Quantum spin Hall effect

Last updated

The quantum spin Hall state is a state of matter proposed to exist in special, two-dimensional semiconductors that have a quantized spin-Hall conductance and a vanishing charge-Hall conductance. The quantum spin Hall state of matter is the cousin of the integer quantum Hall state, and that does not require the application of a large magnetic field. The quantum spin Hall state does not break charge conservation symmetry and spin- conservation symmetry (in order to have well defined Hall conductances).

Contents

Description

The first proposal for the existence of a quantum spin Hall state was developed by Charles Kane and Gene Mele [1] who adapted an earlier model for graphene by F. Duncan M. Haldane [2] which exhibits an integer quantum Hall effect. The Kane and Mele model is two copies of the Haldane model such that the spin up electron exhibits a chiral integer quantum Hall Effect while the spin down electron exhibits an anti-chiral integer quantum Hall effect. A relativistic version of the quantum spin Hall effect was introduced in the 1990s for the numerical simulation of chiral gauge theories; [3] [4] the simplest example consisting of a parity and time reversal symmetric U(1) gauge theory with bulk fermions of opposite sign mass, a massless Dirac surface mode, and bulk currents that carry chirality but not charge (the spin Hall current analogue). Overall the Kane-Mele model has a charge-Hall conductance of exactly zero but a spin-Hall conductance of exactly (in units of ). Independently, a quantum spin Hall model was proposed by Andrei Bernevig and Shoucheng Zhang [5] in an intricate strain architecture which engineers, due to spin-orbit coupling, a magnetic field pointing upwards for spin-up electrons and a magnetic field pointing downwards for spin-down electrons. The main ingredient is the existence of spin–orbit coupling, which can be understood as a momentum-dependent magnetic field coupling to the spin of the electron.

Real experimental systems, however, are far from the idealized picture presented above in which spin-up and spin-down electrons are not coupled. A very important achievement was the realization that the quantum spin Hall state remains to be non-trivial even after the introduction of spin-up spin-down scattering, [6] which destroys the quantum spin Hall effect. In a separate paper, Kane and Mele introduced a topological invariant which characterizes a state as trivial or non-trivial band insulator (regardless if the state exhibits or does not exhibit a quantum spin Hall effect). Further stability studies of the edge liquid through which conduction takes place in the quantum spin Hall state proved, both analytically and numerically that the non-trivial state is robust to both interactions and extra spin-orbit coupling terms that mix spin-up and spin-down electrons. Such a non-trivial state (exhibiting or not exhibiting a quantum spin Hall effect) is called a topological insulator, which is an example of symmetry-protected topological order protected by charge conservation symmetry and time reversal symmetry. (Note that the quantum spin Hall state is also a symmetry-protected topological state protected by charge conservation symmetry and spin- conservation symmetry. We do not need time reversal symmetry to protect quantum spin Hall state. Topological insulator and quantum spin Hall state are different symmetry-protected topological states. So topological insulator and quantum spin Hall state are different states of matter.)

In HgTe quantum wells

Since graphene has extremely weak spin-orbit coupling, it is very unlikely to support a quantum spin Hall state at temperatures achievable with today's technologies. Two-dimensional topological insulators (also known as the quantum spin Hall insulators) with one-dimensional helical edge states were predicted in 2006 by Bernevig, Hughes and Zhang to occur in quantum wells (very thin layers) of mercury telluride sandwiched between cadmium telluride, [7] and were observed in 2007. [8]  

Different quantum wells of varying HgTe thickness can be built. When the sheet of HgTe in between the CdTe is thin, the system behaves like an ordinary insulator and does not conduct when the Fermi level resides in the band-gap. When the sheet of HgTe is varied and made thicker (this requires the fabrication of separate quantum wells), an interesting phenomenon happens. Due to the inverted band structure of HgTe, at some critical HgTe thickness, a Lifshitz transition occurs in which the system closes the bulk band gap to become a semi-metal, and then re-opens it to become a quantum spin Hall insulator.

