Rsa RNA

Last updated

Rsa RNAs are non-coding RNAs found in the bacterium Staphylococcus aureus . The shared name comes from their discovery, and does not imply homology. Bioinformatics scans identified the 16 Rsa RNA families named RsaA-K and RsaOA-OG. [1] [2] Others, RsaOH-OX, were found thanks to an RNomic approach. [3] Although the RNAs showed varying expression patterns, many of the newly discovered RNAs were shown to be Hfq-independent and most carried a C-rich motif (UCCC). [1]

Contents

RsaA

Represses the translation of the transcriptional regulator MgrA by binding to its mRNA, enhances biofilm formation and decreases bacterial virulence. [4] Other mRNAs: including SsaA-like enzymes involved in peptidoglycan metabolism and the secreted anti-inflammatory FLIPr protein were validated as direct targets of RsaA. [5]

RsaE

The consensus secondary structure of RsaI (later renamed RsaOG) showing its pseudoknot. Boundaries were determined by RACE mapping in Staphylococcus aureus N315. Taken from Marchais et al., 2010 created in Varna. Rsaog structure.pdf
The consensus secondary structure of RsaI (later renamed RsaOG) showing its pseudoknot. Boundaries were determined by RACE mapping in Staphylococcus aureus N315 . Taken from Marchais et al., 2010 created in Varna.

RsaE is found in other members of the genus Staphylococcus such as Staphylococcus epidermidis and Staphylococcus saprophyticus and is the only Rsa RNA to be found outside of this genus, in Macrococcus caseolyticus and Bacillus . In Bacillus subtilis , RsaE had previously been identified as ncr22. [8] [9] RsaE is also consistently found downstream of PepF which codes for oligoendopeptidase F. The function of RsaE was discovered using gene knockout analysis and gene overexpression - it was found to regulate the expression of several enzymes involved in metabolism via antisense binding of their mRNA. [1] [3]

RsaE was shown to be regulated by the presence of nitric oxide (NO). In Bacillus subtilis it controls expression of genes with functions related to oxidative stress and oxidation-reduction reactions and it was renamed RoxS (for related to oxidative stress). [10]

RsaF

In S.aureus species RsaF is located in the same intergenic region as RsaE and overlaps with 3′ end of RsaE by approximately 20bp. In contrast to RsaE, RsaF and its upstream gene have only been identified in S.aureus species. [1]

RsaK

RsaK is found in the leader sequence of glcA mRNA which encodes an enzyme involved in the glucose-specific phosphotransferase system. RsaK also contains a conserved ribonucleic antiterminator system, as recognised by GclT protein. [11]

RsaI

RsaOG [2] also renamed RsaI [1] is thought to fine-tune the regulation of toxin or invasion mechanisms in S. aureus via trans-acting mechanisms. Its secondary structure contains a pseudoknot formed between two highly conserved unpaired sequences. [6]

Expression patterns

RsaD, E H and I were found to be highly expressed in S. aureus. Expression levels of other Rsa RNAs varied under various environmental conditions, for example RsaC was induced by cold shock and RsaA is induced in response to osmotic stress. [1] [2] [3]

RsaE and RsaF genes overlap in S.aureus species but appear to have opposite expression patterns. [1] Transcriptional interference due to an overlap between a σA recognition motif and a potential σB binding site is proposed as a mechanism causing the differential expression of the two transcripts [1] [12]

See also

Related Research Articles

Autolysins are endogenous lytic enzymes that break down the peptidoglycan components of biological cells which enables the separation of daughter cells following cell division. They are involved in cell growth, cell wall metabolism, cell division and separation, as well as peptidoglycan turnover and have similar functions to lysozymes.

<i>Staphylococcus aureus</i> Species of Gram-positive bacterium

Staphylococcus aureus is a Gram-positive spherically shaped bacterium, a member of the Bacillota, and is a usual member of the microbiota of the body, frequently found in the upper respiratory tract and on the skin. It is often positive for catalase and nitrate reduction and is a facultative anaerobe that can grow without the need for oxygen. Although S. aureus usually acts as a commensal of the human microbiota, it can also become an opportunistic pathogen, being a common cause of skin infections including abscesses, respiratory infections such as sinusitis, and food poisoning. Pathogenic strains often promote infections by producing virulence factors such as potent protein toxins, and the expression of a cell-surface protein that binds and inactivates antibodies. S. aureus is one of the leading pathogens for deaths associated with antimicrobial resistance and the emergence of antibiotic-resistant strains, such as methicillin-resistant S. aureus (MRSA), is a worldwide problem in clinical medicine. Despite much research and development, no vaccine for S. aureus has been approved.

