Savanna

Last updated

A tree savanna at Tarangire National Park in Tanzania in East Africa Tarangire-Natpark800600.jpg
A tree savanna at Tarangire National Park in Tanzania in East Africa
A grass savanna at Kruger National Park in South Africa Savanna Grasslands (199168845).jpeg
A grass savanna at Kruger National Park in South Africa

A savanna or savannah is a mixed woodland-grassland (i.e. grassy woodland) biome and ecosystem characterised by the trees being sufficiently widely spaced so that the canopy does not close. The open canopy allows sufficient light to reach the ground to support an unbroken herbaceous layer consisting primarily of grasses. [1] [2] [3] Four savanna forms exist; savanna woodland where trees and shrubs form a light canopy, tree savanna with scattered trees and shrubs, shrub savanna with distributed shrubs, and grass savanna where trees and shrubs are mostly nonexistent. [4]

Contents

Savannas maintain an open canopy despite a high tree density. [5] It is often believed that savannas feature widely spaced, scattered trees. However, in many savannas, tree densities are higher and trees are more regularly spaced than in forests. [6] [7] [8] [9] The South American savanna types cerrado sensu stricto and cerrado dense typically have densities of trees similar to or higher than that found in South American tropical forests, [6] [8] [9] with savanna ranging from 800 to 3300 trees per hectare (trees/ha) and adjacent forests with 800–2000 trees/ha. Similarly Guinean savanna has 129 trees/ha, compared to 103 for riparian forest, [7] while Eastern Australian sclerophyll forests have average tree densities of approximately 100 per hectare, comparable to savannas in the same region. [10]

Savannas are also characterised by seasonal water availability, with the majority of rainfall confined to one season. They are associated with several types of biomes, and are frequently in a transitional zone between forest and desert or grassland, though mostly a transition between desert to forest. [11] Savanna covers approximately 20% of the Earth's land area. [12] Unlike the prairies in North America and steppes in Eurasia, which feature cold winters, savannas are mostly located in areas having warm to hot climates, such as in Africa, Australia, Thailand, South America and India. [13]

Etymology

The word derives from the Spanish sabana, which is itself a loanword from Taíno, which means "treeless grassland" in the West Indies. [14] [15] The letter b in Spanish, when positioned in the middle of a word, is pronounced almost like an English v; hence the change of grapheme when transcribed into English. [16]

The word originally entered English as the Zauana in a description of the ilands of the kinges of Spayne from 1555. [17] [19] This was equivalent in the orthography of the times to zavana (see history of V). Peter Martyr reported it as the local name for the plain around Comagre, the court of the cacique Carlos in present-day Panama. The accounts are inexact, [21] but this is usually placed in present-day Madugandí [22] or at points on the nearby Guna Yala coast opposite Ustupo [23] or on Point Mosquitos. [24] These areas are now either given over to modern cropland or jungle. [25]

Distribution

A savanna woodland in Northern Australia demonstrating the regular tree spacing characteristic of some savannas Australian savanna.jpg
A savanna woodland in Northern Australia demonstrating the regular tree spacing characteristic of some savannas

Many grassy landscapes and mixed communities of trees, shrubs, and grasses were described as savanna before the middle of the 19th century, when the concept of a tropical savanna climate became established. The Köppen climate classification system was strongly influenced by effects of temperature and precipitation upon tree growth, and oversimplified assumptions resulted in a tropical savanna classification concept which considered it as a "climatic climax" formation. The common usage to describe vegetation now conflicts with a simplified yet widespread climatic concept. The divergence has sometimes caused areas such as extensive savannas north and south of the Congo and Amazon Rivers to be excluded from mapped savanna categories. [26]

In different parts of North America, the word "savanna" has been used interchangeably with "barrens", "prairie", "glade", "grassland" and "oak opening". [27] Different authors have defined the lower limits of savanna tree coverage as 5–10% and upper limits range as 25–80% of an area. Two factors common to all savanna environments are rainfall variations from year to year, and dry season wildfires. [28] In the Americas, e.g. in Belize, Central America, savanna vegetation is similar from Mexico to South America and to the Caribbean. [29] The distinction between woodland and savanna is vague and therefore the two can be combined into a single biome as both woodlands and savannas feature open-canopied trees with crowns not usually interlinking (mostly forming 25-60% cover). [14]

Over many large tropical areas, the dominant biome (forest, savanna or grassland) can not be predicted only by the climate, as historical events plays also a key role, for example, fire activity. [30] In some areas, indeed, it is possible for there to be multiple stable biomes. [31] The annual rainfall ranges from 500 mm (19.69 in) to 1,270 mm (50.00 in) per year, with the precipitation being more common in six or eight months of the year, followed by a period of drought. Savannas may at times be classified as forests. [13]