In the gap closing and re-opening process, two edge states are brought out from the bulk and cross the bulk-gap. As such, when the Fermi level resides in the bulk gap, the conduction is dominated by the edge channels that cross the gap. The two-terminal conductance is in the quantum spin Hall state and zero in the normal insulating state. As the conduction is dominated by the edge channels, the value of the conductance should be insensitive to how wide the sample is. A magnetic field should destroy the quantum spin Hall state by breaking time-reversal invariance and allowing spin-up spin-down electron scattering processes at the edge. All these predictions have been experimentally verified in an experiment [9] performed in the Molenkamp labs at Universität Würzburg in Germany.

See also

Related Research Articles

<span class="mw-page-title-main">Topological order</span> Type of order at absolute zero

In physics, topological order is a kind of order in the zero-temperature phase of matter. Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders cannot change into each other without a phase transition.

<span class="mw-page-title-main">Majorana fermion</span> Fermion that is its own antiparticle

A Majorana fermion, also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesised by Ettore Majorana in 1937. The term is sometimes used in opposition to a Dirac fermion, which describes fermions that are not their own antiparticles.

<span class="mw-page-title-main">Xiao-Gang Wen</span> Chinese-American physicist

Xiao-Gang Wen is a Chinese-American physicist. He is a Cecil and Ida Green Professor of Physics at the Massachusetts Institute of Technology and Distinguished Visiting Research Chair at the Perimeter Institute for Theoretical Physics. His expertise is in condensed matter theory in strongly correlated electronic systems. In Oct. 2016, he was awarded the Oliver E. Buckley Condensed Matter Prize.

<span class="mw-page-title-main">Topological insulator</span> State of matter with insulating bulk but conductive boundary

A topological insulator is a material whose interior behaves as an electrical insulator while its surface behaves as an electrical conductor, meaning that electrons can only move along the surface of the material.

The Rashba effect, also called Bychkov–Rashba effect, is a momentum-dependent splitting of spin bands in bulk crystals and low-dimensional condensed matter systems similar to the splitting of particles and anti-particles in the Dirac Hamiltonian. The splitting is a combined effect of spin–orbit interaction and asymmetry of the crystal potential, in particular in the direction perpendicular to the two-dimensional plane. This effect is named in honour of Emmanuel Rashba, who discovered it with Valentin I. Sheka in 1959 for three-dimensional systems and afterward with Yurii A. Bychkov in 1984 for two-dimensional systems.

Bismuth selenide is a gray compound of bismuth and selenium also known as bismuth(III) selenide.

<span class="mw-page-title-main">Shoucheng Zhang</span> Chinese-American physicist

Shoucheng Zhang was a Chinese-American physicist who was the JG Jackson and CJ Wood professor of physics at Stanford University. He was a condensed matter theorist known for his work on topological insulators, the quantum Hall effect, the quantum spin Hall effect, spintronics, and high-temperature superconductivity. According to the National Academy of Sciences:

He discovered a new state of matter called topological insulator in which electrons can conduct along the edge without dissipation, enabling a new generation of electronic devices with much lower power consumption. For this ground breaking work he received numerous international awards, including the Buckley Prize, the Dirac Medal and Prize, the Europhysics Prize, the Physics Frontiers Prize and the Benjamin Franklin Medal.

Symmetry-protected topological (SPT) order is a kind of order in zero-temperature quantum-mechanical states of matter that have a symmetry and a finite energy gap.

<span class="mw-page-title-main">Charles L. Kane</span> American physicist

Charles L. Kane is a theoretical condensed matter physicist and is the Christopher H. Browne Distinguished Professor of Physics at the University of Pennsylvania. He completed a B.S. in physics at the University of Chicago in 1985 and his Ph.D. at Massachusetts Institute of Technology in 1989. Prior to joining the faculty at the University of Pennsylvania he was a postdoctoral associate at IBM's T. J. Watson Research Center working with his mentor Matthew P. A. Fisher, among others.

