PowerLinux is the combination of a Linux-based operating system (OS) running on PowerPC- or Power ISA-based computers from IBM. It is often used in reference along with Linux on Power, and is also the name of several Linux-only IBM Power Systems.
In the late 1990s, IBM began considering the Linux operating system. In 2000, IBM announced it would promote Linux. [1] In 2001, IBM invested $1 billion to back the Linux movement, embracing it as an operating system for IBM servers and software. Within a decade, Linux could be found in virtually every IBM business, geography and workload, and continues to be deeply embedded in IBM hardware, software, services and internal development.
A survey released by the Linux Foundation in April 2012 showed IBM as the fifth-leading commercial contributor over the past seven years, with more than 600 developers involved in more than 100 open-source projects. [2]
IBM established the Linux Technology Center (LTC) in 1999 to combine its software developers interested in Linux and other open-source software into a single organization. The LTC collaborated with the Linux community to make Linux run optimally on PowerPC, x86, and more recently, the Cell Broadband Engine. Developers in the LTC contribute to various open-source projects as well as projects focused on enabling Linux to use new hardware functions on IBM platforms.
Linux has run on IBM POWER systems since 2001, when a team created a new, 64-bit port for the Linux kernel to allow the OS to run on PowerPC processors. [3] The first system to fully support the 64-bit Linux kernel was IBM's POWER5, created in 2004. It was followed by POWER6 in 2007 and the current POWER7-based systems in 2010.
Linux was first ported to POWER in June 2000. [4] Since then PowerLinux was used in a number of supercomputers including MareNostrum 2004 and Roadrunner 2008.
Beginning in April 2012, IBM introduced three POWER7 processor-based Linux-specific systems for big data analytics, industry applications and open-source infrastructure services such as Web-serving, email and social media collaboration services. [5]
The IBM PowerLinux 7R1 and IBM PowerLinux 7R2 systems are one- and two-socket, rack-mount servers that support either 8 or 16 POWER7 microprocessor cores in 3.55 GHz (7R1 only) or, with the 7R2, 3.55 and 3.3 GHz options with 128 GB maximum memory (for the 7R1) or 256 GB maximum memory (7R2) that can be configured with 8, 16 and 32 GB dual inline memory modules (DIMMs). Both systems run Linux operating systems: Red Hat Enterprise Linux or SUSE Linux Enterprise Server and include a built-in PowerVM [for PowerLinux] hypervisor that supports up to 10 VMs per core and 160 VMs per server.
The IBM PowerLinux 7R4 is a POWER7+ processor-based system in a 5U package with two or four sockets and 16 or 32 cores. It can accommodate up to 1 TB of 1066 MHz DDR3 Active Memory Sharing. PowerVM for Linux dynamically adjusts system resources to partitions based on workload demands-across up to 640 VMs per server (20 micropartitions per core).
In a study on systems and architecture for big data, IBM Research found that a 10-node Hadoop cluster of PowerLinux 7R2 nodes with POWER7+ processors, running InfoSphere BigInsights software, can sort through a terabyte of data in less than 8 minutes. [6]
IBM also introduced the IBM Flex System p24L Compute Node, a Linux-specific two-socket compute node for the recently announced IBM PureFlex System, which contains 12 or 16 POWER7 microprocessor cores, up to 256 GB of memory, the option of Red Hat Enterprise Linux or SUSE Linux Enterprise Server operating systems and built-in PowerVM for PowerLinux. [7]
In addition to these specific products, Linux is capable of running on any Power series hardware.
The April 2012 releases by IBM of PowerLinux were designed specifically to run the Linux kernel on the company's POWER7-based systems. Unlike servers built on the Intel Xeon processor, an x86 descendant with two threads per core, the POWER7 processor provides four threads per core. POWER-based servers are virtualized to provide 60 to 80 percent utilization, compared to a typical 40-percent rate for x86 processors. The PowerVM virtualization program has a Common Criteria Evaluation Assurance (CC) level of 4+, with zero security vulnerabilities reported, as well as unlimited memory use. [8]
Power-based IBM systems have built in virtualization capabilities derived from mainframe technology. On System p, this virtualization package is referred to as PowerVM. PowerVM includes virtualization capabilities such as micro-partitioning, active memory sharing and de-duplication, a virtual I/O server for virtual networks and storage, as well as live partition mobility.
This section's factual accuracy may be compromised due to out-of-date information.(April 2009) |
PowerLinux runs on:
Itanium is a discontinued family of 64-bit Intel microprocessors that implement the Intel Itanium architecture. The Itanium architecture originated at Hewlett-Packard (HP), and was later jointly developed by HP and Intel. Launched in June 2001, Intel initially marketed the processors for enterprise servers and high-performance computing systems. In the concept phase, engineers said "we could run circles around PowerPC...we could kill the x86." Early predictions were that IA-64 would expand to the lower-end servers, supplanting Xeon, and eventually penetrate into the personal computers, eventually to supplant reduced instruction set computing (RISC) and complex instruction set computing (CISC) architectures for all general-purpose applications.