In climatic geomorphology it has been noted that many savannas occur in areas of pediplains and inselbergs. [32] It has been posited that river incision is not prominent but that rivers in savanna landscapes erode more by lateral migration. [32] Flooding and associated sheet wash have been proposed as dominant erosion processes in savanna plains. [32]

Ecology

The savannas of tropical America comprise broadleaved trees such as Curatella, Byrsonima, and Bowdichia, with grasses such as Leersia and Paspalum. Bean relative Prosopis is common in the Argentinian savannas. In the East African savannas, Acacia, Combretum, baobabs, Borassus, and Euphorbia are a common vegetation genera. Drier savannas there feature spiny shrubs and grasses, such as Andropogon, Hyparrhenia, and Themeda. Wetter savannas include Brachystegia trees and Pennisetum purpureum, and elephant grass type. West African savanna trees include Anogeissus, Combretum, and Strychnos. Indian savannas are mostly cleared, but the reserved ones feature Acacia, Mimosa, and Zizyphus over a grass cover comprising Sehima and Dichanthium. The Australian savanna is abundant with sclerophyllous evergreen vegetation, which include the eucalyptus, as well as Acacia, Bauhinia, Pandanus with grasses such as Heteropogon and kangaroo grass (Themeda). [4]

Animals in the African savanna generally include the giraffe, elephant, buffalo, zebra, gnu, hippopotamus, rhinoceros, and antelope, where they rely on grass and/or tree foliage to survive. In the Australian savanna, mammals in the family Macropodidae predominate, such as kangaroos and wallabies, though cattle, horses, camels, donkeys and the Asian water buffalo, among others, have been introduced by humans. [4]

Threats

It is estimated that less than three percent of savanna ecosystems can be classified as highly intact. [33] Reasons for savanna degradation are manifold, as outlined below.

Changes in fire management

Bushfire in Kakadu National Park, Australia Bushfire Australia.jpg
Bushfire in Kakadu National Park, Australia

Savannas are subject to regular wildfires and the ecosystem appears to be the result of human use of fire. For example, Native Americans created the Pre-Columbian woodlands of North America by periodically burning where fire-resistant plants were the dominant species. [34] Aboriginal burning appears to have been responsible for the widespread occurrence of savanna in tropical Australia and New Guinea, [35] and savannas in India are a result of human fire use. [36] The maquis shrub savannas of the Mediterranean region were likewise created and maintained by anthropogenic fire. [37]

Intentional controlled burns typically create fires confined to the herbaceous layer that do little long term damage to mature trees. This prevents more catastrophic wildfires that could do much more damage. [38] However, these fires either kill or suppress tree seedlings, thus preventing the establishment of a continuous tree canopy which would prevent further grass growth. Prior to European settlement aboriginal land use practices, including fire, influenced vegetation [39] and may have maintained and modified savanna flora. [3] [35] It has been suggested by many authors [39] [40] that aboriginal burning created a structurally more open savanna landscape. Aboriginal burning certainly created a habitat mosaic that probably increased biodiversity and changed the structure of woodlands and geographic range of numerous woodland species. [35] [39] It has been suggested by many authors [40] [41] that with the removal or alteration of traditional burning regimes many savannas are being replaced by forest and shrub thickets with little herbaceous layer.

The consumption of herbage by introduced grazers in savanna woodlands has led to a reduction in the amount of fuel available for burning and resulted in fewer and cooler fires. [42] The introduction of exotic pasture legumes has also led to a reduction in the need to burn to produce a flush of green growth because legumes retain high nutrient levels throughout the year, and because fires can have a negative impact on legume populations which causes a reluctance to burn. [43]

Grazing and browsing animals

Grevy's zebras grazing Grevy's Zebra Feeding.jpg
Grevy's zebras grazing

The closed forest types such as broadleaf forests and rainforests are usually not grazed owing to the closed structure precluding grass growth, and hence offering little opportunity for grazing. [44] In contrast the open structure of savannas allows the growth of a herbaceous layer and is commonly used for grazing domestic livestock. [45] As a result, much of the world's savannas have undergone change as a result of grazing by sheep, goats and cattle, ranging from changes in pasture composition to woody plant encroachment. [46]

Iberian pigs feeding on acorns of an holm oak Dehesa Pigs.jpg
Iberian pigs feeding on acorns of an holm oak

The removal of grass by grazing affects the woody plant component of woodland systems in two major ways. Grasses compete with woody plants for water in the topsoil and removal by grazing reduces this competitive effect, potentially boosting tree growth. [47] In addition to this effect, the removal of fuel reduces both the intensity and the frequency of fires which may control woody plant species. [48] Grazing animals can have a more direct effect on woody plants by the browsing of palatable woody species. There is evidence that unpalatable woody plants have increased under grazing in savannas. [49] Grazing also promotes the spread of weeds in savannas by the removal or reduction of the plants which would normally compete with potential weeds and hinder establishment. [39] In addition to this, cattle and horses are implicated in the spread of the seeds of weed species such as prickly acacia ( Acacia nilotica ) and stylo ( Stylosanthes species). [42] Alterations in savanna species composition brought about by grazing can alter ecosystem function, and are exacerbated by overgrazing and poor land management practices.