Weyl semimetals are semimetals or metals whose quasiparticle excitation is the Weyl fermion, a particle that played a crucial role in quantum field theory but has not been observed as a fundamental particle in vacuum. In these materials, electrons have a linear dispersion relation, making them a solid-state analogue of relativistic massless particles.

<span class="mw-page-title-main">Dirac cone</span> Quantum effect in some non-metals

In physics, Dirac cones are features that occur in some electronic band structures that describe unusual electron transport properties of materials like graphene and topological insulators. In these materials, at energies near the Fermi level, the valence band and conduction band take the shape of the upper and lower halves of a conical surface, meeting at what are called Dirac points.

The term Dirac matter refers to a class of condensed matter systems which can be effectively described by the Dirac equation. Even though the Dirac equation itself was formulated for fermions, the quasi-particles present within Dirac matter can be of any statistics. As a consequence, Dirac matter can be distinguished in fermionic, bosonic or anyonic Dirac matter. Prominent examples of Dirac matter are graphene and other Dirac semimetals, topological insulators, Weyl semimetals, various high-temperature superconductors with -wave pairing and liquid helium-3. The effective theory of such systems is classified by a specific choice of the Dirac mass, the Dirac velocity, the gamma matrices and the space-time curvature. The universal treatment of the class of Dirac matter in terms of an effective theory leads to a common features with respect to the density of states, the heat capacity and impurity scattering.

In solid-state physics, the kagome metal or kagome magnet is a type of ferromagnetic quantum material. The atomic lattice in a kagome magnet has layered overlapping triangles and large hexagonal voids, akin to the kagome pattern in traditional Japanese basket-weaving. This geometry induces a flat electronic band structure with Dirac crossings, in which the low-energy electron dynamics correlate strongly.

Eugene John "Gene" Mele is a professor of physics at the University of Pennsylvania, where he researches quantum electric phenomena in condensed matter.

Magnetic topological insulators are three dimensional magnetic materials with a non-trivial topological index protected by a symmetry other than time-reversal. In contrast with a non-magnetic topological insulator, a magnetic topological insulator can have naturally gapped surface states as long as the quantizing symmetry is broken at the surface. These gapped surfaces exhibit a topologically protected half-quantized surface anomalous Hall conductivity perpendicular to the surface. The sign of the half-quantized surface anomalous Hall conductivity depends on the specific surface termination.

Photonic topological insulators are artificial electromagnetic materials that support topologically non-trivial, unidirectional states of light. Photonic topological phases are classical electromagnetic wave analogues of electronic topological phases studied in condensed matter physics. Similar to their electronic counterparts, they, can provide robust unidirectional channels for light propagation. The field that studies these phases of light is referred to as topological photonics.

<span class="mw-page-title-main">Rashba–Edelstein effect</span>

The Rashba–Edelstein effect (REE) is a spintronics-related effect, consisting in the conversion of a bidimensional charge current into a spin accumulation. This effect is an intrinsic charge-to-spin conversion mechanism and it was predicted in 1990 by the scientist V.M. Edelstein. It has been demonstrated in 2013 and confirmed by several experimental evidences in the following years.

Bogdan Andrei Bernevig is a Romanian Quantum Condensed Matter Professor of Physics at Princeton University and the recipient of the John Simon Guggenheim Fellowship in 2017.

Fractional Chern insulators (FCIs) are lattice generalizations of the fractional quantum Hall effect that have been studied theoretically since early 2010. They were first predicted to exist in topological flat bands carrying Chern numbers. They can appear in topologically non-trivial band structures even in the absence of the large magnetic fields needed for the fractional quantum Hall effect. They promise physical realizations at lower magnetic fields, higher temperatures, and with shorter characteristic length scales compared to their continuum counterparts. FCIs were initially studied by adding electron-electron interactions to a fractionally filled Chern insulator, in one-body models where the Chern band is quasi-flat, at zero magnetic field. The FCIs exhibit a fractional quantized Hall conductance.

