Recurrence plot

Last updated

In descriptive statistics and chaos theory, a recurrence plot (RP) is a plot showing, for each moment in time, the times at which the state of a dynamical system returns to the previous state at , i.e., when the phase space trajectory visits roughly the same area in the phase space as at time . In other words, it is a plot of

Contents

showing on a horizontal axis and on a vertical axis, where is the state of the system (or its phase space trajectory).

Background

Natural processes can have a distinct recurrent behaviour, e.g. periodicities (as seasonal or Milankovich cycles), but also irregular cyclicities (as El Niño Southern Oscillation, heart beat intervals). Moreover, the recurrence of states, in the meaning that states are again arbitrarily close after some time of divergence, is a fundamental property of deterministic dynamical systems and is typical for nonlinear or chaotic systems (cf. Poincaré recurrence theorem). The recurrence of states in nature has been known for a long time and has also been discussed in early work (e.g. Henri Poincaré 1890).

Detailed description

One way to visualize the recurring nature of states by their trajectory through a phase space is the recurrence plot, introduced by Eckmann et al. (1987) [1] . Often, the phase space does not have a low enough dimension (two or three) to be pictured, since higher-dimensional phase spaces can only be visualized by projection into the two or three-dimensional sub-spaces. One frequently used tool to study the behaviour of such phase space trajectories is then the Poincaré map. Another tool, is the recurrence plot, which enables us to investigate many aspects of the m-dimensional phase space trajectory through a two-dimensional representation.

At a recurrence the trajectory returns to a location (state) in phase space it has visited before up to a small error . The recurrence plot represents the collection of pairs of times of such recurrences, i.e., the set of with , with and discrete points of time and the state of the system at time (location of the trajectory at time ). Mathematically, this is expressed by the binary recurrence matrix

where is a norm and the recurrence threshold. An alternative, more formal expression is using the Heaviside step function with the norm of distance vector between and . Alternative recurrence definitions consider different distances , e.g., angular distance, fuzzy distance, or edit distance [2] .

The recurrence plot visualises with coloured (mostly black) dot at coordinates if , with time at the - and -axes.

If only a time series is available, the phase space can be reconstructed, e.g., by using a time delay embedding (see Takens' theorem):

where is the time series, the embedding dimension and the time delay. Phase space reconstruction is not essential part of the recurrence plot (although often stated in literature), because it is based on phase space trajectories which could be derived from the system's variables directly (e.g., from the three variables of the Lorenz system).

The visual appearance of a recurrence plot gives hints about the dynamics of the system. Caused by characteristic behaviour of the phase space trajectory, a recurrence plot contains typical small-scale structures, as single dots, diagonal lines and vertical/horizontal lines (or a mixture of the latter, which combines to extended clusters). The large-scale structure, also called texture, can be visually characterised by homogenous, periodic, drift or disrupted. For example, the plot can show if the trajectory is strictly periodic with period , then all such pairs of times will be separated by a multiple of and visible as diagonal lines.

Typical examples of recurrence plots (top row: time series (plotted over time); bottom row: corresponding recurrence plots). From left to right: uncorrelated stochastic data (white noise), harmonic oscillation with two frequencies, chaotic data (logistic map) with linear trend, and data from an auto-regressive process. Rp examples740.gif
Typical examples of recurrence plots (top row: time series (plotted over time); bottom row: corresponding recurrence plots). From left to right: uncorrelated stochastic data (white noise), harmonic oscillation with two frequencies, chaotic data (logistic map) with linear trend, and data from an auto-regressive process.

The small-scale structures in recurrence plots contain information about certain characteristics of the dynamics of the underlying system. For example, the length of the diagonal lines visible in the recurrence plot are related to the divergence of phase space trajectories, thus, can represent information about the chaoticity [3] . Therefore, the recurrence quantification analysis quantifies the distribution of these small-scale structures [4] [5] [6] . This quantification can be used to describe the recurrence plots in a quantitative way. Applications are classification, predictions, nonlinear parameter estimation, and transition analysis. In contrast to the heuristic approach of the recurrence quantification analysis, which depends on the choice of the embedding parameters, some dynamical invariants as correlation dimension, K2 entropy or mutual information, which are independent on the embedding, can also be derived from recurrence plots. The base for these dynamical invariants are the recurrence rate and the distribution of the lengths of the diagonal lines [3] . More recent applications use recurrence plots as a tool for time series imaging in machine learning approaches and studying spatio-temporal recurrences [2] .