Introduced grazing animals can also affect soil condition through physical compaction and break-up of the soil caused by the hooves of animals and through the erosion effects caused by the removal of protective plant cover. Such effects are most likely to occur on land subjected to repeated and heavy grazing. [50] The effects of overstocking are often worst on soils of low fertility and in low rainfall areas below 500 mm, as most soil nutrients in these areas tend to be concentrated in the surface so any movement of soils can lead to severe degradation. Alteration in soil structure and nutrient levels affects the establishment, growth and survival of plant species and in turn can lead to a change in woodland structure and composition. That being said, impact of grazing animals can be reduced. Looking at Elephant impact on Savannas, the overall impact is reduced in the presence of rainfall and fences. [51]

Tree clearing

Savanna in eastern South Africa Upland South Africa Savanna.jpg
Savanna in eastern South Africa
Eucalyptus savanna in Western Sydney Cumberland Plain Savanna.jpg
Eucalyptus savanna in Western Sydney

Large areas of Australian and South American savannas have been cleared of trees, and this clearing continues today. For example, land clearing and fracking threaten the Northern Territory, Australia savanna, [52] and 480,000 ha of savanna were being cleared annually in Queensland in the 2000s, primarily to improve pasture production. [39] [53] Substantial savanna areas have been cleared of woody vegetation and much of the area that remains today is vegetation that has been disturbed by either clearing or thinning at some point in the past.

Clearing is carried out by the grazing industry in an attempt to increase the quality and quantity of feed available for stock and to improve the management of livestock. The removal of trees from savanna land removes the competition for water from the grasses present, and can lead to a two to fourfold increase in pasture production, as well as improving the quality of the feed available. [54] Since stock carrying capacity is strongly correlated with herbage yield, there can be major financial benefits from the removal of trees, [55] such as assisting with grazing management: regions of dense tree and shrub cover harbors predators, leading to increased stock losses, for example, [56] while woody plant cover hinders mustering in both sheep and cattle areas. [57]

A number of techniques have been employed to clear or kill woody plants in savannas. Early pastoralists used felling and girdling, the removal of a ring of bark and sapwood, as a means of clearing land. [58] In the 1950s arboricides suitable for stem injection were developed. War-surplus heavy machinery was made available, and these were used for either pushing timber, or for pulling using a chain and ball strung between two machines. These two new methods of timber control, along with the introduction and widespread adoption of several new pasture grasses and legumes promoted a resurgence in tree clearing. The 1980s also saw the release of soil-applied arboricides, notably tebuthiuron, that could be utilised without cutting and injecting each individual tree.

In many ways "artificial" clearing, particularly pulling, mimics the effects of fire and, in savannas adapted to regeneration after fire as most Queensland savannas are, there is a similar response to that after fire. [59] Tree clearing in many savanna communities, although causing a dramatic reduction in basal area and canopy cover, often leaves a high percentage of woody plants alive either as seedlings too small to be affected or as plants capable of re-sprouting from lignotubers and broken stumps. A population of woody plants equal to half or more of the original number often remains following pulling of eucalypt communities, even if all the trees over 5 metres are uprooted completely.

Exotic plant species

Acacia savanna, Taita Hills Wildlife Sanctuary, Kenya. Savanna towards the south-east from the south-west of Taita Hills Game Lodge within the Taita Hills Wildlife Sanctuary in Kenya.jpg
Acacia savanna, Taita Hills Wildlife Sanctuary, Kenya.

A number of exotic plants species have been introduced to savannas around the world. Amongst the woody plant species are serious environmental weeds such as Prickly Acacia ( Acacia nilotica ), Rubbervine ( Cryptostegia grandiflora ), Mesquite ( Prosopis spp.), Lantana ( Lantana camara and L. montevidensis ) and Prickly Pear ( Opuntia spp.). A range of herbaceous species have also been introduced to these woodlands, either deliberately or accidentally including Rhodes grass and other Chloris species, Buffel grass ( Cenchrus ciliaris ), Giant rat's tail grass ( Sporobolus pyramidalis ) parthenium ( Parthenium hysterophorus ) and stylos ( Stylosanthes spp.) and other legumes. These introductions have the potential to significantly alter the structure and composition of savannas worldwide, and have already done so in many areas through a number of processes including altering the fire regime, increasing grazing pressure, competing with native vegetation and occupying previously vacant ecological niches. [59] [60] Other plant species include: white sage, spotted cactus, cotton seed, rosemary.[ citation needed ]

