and West Dalhousie, Annapolis County, Nova Scotia, where the Bloody Creek structure straddles what was once a stretch of Bloody Creek. It also is informally known as the Astrid crater.

Mineral alteration refers to the various natural processes that alter a mineral's chemical composition or crystallography.

References

  1. Eugene Merle Shoemaker (1959). Impact mechanics at Meteor crater, Arizona. US Geological Survey (Report). doi: 10.3133/ofr59108 .
  2. de Silva, SL; Sharpton, VL (1988). Explosive Volcanism, Shock Metamorphism and the K-T Boundary. Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality. LPI Contributions. Vol. 673. p. 38. Bibcode:1988LPICo.673...38D.
  3. 1 2 Gieré, Reto; Wimmenauer, Wolfhard; Müller-Sigmund, Hiltrud; Wirth, Richard; Lumpkin, Gregory R.; Smith, Katherine L. (2015-07-01). "Lightning-induced shock lamellae in quartz". American Mineralogist. Ammin.geoscienceworld.org. 100 (7): 1645–1648. Bibcode:2015AmMin.100.1645G. doi:10.2138/am-2015-5218. S2CID   130973907 . Retrieved 2018-08-07.
  4. Melosh, H.J. (2017). "Impact geologists, beware!". Geophysical Research Letters. 44 (17): 8873–8874. Bibcode:2017GeoRL..44.8873M. doi:10.1002/2017GL074840. S2CID   134575031.
  5. Bohor, BF (1988). Shocked Quartz and More: Impact Signatures in K-T Boundary Clays and Claystones. Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality. LPI Contributions. Vol. 673. p. 17. Bibcode:1988LPICo.673...17B.
  6. Gieré, Reto; Wimmenauer, Wolfhard; Müller-Sigmund, Hiltrud; Wirth, Richard; Lumpkin, Gregory R.; Smith, Katherine L. (2015). "Lightning-induced shock lamellae in quartz". American Mineralogist. 100 (7): 1645–1648. Bibcode:2015AmMin.100.1645G. doi:10.2138/am-2015-5218. S2CID   130973907.
  7. Liou, JG; Ernst, WG; Zhang, RY; Tsujimori, T; Jahn, BM (2009). "Ultrahigh-pressure minerals and metamorphic terranes – The view from China". Journal of Asian Earth Sciences. 35 (3–4): 199–231. Bibcode:2009JAESc..35..199L. doi:10.1016/j.jseaes.2008.10.012.
  8. Shoemaker, EM; Chao, ECT (1961). "New Evidence for the Impact Origin of the Ries Basin, Bavaria, Germany". J. Geophys. Res. 66 (10): 3371–3378. Bibcode:1961JGR....66.3371S. doi:10.1029/JZ066i010p03371.
  9. Cokinos, C (2009). The Fallen Sky. Penguin. ISBN   978-1-101-13322-4.