Close returns plots are similar to recurrence plots. The difference is that the relative time between recurrences is used for the -axis (instead of absolute time) [6] .

The main advantage of recurrence plots is that they provide useful information even for short and non-stationary data, where other methods fail.

Extensions

Multivariate extensions of recurrence plots were developed as cross recurrence plots and joint recurrence plots.

Cross recurrence plots consider the phase space trajectories of two different systems in the same phase space [7] :

The dimension of both systems must be the same, but the number of considered states (i.e. data length) can be different. Cross recurrence plots compare the occurrences of similar states of two systems. They can be used in order to analyse the similarity of the dynamical evolution between two different systems, to look for similar matching patterns in two systems, or to study the time-relationship of two similar systems, whose time-scale differ [8] .

Joint recurrence plots are the Hadamard product of the recurrence plots of the considered sub-systems [9] , e.g. for two systems and the joint recurrence plot is

In contrast to cross recurrence plots, joint recurrence plots compare the simultaneous occurrence of recurrences in two (or more) systems. Moreover, the dimension of the considered phase spaces can be different, but the number of the considered states has to be the same for all the sub-systems. Joint recurrence plots can be used in order to detect phase synchronisation.

Example

Recurrence plot of the Southern Oscillation index. Rp soi.gif
Recurrence plot of the Southern Oscillation index.

See also

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In algebra, the dual numbers are a hypercomplex number system first introduced in the 19th century. They are expressions of the form a + , where a and b are real numbers, and ε is a symbol taken to satisfy with .

In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric.

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries of physical space.

<span class="mw-page-title-main">Lyapunov exponent</span> The rate of separation of infinitesimally close trajectories

In mathematics, the Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system is a quantity that characterizes the rate of separation of infinitesimally close trajectories. Quantitatively, two trajectories in phase space with initial separation vector diverge at a rate given by

In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.

<span class="mw-page-title-main">Poisson bracket</span> Operation in Hamiltonian mechanics

In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.

<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

<span class="mw-page-title-main">Propagator</span> Function in quantum field theory showing probability amplitudes of moving particles

In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. Propagators may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.

In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension.

Recurrence quantification analysis (RQA) is a method of nonlinear data analysis for the investigation of dynamical systems. It quantifies the number and duration of recurrences of a dynamical system presented by its phase space trajectory.

In mathematics, more specifically in dynamical systems, the method of averaging exploits systems containing time-scales separation: a fast oscillationversus a slow drift. It suggests that we perform an averaging over a given amount of time in order to iron out the fast oscillations and observe the qualitative behavior from the resulting dynamics. The approximated solution holds under finite time inversely proportional to the parameter denoting the slow time scale. It turns out to be a customary problem where there exists the trade off between how good is the approximated solution balanced by how much time it holds to be close to the original solution.

In chaos theory, the correlation sum is the estimator of the correlation integral, which reflects the mean probability that the states at two different times are close:

In chaos theory, the correlation integral is the mean probability that the states at two different times are close:

Recurrence period density entropy (RPDE) is a method, in the fields of dynamical systems, stochastic processes, and time series analysis, for determining the periodicity, or repetitiveness of a signal.

In mathematics, the slow manifold of an equilibrium point of a dynamical system occurs as the most common example of a center manifold. One of the main methods of simplifying dynamical systems, is to reduce the dimension of the system to that of the slow manifold—center manifold theory rigorously justifies the modelling. For example, some global and regional models of the atmosphere or oceans resolve the so-called quasi-geostrophic flow dynamics on the slow manifold of the atmosphere/oceanic dynamics, and is thus crucial to forecasting with a climate model.

In the theory of dynamical systems, the shadowing lemma is a lemma describing the behaviour of pseudo-orbits near a hyperbolic invariant set. Informally, the theory states that every pseudo-orbit stays uniformly close to some true trajectory —in other words, a pseudo-trajectory is "shadowed" by a true one. This suggests that numerical solutions can be trusted to represent the orbits of the dynamical system. However, caution should be exercised as some shadowing trajectories may not always be physically realizable.