Climate change

Human induced climate change resulting from the greenhouse effect may result in an alteration of the structure and function of savannas. Some authors [61] have suggested that savannas and grasslands may become even more susceptible to woody plant encroachment as a result of greenhouse induced climate change. However, a recent case described a savanna increasing its range at the expense of forest in response to climate variation, and potential exists for similar rapid, dramatic shifts in vegetation distribution as a result of global climate change, particularly at ecotones such as savannas so often represent. [62]

Savanna ecoregions

Savanna towards the south-east from the south of Taita Hills Game Lodge within the Taita Hills Wildlife Sanctuary in Kenya 3.jpg
Tropical savanna in Kenya.
Cumberlain Plain Woodland6.jpg
Temperate savanna in New South Wales.
AlentejoPortugal1994.jpg
Mediterranean savanna in the Alentejo region, Portugal.
Cordillera oriental Colombia.jpg
A montane savanna in the Colombian Andes.

A savanna can simply be distinguished by the open savanna, where grass prevails and trees are rare; and the wooded savanna, where the trees are densest, bordering an open woodland or forest. Specific savanna ecoregions of several different types include:

See also

Related Research Articles

<span class="mw-page-title-main">Woodland</span> Land covered in trees

A woodland is, in the broad sense, land covered with woody plants, or in a narrow sense, synonymous with wood, a low-density forest forming open habitats with plenty of sunlight and limited shade. Some savannas may also be woodlands, such as savanna woodland, where trees and shrubs form a light canopy.

<span class="mw-page-title-main">Temperate grasslands, savannas, and shrublands</span> Terrestrial biome

Temperate grasslands, savannas, and shrublands is a terrestrial biome defined by the World Wide Fund for Nature. The predominant vegetation in this biome consists of grass and/or shrubs. The climate is temperate and ranges from semi-arid to semi-humid. The habitat type differs from tropical grasslands in the annual temperature regime as well as the types of species found here.

Taunton National Park is situated near the town of Dingo approximately 135 km inland from Rockhampton in eastern Central Queensland, Australia. The park encompasses an area of 11,626 ha within the Northern Brigalow Belt bioregion of Queensland; a region widely recognised to contain considerable biodiversity.

<span class="mw-page-title-main">Sclerophyll</span> Type of plant

Sclerophyll is a type of vegetation that is adapted to long periods of dryness and heat. The plants feature hard leaves, short internodes and leaf orientation which is parallel or oblique to direct sunlight. The word comes from the Greek sklēros (hard) and phyllon (leaf). The term was coined by A.F.W. Schimper in 1898, originally as a synonym of xeromorph, but the two words were later differentiated.

<span class="mw-page-title-main">Grassland</span> Area with vegetation dominated by grasses

A grassland is an area where the vegetation is dominated by grasses (Poaceae). However, sedge (Cyperaceae) and rush (Juncaceae) can also be found along with variable proportions of legumes, like clover, and other herbs. Grasslands occur naturally on all continents except Antarctica and are found in most ecoregions of the Earth. Furthermore, grasslands are one of the largest biomes on Earth and dominate the landscape worldwide. There are different types of grasslands: natural grasslands, semi-natural grasslands, and agricultural grasslands. They cover 31–69% of the Earth's land area.

<span class="mw-page-title-main">Tropical and subtropical grasslands, savannas, and shrublands</span> Terrestrial habitat type defined by the World Wide Fund for Nature

Tropical and subtropical grasslands, savannas, and shrublands is a terrestrial biome defined by the World Wide Fund for Nature. The biome is dominated by grass and/or shrubs located in semi-arid to semi-humid climate regions of subtropical and tropical latitudes. Tropical grasslands are mainly found between 5 degrees and 20 degrees in both North and south of the Equator.

<span class="mw-page-title-main">Tropical climate</span> Major climate group in Köppen classification

Tropical climate is the first of the five major climate groups in the Köppen climate classification identified with the letter A. Tropical climates are defined by a monthly average temperature of 18 °C (64 °F) or higher in the coolest month, featuring hot temperatures and high humidity all year-round. Annual precipitation is often abundant in tropical climates, and shows a seasonal rhythm but may have seasonal dryness to varying degrees. There are normally only two seasons in tropical climates, a wet (rainy/monsoon) season and a dry season. The annual temperature range in tropical climates is normally very small. Sunlight is intense in these climates.

<i>Acacia aneura</i> Species of shrub or small tree

Acacia aneura, commonly known as mulga, is a species of flowering plant in the family Fabaceae and is endemic to inland Australia. It is a variable shrub or small tree with flat, narrowly linear to elliptic phyllodes, cylindrical spikes of bright yellow flowers and more or less flat and straight, leathery pods.