<i>trp</i> operon Operon that codes for the components for production of tryptophan

The trp operon is a group of genes that are transcribed together, encoding the enzymes that produce the amino acid tryptophan in bacteria. The trp operon was first characterized in Escherichia coli, and it has since been discovered in many other bacteria. The operon is regulated so that, when tryptophan is present in the environment, the genes for tryptophan synthesis are repressed.

In the field of molecular biology the 6S RNA is a non-coding RNA that was one of the first to be identified and sequenced. What it does in the bacterial cell was unknown until recently. In the early 2000s scientists found out the function of 6S RNA to be as a regulator of sigma 70-dependent gene transcription. All bacterial RNA polymerases have a subunit called a sigma factor. The sigma factors are important because they control how DNA promoter binding and RNA transcription start sites. Sigma 70 was the first one to be discovered in Escherichia coli.

RNAIII is a stable 514 nt regulatory RNA transcribed by the P3 promoter of the Staphylococcus aureus quorum-sensing agr system ). It is the major effector of the agr regulon, which controls the expression of many S. aureus genes encoding exoproteins and cell wall associated proteins plus others encoding regulatory proteins The RNAIII transcript also encodes the 26 amino acid δ-haemolysin peptide (Hld). RNAIII contains many stem loops, most of which match the Shine-Dalgarno sequence involved in translation initiation of the regulated genes. Some of these interactions are inhibitory, others stimulatory; among the former is the regulatory protein Rot. In vitro, RNAIII is expressed post exponentially, inhibiting translation of the surface proteins, notably protein A, while stimulating that of the exoproteins, many of which are tissue-degrading enzymes or cytolysins. Among the latter is the important virulence factor, α-hemolysin (Hla), whose translation RNAIII activates by preventing the formation of an inhibitory foldback loop in the hla mRNA leader.

<span class="mw-page-title-main">T-box leader</span> RNA element

Usually found in gram-positive bacteria, the T box leader sequence is an RNA element that controls gene expression through the regulation of translation by binding directly to a specific tRNA and sensing its aminoacylation state. This interaction controls expression of downstream aminoacyl-tRNA synthetase genes, amino acid biosynthesis, and uptake-related genes in a negative feedback loop. The uncharged tRNA acts as the effector for transcription antitermination of genes in the T-box leader family. The anticodon of a specific tRNA base pairs to a specifier sequence within the T-box motif, and the NCCA acceptor tail of the tRNA base pairs to a conserved bulge in the T-box antiterminator hairpin.

In a screen of the Bacillus subtilis genome for genes encoding ncRNAs, Saito et al. focused on 123 intergenic regions (IGRs) over 500 base pairs in length, the authors analyzed expression from these regions. Seven IGRs termed bsrC, bsrD, bsrE, bsrF, bsrG, bsrH and bsrI expressed RNAs smaller than 380 nt. All the small RNAs except BsrD RNA were expressed in transformed Escherichia coli cells harboring a plasmid with PCR-amplified IGRs of B. subtilis, indicating that their own promoters independently express small RNAs. Under non-stressed condition, depletion of the genes for the small RNAs did not affect growth. Although their functions are unknown, gene expression profiles at several time points showed that most of the genes except for bsrD were expressed during the vegetative phase, but undetectable during the stationary phase. Mapping the 5' ends of the 6 small RNAs revealed that the genes for BsrE, BsrF, BsrG, BsrH, and BsrI RNAs are preceded by a recognition site for RNA polymerase sigma factor σA.

<i>Staphylococcus</i> Genus of Gram-positive bacteria

Staphylococcus is a genus of Gram-positive bacteria in the family Staphylococcaceae from the order Bacillales. Under the microscope, they appear spherical (cocci), and form in grape-like clusters. Staphylococcus species are facultative anaerobic organisms.

Pseudomonas sRNA are non-coding RNAs (ncRNA) that were predicted by the bioinformatic program SRNApredict2. This program identifies putative sRNAs by searching for co-localization of genetic features commonly associated with sRNA-encoding genes and the expression of the predicted sRNAs was subsequently confirmed by Northern blot analysis. These sRNAs have been shown to be conserved across several pseudomonas species but their function is yet to be determined. Using Tet-Trap genetic approach RNAT genes post-transcriptionally regulated by temperature upshift were identified: ptxS and PA5194.