Biology Monte Carlo methods (BioMOCA) have been developed at the University of Illinois at Urbana-Champaign to simulate ion transport in an electrolyte environment through ion channels or nano-pores embedded in membranes. It is a 3-D particle-based Monte Carlo simulator for analyzing and studying the ion transport problem in ion channel systems or similar nanopores in wet/biological environments. The system simulated consists of a protein forming an ion channel (or an artificial nanopores like a Carbon Nano Tube, CNT), with a membrane (i.e. lipid bilayer) that separates two ion baths on either side. BioMOCA is based on two methodologies, namely the Boltzmann transport Monte Carlo (BTMC) and particle-particle-particle-mesh (P3M). The first one uses Monte Carlo method to solve the Boltzmann equation, while the later splits the electrostatic forces into short-range and long-range components.

The Harrow–Hassidim–Lloyd algorithm or HHL algorithm is a quantum algorithm for numerically solving a system of linear equations, designed by Aram Harrow, Avinatan Hassidim, and Seth Lloyd. The algorithm estimates the result of a scalar measurement on the solution vector to a given linear system of equations.

The Fradkin tensor, or Jauch-Hill-Fradkin tensor, named after Josef-Maria Jauch and Edward Lee Hill and David M. Fradkin, is a conservation law used in the treatment of the isotropic multidimensional harmonic oscillator in classical mechanics. For the treatment of the quantum harmonic oscillator in quantum mechanics, it is replaced by the tensor-valued Fradkin operator.

References

  1. J. P. Eckmann, S. O. Kamphorst, D. Ruelle (1987). "Recurrence Plots of Dynamical Systems". Europhysics Letters. 5 (9): 973–977. Bibcode:1987EL......4..973E. doi:10.1209/0295-5075/4/9/004. S2CID   250847435.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. 1 2 N. Marwan; K. H. Kraemer (2023). "Trends in recurrence analysis of dynamical systems". European Physical Journal ST. 232: 5–27. Bibcode:2023EPJST.232....5M. doi:10.1140/epjs/s11734-022-00739-8. S2CID   255630484.
  3. 1 2 N. Marwan; M. C. Romano; M. Thiel; J. Kurths (2007). "Recurrence Plots for the Analysis of Complex Systems". Physics Reports. 438 (5–6): 237. Bibcode:2007PhR...438..237M. doi:10.1016/j.physrep.2006.11.001.
  4. J. P. Zbilut; C. L. Webber (1992). "Embeddings and delays as derived from quantification of recurrence plots". Physics Letters A. 171 (3–4): 199–203. Bibcode:1992PhLA..171..199Z. doi:10.1016/0375-9601(92)90426-M. S2CID   122890777.
  5. C. L. Webber; J. P. Zbilut (1994). "Dynamical assessment of physiological systems and states using recurrence plot strategies". Journal of Applied Physiology. 76 (2): 965–973. doi:10.1152/jappl.1994.76.2.965. S2CID   23854540.
  6. 1 2 N. Marwan (2008). "A historical review of recurrence plots". European Physical Journal ST. 164 (1): 3–12. arXiv: 1709.09971 . Bibcode:2008EPJST.164....3M. doi:10.1140/epjst/e2008-00829-1. S2CID   119494395.
  7. N. Marwan; J. Kurths (2002). "Nonlinear analysis of bivariate data with cross recurrence plots". Physics Letters A. 302 (5–6): 299–307. Bibcode:2002PhLA..302..299M. doi:10.1016/S0375-9601(02)01170-2. S2CID   8020903.
  8. N. Marwan; J. Kurths (2005). "Line structures in recurrence plots". Physics Letters A. 336 (4–5): 349–357. Bibcode:2005PhLA..336..349M. doi:10.1016/j.physleta.2004.12.056. S2CID   931165.
  9. M. C. Romano; M. Thiel; J. Kurths; W. von Bloh (2004). "Multivariate Recurrence Plots". Physics Letters A. 330 (3–4): 214–223. Bibcode:2004PhLA..330..214R. doi:10.1016/j.physleta.2004.07.066. S2CID   5746162.