<span class="mw-page-title-main">Rangeland</span> Biomes which can be grazed by animals or livestock (grasslands, woodlands, prairies, etc)

Rangelands are grasslands, shrublands, woodlands, wetlands, and deserts that are grazed by domestic livestock or wild animals. Types of rangelands include tallgrass and shortgrass prairies, desert grasslands and shrublands, woodlands, savannas, chaparrals, steppes, and tundras. Rangelands do not include forests lacking grazable understory vegetation, barren desert, farmland, or land covered by solid rock, concrete and/or glaciers.

<span class="mw-page-title-main">Oak savanna</span> Lightly forested grassland where oak trees are dominant

An oak savanna is a type of savanna—or lightly forested grassland—where oaks are the dominant trees. The terms "oakery" or "woodlands" are also used commonly, though the former is more prevalent when referencing the Mediterranean area.

<i>Acacia harpophylla</i> Species of legume

Acacia harpophylla, commonly known as brigalow, brigalow spearwood or orkor, is an endemic tree of Australia. The Aboriginal Australian group the Gamilaraay peoples know the tree as Barranbaa or Burrii. It is found in central and coastal Queensland to northern New South Wales. It can reach up to 25 m (82 ft) tall and forms extensive open-forest communities on clay soils.

<i>Acacia cambagei</i> Species of plant

Acacia cambagei, commonly known as gidgee, stinking wattle, stinking gidgee in English, or gidjiirr, by transliteration from indigenous languages of north-western NSW, is an endemic tree of Australia. It is found primarily in semiarid and arid Queensland, but extends into the Northern Territory, South Australia and north-western New South Wales. It can reach up to 12 m in height and can form extensive open woodland communities. The leaves, bark, and litter of A. cambagei produce a characteristic odour, vaguely reminiscent of boiled cabbage, gas or sewage that accounts for the common name of 'stinking gidgee'.

Scottsdale Reserve is a 1,328-hectare (3,280-acre) nature reserve on the Murrumbidgee River in south-central New South Wales, Australia. It is 79 kilometres (49 mi) south of Canberra, and 4 kilometres (2.5 mi) north of Bredbo. It is owned and managed by Bush Heritage Australia (BHA), which purchased it in 2006. The purchase was supportive of projects aiming to connect existing fragmented remnant habitat such as K2C. Since the 1870s up until 2006, the land was used for agriculture – primarily sheep grazing with some minor cropping. A significant component of the Reserve has been cleared of native vegetation.

<span class="mw-page-title-main">Flora of Australia</span> Plant species of Australia

The flora of Australia comprises a vast assemblage of plant species estimated to over 21,000 vascular and 14,000 non-vascular plants, 250,000 species of fungi and over 3,000 lichens. The flora has strong affinities with the flora of Gondwana, and below the family level has a highly endemic angiosperm flora whose diversity was shaped by the effects of continental drift and climate change since the Cretaceous. Prominent features of the Australian flora are adaptations to aridity and fire which include scleromorphy and serotiny. These adaptations are common in species from the large and well-known families Proteaceae (Banksia), Myrtaceae, and Fabaceae.

<span class="mw-page-title-main">Victoria Plains tropical savanna</span> Ecoregion in Australia

The Victoria Plains tropical savanna is a tropical and subtropical grasslands, savannas, and shrublands ecoregion in northwestern Australia.

<span class="mw-page-title-main">Mediterranean forests, woodlands, and scrub</span> Habitat defined by the World Wide Fund for Nature

Mediterranean forests, woodlands and scrub is a biome defined by the World Wide Fund for Nature. The biome is generally characterized by dry summers and rainy winters, although in some areas rainfall may be uniform. Summers are typically hot in low-lying inland locations but can be cool near colder seas. Winters are typically mild to cool in low-lying locations but can be cold in inland and higher locations. All these ecoregions are highly distinctive, collectively harboring 10% of the Earth's plant species.

<span class="mw-page-title-main">Central Great Plains (ecoregion)</span> Temperate grasslands, savannas, and shrublands ecoregion of the United States

The Central Great Plains are a prairie ecoregion of the central United States, part of North American Great Plains. The region runs from west-central Texas through west-central Oklahoma, central Kansas, and south-central Nebraska.

<span class="mw-page-title-main">Woody plant encroachment</span> Vegetation cover change

Woody plant encroachment is a natural phenomenon characterised by the increase in density of woody plants, bushes and shrubs, at the expense of the herbaceous layer, grasses and forbs. It refers to the expansion of native plants and not the spread of alien invasive species. Woody encroachment is observed across different ecosystems and with different characteristics and intensities globally. It predominantly occurs in grasslands, savannas and woodlands and can cause regime shifts from open grasslands and savannas to closed woodlands.

<i>Chrysopogon fallax</i> Species of flowering plants

Chrysopogon fallax is a perennial tufted grass endemic to Australia found in all mainland states except Victoria. It is commonly known as golden beard grass, ribbon grass, and weeping grass.