<span class="mw-page-title-main">Asd RNA motif</span> Structure in lactic-acid bacterium RNA

The asd RNA motif is a conserved RNA structure found in certain lactic acid bacteria. The asd motif was detected by bioinformatics and an individual asd RNA in Streptococcus pyogenes was detected by microarray and northern hybridization experiments as a 170-nucleotide molecule called "SR914400". The transcription start site determined for SR914400 corresponds to the 5′-end of the molecule shown in the consensus diagram.

<span class="mw-page-title-main">RsaOG</span>

RsaOG is a non-coding RNA that was discovered in the pathogenic bacteria Staphylococcus aureus N315 using a large scale computational screening based on phylogenetic profiling. It was first identified, but not named, in 2005. RsaOG has since been identified in other strains of Staphylococcus aureus under the name of RsaI, it has also been discovered in other members of the Staphylococcus genus but in no other bacteria.

Bacterial small RNAs (bsRNA) are small RNAs produced by bacteria; they are 50- to 500-nucleotide non-coding RNA molecules, highly structured and containing several stem-loops. Numerous sRNAs have been identified using both computational analysis and laboratory-based techniques such as Northern blotting, microarrays and RNA-Seq in a number of bacterial species including Escherichia coli, the model pathogen Salmonella, the nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti, marine cyanobacteria, Francisella tularensis, Streptococcus pyogenes, the pathogen Staphylococcus aureus, and the plant pathogen Xanthomonas oryzae pathovar oryzae. Bacterial sRNAs affect how genes are expressed within bacterial cells via interaction with mRNA or protein, and thus can affect a variety of bacterial functions like metabolism, virulence, environmental stress response, and structure.

<span class="mw-page-title-main">SprD</span>

In molecular biology SprD is a non-coding RNA expressed on pathogenicity islands in Staphylococcus aureus. It was identified in silico along with a number of other sRNAs (SprA-G) through microarray analysis which were confirmed using a Northern blot. SprD has been found to significantly contribute to causing disease in an animal model.

<span class="mw-page-title-main">TxpA-RatA toxin-antitoxin system</span>

The TxpA/RatA toxin-antitoxin system was first identified in Bacillus subtilis. It consists of a non-coding 222nt sRNA called RatA and a protein toxin named TxpA.

The Monovalent Cation (K+ or Na+):Proton Antiporter-3 (CPA3) Family (TC# 2.A.63) is a member of the Na+ transporting Mrp superfamily. The CPA3 family consists of bacterial multicomponent K+:H+ and Na+:H+ antiporters. The best characterized systems are the PhaABCDEFG system of Sinorhizobium meliloti (TC# 2.A.63.1.1) that functions in pH adaptation and as a K+ efflux system, and the MnhABCDEFG system of Staphylococcus aureus (TC# 2.A.63.1.3) that functions as a Na+ efflux Na+:H+ antiporter.

<span class="mw-page-title-main">SprX small RNA</span>

In molecular biology the small pathogenicity island RNA X gene is a bacterial non-coding RNA. It was discovered in a large-scale analysis of Staphylococcus aureus. SprX was shown to influence antibiotic resistance of the bacteria to Vancomycin and Teicoplanin glycopeptides, which are used to treat MRSA infections. In this study the authors identified a SprX target, stage V sporulation protein G. By reducing Spo VG expression levels, SprX affects S. aureus resistance to the glycopeptide antibiotics. Further work demonstrated its involvement in the regulation of pathogenicity factors.

<span class="mw-page-title-main">Teg49 small RNA</span> Non-coding RNA

Teg49 is a non-coding RNA present in the extended promoter region of the staphylococcal accessory regulator sarA. It was identified by RNA-seq and confirmed by Northern blot. It is modulated by sigB and cshA and it most likely contributes to virulence of S. aureus by modulating SarA expression.

<span class="mw-page-title-main">Paul Babitzke</span>

Paul Babitzke is a professor of biochemistry and molecular biology and director of the Center for RNA Molecular Biology at Pennsylvania State University.

<span class="mw-page-title-main">SAOUHSCs221</span>

SAOUHSCs221 is a 108nt bacterial antisense RNA found by RNA-seq analysis in Staphylococcus aureus strain HG003 grown in rich medium, strain JKD60008 and strain NCTC8325.