Bismuth-containing solid-state compounds pose an interest to both the physical inorganic chemists as well as condensed matter physicists due to the element's massive spin-orbit coupling, stabilization of lower oxidation states, and the inert pair effect. Additionally, the stabilization of the Bi in the +1 oxidation state gives rise to a plethora of subhalide compounds with interesting electronics and 3D structures.

References

  1. Kane, C.L.; Mele, E.J. (25 November 2005). "Quantum Spin Hall Effect in Graphene". Physical Review Letters. 95 (22): 226081. arXiv: cond-mat/0411737 . Bibcode:2005PhRvL..95v6801K. doi:10.1103/PhysRevLett.95.226801. PMID   16384250. S2CID   6080059.
  2. Haldane, F.D.M. (31 October 1988). "Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"". Physical Review Letters. 61 (18): 2015–2018. Bibcode:1988PhRvL..61.2015H. doi: 10.1103/PhysRevLett.61.2015 . PMID   10038961.
  3. Kaplan, David B. (1992). "A method for simulating chiral fermions on the lattice". Physics Letters B. 288 (3–4): 342–347. arXiv: hep-lat/9206013 . Bibcode:1992PhLB..288..342K. CiteSeerX   10.1.1.286.587 . doi:10.1016/0370-2693(92)91112-m. S2CID   14161004.
  4. Golterman, Maarten F.L.; Jansen, Karl; Kaplan, David B. (1993). "Chern-Simons currents and chiral fermions on the lattice". Physics Letters B. 301 (2–3): 219–223. arXiv: hep-lat/9209003 . Bibcode:1993PhLB..301..219G. doi:10.1016/0370-2693(93)90692-b. S2CID   9265777.
  5. Bernevig, B. Andrei; Zhang, Shou-Cheng (14 March 2006). "Quantum Spin Hall Effect". Physical Review Letters. 96 (10): 106802. arXiv: cond-mat/0504147 . Bibcode:2006PhRvL..96j6802B. doi:10.1103/PhysRevLett.96.106802. PMID   16605772. S2CID   2618285.
  6. Kane, C.L.; Mele, E.J. (28 September 2005). "Z2 Topological Order and the Quantum Spin Hall Effect". Physical Review Letters. 95 (14): 146802. arXiv: cond-mat/0506581 . Bibcode:2005PhRvL..95n6802K. doi:10.1103/PhysRevLett.95.146802. PMID   16241681. S2CID   1775498.
  7. Bernevig, B. Andrei; Hughes, Taylor L.; Zhang, Shou-Cheng (2006-12-15). "Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells". Science. 314 (5806): 1757–1761. arXiv: cond-mat/0611399 . Bibcode:2006Sci...314.1757B. doi:10.1126/science.1133734. ISSN   0036-8075. PMID   17170299. S2CID   7295726.
  8. König, Markus; Wiedmann, Steffen; Brüne, Christoph; Roth, Andreas; Buhmann, Hartmut; Molenkamp, Laurens W.; Qi, Xiao-Liang; Zhang, Shou-Cheng (2007-11-02). "Quantum Spin Hall Insulator State in HgTe Quantum Wells". Science. 318 (5851): 766–770. arXiv: 0710.0582 . Bibcode:2007Sci...318..766K. doi:10.1126/science.1148047. ISSN   0036-8075. PMID   17885096. S2CID   8836690.
  9. König, Markus; Wiedmann, Steffen; Brüne, Christoph; Roth, Andreas; Buhmann, Hartmut; Molenkamp, Laurens W.; Qi, Xiao-Liang; Zhang, Shou-Cheng (November 2, 2007). "Quantum Spin Hall Insulator State in HgTe Quantum Wells". Science. 318 (5851): 766–770. arXiv: 0710.0582 . Bibcode:2007Sci...318..766K. doi:10.1126/science.1148047. PMID   17885096. S2CID   8836690.

Further reading