References

  1. Anderson, Roger A., Fralish, James S. and Baskin, Jerry M. editors.1999. Savannas, Barrens, and Rock Outcrop Plant Communities of North America. Cambridge University Press.
  2. McPherson, G. R. (1997). Ecology and management of North American Savannas. Tucson, AZ: University of Arizona Press.
  3. 1 2 Werner, Patricia A.; B. H. Walker; P. A Stott (1991). "Introduction". In Patricia A. Werner (ed.). Savanna Ecology and Management: Australian Perspectives and Intercontinental Comparisons. Oxford: Blackwell Publishing. ISBN   978-0-632-03199-3.
  4. 1 2 3 Smith, Jeremy M.B.. "savanna". Encyclopedia Britannica, 5 Sep. 2016, https://www.britannica.com/science/savanna/Environment. Accessed 17 September 2022.
  5. Alexandro Solórzano, Jeanine Maria Felfili 2008 "Comparative analysis of the international terminaoolgy for cerrado" IX Symposio Nacional Cerrado 13 a 17 de outubro de 2008 Parlamundi Barsilia, DF
  6. 1 2 Manoel Cláudio da Silva Jánior, Christopher William Fagg, Maria Cristina Felfili, Paulo Ernane Nogueira, Alba Valéria Rezende, and Jeanine Maria Felfili 2006 "Chapter 4. Phytogeography of Cerrado Sensu Stricto and Land System Zoning in Central Brazil" in "Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography, and Conservation" R. Toby Pennington, James A. Ratter (eds) 2006 CRC Press
  7. 1 2 Abdullahi Jibrin 2013 "A Study of Variation in Physiognomic Characteristics of Guinea Savanna Vegetation" Environment and Natural Resources Research 3:2
  8. 1 2 Erika L. Geiger, Sybil G. Gotsch, Gabriel Damasco, M. Haridasan, Augusto C. Franco & William A. Hoffmann 2011 "Distinct roles of savanna and forest tree species in regeneration under fire suppression in a Brazilian savanna" Journal of Vegetation Science 22
  9. 1 2 Scholz, Fabian G.; Bucci, Sandra J.; Goldstein, Guillermo; Meinzer, Frederick C.; Franco, Augusto C.; Salazar, Ana. 2008 "Plant- and stand-level variation in biophysical and physiological traits along tree density gradients in the Cerrado", Brazilian Journal of Plant Physiology
  10. Tait, L 2010, Structure and dynamics of grazed woodlands in North-eastern Australia, Master of Applied Science Thesis, Central Queensland University, Faculty of Science, Engineering and Health, Rockhampton.
  11. "Savanna". Ask a Biologist . 25 May 2014. Retrieved 31 August 2022.
  12. Sankaran, Mahesh; Hanan, Niall P.; Scholes, Robert J.; Ratnam, Jayashree; Augustine, David J.; Cade, Brian S.; Gignoux, Jacques; Higgins, Steven I.; Le Roux, Xavier (December 2005). "Determinants of woody cover in African savannas". Nature. 438 (7069): 846–849. Bibcode:2005Natur.438..846S. doi:10.1038/nature04070. ISSN   0028-0836. PMID   16341012. S2CID   4344778.
  13. 1 2 "The grassland biome". UCMP . Retrieved 31 August 2022.
  14. 1 2 WOODLAND SAVANNA Wrangle - WORLD RANGELAND LEARNING EXPERIENCE. 2022 Arizona Board of Regents. Retrieved 17 September 2022.
  15. ASALE, RAE-; RAE. "sabana – Diccionario de la lengua española". «Diccionario de la lengua española» – Edición del Tricentenario (in Spanish). Retrieved 6 March 2023.
  16. B. A., Seattle Pacific University. "How to Pronounce B and V in Spanish". ThoughtCo. Retrieved 29 August 2021.
  17. Oxford English Dictionary , 3rd ed. "savannah", n. Oxford University Press (Oxford), 2012.
  18. 1 2 D'Anghiera, Peter Martyr. De Orbe Novo Decades. Cum Ejusdem Legatione Babylonica. [The Decades of the New World. With the Babylonian Legation.] Arnao Guillén de Brocar (Alcala), 1516 (in Latin). Trans. Richard Eden as The decades of the newe worlde or west India conteynyng the nauigations and conquestes of the Spanyardes with the particular description of the moste ryche and large landes and Ilands lately founde in the west Ocean perteynyng to the inheritaunce of the kinges of Spayne, Book III, §3. William Powell (London), 1555.
  19. Richard Eden: "The palace of this Comogrus, is ſituate at the foote of a ſtiepe hyll well cultured. Hauynge towarde the ſouthe a playne of twelue leages in breadth and veary frutefull. This playne, they caule Zauana." [18]
  20. Eden (1555), Book III, §6.
  21. The account of Peter Martyr itself differs in places, variously placing Comagre 25 leagues west of and accessible by ship from Dariena [20] or 70 leagues (roughly 290 kilometers or 180 miles) west of Dariena and beside a river flowing into the southern ocean. [18]