Accessory gene regulator (agr) is a complex 5 gene locus that is a global regulator of virulence in Staphylococcus aureus. It encodes a two-component transcriptional quorum-sensing (QS) system activated by an autoinducing, thiolactone-containing cyclic peptide (AIP).

References

  1. 1 2 3 4 5 6 7 8 Geissmann T, Chevalier C, Cros MJ, Boisset S, Fechter P, Noirot C, Schrenzel J, François P, Vandenesch F, Gaspin C, Romby P (November 2009). "A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation". Nucleic Acids Research. 37 (21): 7239–7257. doi:10.1093/nar/gkp668. PMC   2790875 . PMID   19786493.
  2. 1 2 3 Marchais A, Naville M, Bohn C, Bouloc P, Gautheret D (June 2009). "Single-pass classification of all noncoding sequences in a bacterial genome using phylogenetic profiles". Genome Research. 19 (6): 1084–1092. doi:10.1101/gr.089714.108. PMC   2694484 . PMID   19237465.
  3. 1 2 3 Bohn C, Rigoulay C, Chabelskaya S, Sharma CM, Marchais A, Skorski P, Borezée-Durant E, Barbet R, Jacquet E, Jacq A, Gautheret D, Felden B, Vogel J, Bouloc P (October 2010). "Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism". Nucleic Acids Research. 38 (19): 6620–6636. doi:10.1093/nar/gkq462. PMC   2965222 . PMID   20511587.
  4. Romilly C, Lays C, Tomasini A, Caldelari I, Benito Y, Hammann P, Geissmann T, Boisset S, Romby P, Vandenesch F (March 2014). "A non-coding RNA promotes bacterial persistence and decreases virulence by regulating a regulator in Staphylococcus aureus". PLOS Pathogens. 10 (3): e1003979. doi: 10.1371/journal.ppat.1003979 . PMC   3961350 . PMID   24651379.
  5. Tomasini A, Moreau K, Chicher J, Geissmann T, Vandenesch F, Romby P, Marzi S, Caldelari I (June 2017). "The RNA targetome of Staphylococcus aureus non-coding RNA RsaA: impact on cell surface properties and defense mechanisms". Nucleic Acids Research. 45 (11): 6746–6760. doi:10.1093/nar/gkx219. PMC   5499838 . PMID   28379505.
  6. 1 2 Marchais A, Bohn C, Bouloc P, Gautheret D (March 2010). "RsaOG, a new staphylococcal family of highly transcribed non-coding RNA". RNA Biology. 7 (2): 116–119. doi: 10.4161/rna.7.2.10925 . PMID   20200491.
  7. Darty K, Denise A, Ponty Y (August 2009). "VARNA: Interactive drawing and editing of the RNA secondary structure". Bioinformatics. 25 (15): 1974–1975. doi:10.1093/bioinformatics/btp250. PMC   2712331 . PMID   19398448.
  8. Rasmussen S, Nielsen HB, Jarmer H (September 2009). "The transcriptionally active regions in the genome of Bacillus subtilis". Molecular Microbiology. 73 (6): 1043–1057. doi:10.1111/j.1365-2958.2009.06830.x. PMC   2784878 . PMID   19682248.
  9. Irnov I, Sharma CM, Vogel J, Winkler WC (October 2010). "Identification of regulatory RNAs in Bacillus subtilis". Nucleic Acids Research. 38 (19): 6637–6651. doi:10.1093/nar/gkq454. PMC   2965217 . PMID   20525796.
  10. Durand S, Braun F, Lioliou E, Romilly C, Helfer AC, Kuhn L, Quittot N, Nicolas P, Romby P, Condon C (February 2015). "A nitric oxide regulated small RNA controls expression of genes involved in redox homeostasis in Bacillus subtilis". PLOS Genetics. 11 (2): e1004957. doi: 10.1371/journal.pgen.1004957 . PMC   4409812 . PMID   25643072.
  11. Langbein I, Bachem S, Stülke J (November 1999). "Specific interaction of the RNA-binding domain of the bacillus subtilis transcriptional antiterminator GlcT with its RNA target, RAT". Journal of Molecular Biology. 293 (4): 795–805. doi:10.1006/jmbi.1999.3176. PMID   10543968.
  12. Shearwin KE, Callen BP, Egan JB (June 2005). "Transcriptional interference—a crash course". Trends in Genetics. 21 (6): 339–345. doi:10.1016/j.tig.2005.04.009. PMC   2941638 . PMID   15922833.

Further reading