  22. Bancroft, Hubert H. (1882). "History of Central America. 1501–1530". San Francisco: A.L. Bancroft & Co. p. LXXIV.
  23. Bancroft (1882), p. 362.
  24. Bancroft (1882), p. 347.
  25. NASA. "[earthobservatory.nasa.gov/Experiments/ICE/panama/Images/igbp_panama2000289_lg.gif Land Cover Classification]" from Earth Observatory. The Image Composite Explorer. Exercise 4: Vegetation Vital Signs. Accessed 1 August 2014.
  26. David R. Harris, ed. (1980). Human Ecology in Savanna Environments . London: Academic Press. pp.  3, 5–9, 12, 271–278, 297–298. ISBN   978-0-12-326550-0.
  27. Roger C. Anderson; James S. Fralish; Jerry M. Baskin, eds. (1999). Savannas, Barrens, and Rock Outcrop Plant Communities of North America. Cambridge University Press. p. 157. ISBN   978-0-521-57322-1.
  28. "Savanna - Grassland, Climate, Animals | Britannica". www.britannica.com. Retrieved 19 October 2023.
  29. David L. Lentz, ed. (2000). Imperfect balance: landscape transformations in the Precolumbian Americas . New York City: Columbia University Press. pp.  73–74. ISBN   978-0-231-11157-7.
  30. Moncrieff, G. R., Scheiter, S., Langan, L., Trabucco, A., Higgins, S. I. (2016). The future distribution of the savannah biome: model-based and biogeographic contingency, Philos. T. R. Soc. B, 371, 2015.0311, 2016. link.
  31. Staver, A.C., Archibald, S., Levin, S.A. (2011). The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232. link.
  32. 1 2 3 Cotton, C.A. (1961). "The Theory of Savanna Planation". Geography . 46 (2): 89–101. JSTOR   40565228.
  33. Williams, Brooke A.; Watson, James E. M.; Beyer, Hawthorne L.; Grantham, Hedley S.; Simmonds, Jeremy S.; Alvarez, Silvia J.; Venter, Oscar; Strassburg, Bernardo B. N.; Runting, Rebecca K. (1 December 2022). "Global drivers of change across tropical savannah ecosystems and insights into their management and conservation". Biological Conservation. 276: 109786. Bibcode:2022BCons.27609786W. doi:10.1016/j.biocon.2022.109786. ISSN   0006-3207. S2CID   253503609.
  34. "Use of Fire by Native Americans". The Southern Forest Resource Assessment Summary Report. Southern Research Station, USDA Forest Service. Archived from the original on 5 March 2014. Retrieved 21 July 2008.
  35. 1 2 3 Flannery, Timothy Fridtjof (1994). The Future Eaters: An Ecological History of the Australasian Lands and People. Frenchs Forest, New South Wales: Reed New Holland. ISBN   978-0-8076-1403-7.
  36. Saha, S. (2003). "Patterns in woody species diversity, richness and partitioning of diversity in forest communities of tropical deciduous forest biomes". Ecography . 26 (1): 80–86. Bibcode:2003Ecogr..26...80S. doi:10.1034/j.1600-0587.2003.03411.x.
  37. Pyne, Stephen J. (1997). Vestal Fire: An Environmental History, Told through Fire, of Europe and Europe's Encounter with the World . Seattle: University of Washington Press. ISBN   978-0-295-97596-2.
  38. Palmer, Jane (29 March 2021). "Fire as Medicine: Learning from Native American Fire Stewardship". eos.org.
  39. 1 2 3 4 5 Wilson, B., S. Boulter, et al. (2000). Queensland's resources. Native Vegetation Management in Queensland. S. L. Boulter, B. A. Wilson, J. Westrupet eds. Brisbane, Department of Natural Resources ISBN   0-7345-1701-7.
  40. 1 2 Lunt, I. D.; N. Jones (2006). "Effects of European colonisation on indigenous ecosystems: post-settlement changes in tree stand structures in EucalyptusCallitris woodlands in central New South Wales, Australia". Journal of Biogeography . 33 (6): 1102–1115. Bibcode:2006JBiog..33.1102L. doi:10.1111/j.1365-2699.2006.01484.x. S2CID   85775764.
  41. Archer S, (1994.) "Woody plant encroachment into southwestern grasslands and savannas: Rates, patterns and proximate causes." pp. 13–68 in Vavra, Laycock and Pieper (eds.) Ecological Implications of Livestock Herbivory in the West. Society For Range Management, Denver ISBN   1-884930-00-X.
  42. 1 2 Pressland, A. J., J. R. Mills, et al. (1988). Landscape degradation in native pasture. Native pastures in Queensland their resources and management. W. H. Burrows, J. C. Scanlan and M. T. Rutherford. Queensland, Queensland Government Press ISBN   0-7242-2443-2.
  43. Dyer, R., A. Craig, et al. (1997). Fire in northern pastoral lands. Fire in the management of northern Australian pastoral lands. T. C. Grice and S. M. Slatter. St. Lucia, Australia, Tropical Grassland Society of Australia ISBN   0-9590948-9-X.
  44. Lodge, G. M. and R. D. B. Whalley (1984). Temperate rangelands. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing.
  45. Mott, J. J., Groves, R.H. (1994). Natural and derived grasslands. Australian Vegetation. R. H. Groves. Cambridge, Cambridge University Press.
  46. Winter, W. H. (1991). "Australia's northern savannas: a time for change in management philosophy". In Patricia A. Werner (ed.). Savanna Ecology and Management: Australian Perspectives and Intercontinental Comparisons. Oxford: Blackwell Publishing. pp. 181–186. ISBN   978-0-632-03199-3.
  47. Burrows, W. H., J. C. Scanlan, et al. (1988). Plant ecological relations in open forests, woodlands and shrublands. Native pastures in Queensland their resources and management. W. H. Burrows, J. C. Scanlan and M. T. Rutherford eds. Brisbane, Department of Primary Industries ISBN   0-7242-2443-2.
  48. Smith, G., A. Franks, et al. (2000). Impacts of domestic grazing within remnant vegetation. Native Vegetation Management in Queensland. S. L. Boulter, B. A. Wilson, J. Westrupet al. Brisbane, Department of Natural Resources ISBN   0-7345-1701-7.
  49. Florence, R. G. (1996). Ecology and silviculture of eucalypt forests. Collingwood, CSIRO Publishing ISBN   0-643-10252-3.
  50. Foran, B. D. (1984). Central arid woodlands. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing ISBN   0-643-03615-6.
  51. Guldemond, Robert; Van Aarde, Rudi (May 2008). "A Meta-Analysis of the Impact of African Elephants on Savanna Vegetation". The Journal of Wildlife Management. 72 (4): 892–899. doi:10.2193/2007-072. ISSN   0022-541X.
  52. Murphy, Brett; Ritchie, Euan; Woinarski, John (29 June 2023). "Land clearing and fracking in Australia's Northern Territory threatens the world's largest intact tropical savanna". The Conversation. Retrieved 10 July 2024.
  53. "Deforestation explained". Wilderness Society. Retrieved 10 July 2024.
  54. Scanlan, J. and C. Chilcott (2000). Management and production aspects. Native Vegetation Management in Queensland. S. L. Boulter, B. A. Wilson, J. Westrupet al. Brisbane, Department of Natural Resources.
  55. Harrington, G. N., M. H. Friedel, et al. (1984). Vegetation ecology and management. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing ISBN   0-643-03615-6.
  56. Harrington, G. N., D. M. D. Mills, et al. (1984). Semi-arid woodlands. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing ISBN   0-643-03615-6.
  57. Harrington, G. N., D. M. D. Mills, et al. (1984). Management of Rangeland Ecosystems. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing ISBN   0-643-03615-6.
  58. Partridge, I. (1999). Managing grazing in northern Australia. Brisbane, Department of Primary Industries ISBN   0-7345-0035-1.
  59. 1 2 Scanlan, J. C. (1988). Managing tree and shrub populations. Native pastures in Queensland their resources and management. W. H. Burrows, J. C. Scanlan and M. T. Rutherford. Queensland, Queensland Government Press ISBN   0-7242-2443-2.
  60. Tothill, J. C. and C. Gillies (1992). The pasture lands of northern Australia. Brisbane, Tropical Grassland Society of Australia ISBN   0-9590948-4-9.
  61. Archer, S. (1991). "Development and stability of grass/woody mosaics in a subtropical savanna parkland, Texas, USA". In Patricia A. Werner (ed.). Savanna Ecology and Management: Australian Perspectives and Intercontinental Comparisons. Oxford: Blackwell Publishing. pp. 109–118. ISBN   978-0-632-03199-3.
  62. Allen, C. D. & D. D. Breshears (1998). "Drought-induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation". Proceedings of the National Academy of Sciences. 95 (25): 14839–14842. Bibcode:1998PNAS...9514839A. doi: 10.1073/pnas.95.25.14839 . PMC   24536 . PMID   9843976.
  63. Calvachi Zambrano, Byron (2002). "La biodiversidad bogotana" (PDF). Revista la Tadeo (in Spanish). 67. Universidad Jorge Tadeo Lozano: 89–98. Archived from the original (PDF) on 29 September 2018. Retrieved 4 March 2017.
  64. Pérez Preciado, Alfonso (2000). La estructura ecológica principal de la Sabana de Bogotá (PDF) (in Spanish). Sociedad Geográfica de Colombia. pp. 1–37. Retrieved 4 March 2017.
  65. Angolan Scarp savanna and woodlands