In computer architecture, 64-bit integers, memory addresses, or other data units are those that are 64 bits wide. Also, 64-bit central processing units (CPU) and arithmetic logic units (ALU) are those that are based on processor registers, address buses, or data buses of that size. A computer that uses such a processor is a 64-bit computer.
Xen is a free and open-source type-1 hypervisor, providing services that allow multiple computer operating systems to execute on the same computer hardware concurrently. It was originally developed by the University of Cambridge Computer Laboratory and is now being developed by the Linux Foundation with support from Intel, Citrix, Arm Ltd, Huawei, AWS, Alibaba Cloud, AMD, Bitdefender and EPAM Systems.
Altix is a line of server computers and supercomputers produced by Silicon Graphics, based on Intel processors. It succeeded the MIPS/IRIX-based Origin 3000 servers.
A hypervisor, also known as a virtual machine monitor (VMM) or virtualizer, is a type of computer software, firmware or hardware that creates and runs virtual machines. A computer on which a hypervisor runs one or more virtual machines is called a host machine, and each virtual machine is called a guest machine. The hypervisor presents the guest operating systems with a virtual operating platform and manages the execution of the guest operating systems. Unlike an emulator, the guest executes most instructions on the native hardware. Multiple instances of a variety of operating systems may share the virtualized hardware resources: for example, Linux, Windows, and macOS instances can all run on a single physical x86 machine. This contrasts with operating-system–level virtualization, where all instances must share a single kernel, though the guest operating systems can differ in user space, such as different Linux distributions with the same kernel.
A logical partition (LPAR) is a subset of a computer's hardware resources, virtualized as a separate computer. In effect, a physical machine can be partitioned into multiple logical partitions, each hosting a separate instance of an operating system.
IBM Z is a family name used by IBM for all of its z/Architecture mainframe computers. In July 2017, with another generation of products, the official family was changed to IBM Z from IBM z Systems; the IBM Z family now includes the newest model, the IBM z16, as well as the z15, the z14, and the z13, the IBM zEnterprise models, the IBM System z10 models, the IBM System z9 models and IBM eServer zSeries models.
In computing, virtualization is the use of a computer to simulate another computer. The following is a chronological list of virtualization technologies.
VMware ESXi is an enterprise-class, type-1 hypervisor developed by VMware, a subsidiary of Broadcom, for deploying and serving virtual computers. As a type-1 hypervisor, ESXi is not a software application that is installed on an operating system (OS); instead, it includes and integrates vital OS components, such as a kernel.
Microsoft Hyper-V, codenamed Viridian, and briefly known before its release as Windows Server Virtualization, is a native hypervisor; it can create virtual machines on x86-64 systems running Windows. Starting with Windows 8, Hyper-V superseded Windows Virtual PC as the hardware virtualization component of the client editions of Windows NT. A server computer running Hyper-V can be configured to expose individual virtual machines to one or more networks. Hyper-V was first released with Windows Server 2008, and has been available without additional charge since Windows Server 2012 and Windows 8. A standalone Windows Hyper-V Server is free, but has a command-line interface only. The last version of free Hyper-V Server is Hyper-V Server 2019, which is based on Windows Server 2019.
PowerVM, formerly known as Advanced Power Virtualization (APV), is a chargeable feature of IBM POWER5, POWER6, POWER7, POWER8, POWER9 and Power10 servers and is required for support of micro-partitions and other advanced features. Support is provided for IBM i, AIX and Linux.
PowerVM Lx86 was a binary translation layer for IBM's System p servers. It enabled 32-bit x86 Linux binaries to run unmodified on the Power ISA-based hardware. IBM used this feature to migrate x86 Linux servers to the PowerVM virtualized environment; it was supported on all POWER5 and POWER6 hardware as well as BladeCenter JS21 and JS22 systems.
In computing, virtualization (v12n) is a series of technologies that allows dividing of physical computing resources into a series of virtual machines, operating systems, processes or containers.
Oracle VM Server for x86 is a server virtualization offering from Oracle Corporation. Oracle VM Server for x86 incorporates the free and open-source Xen hypervisor technology, supports Windows, Linux, and Solaris guests and includes an integrated Web based management console. Oracle VM Server for x86 features fully tested and certified Oracle Applications stack in an enterprise virtualization environment.
An embedded hypervisor is a hypervisor that supports the requirements of embedded systems.
POWER8 is a family of superscalar multi-core microprocessors based on the Power ISA, announced in August 2013 at the Hot Chips conference. The designs are available for licensing under the OpenPOWER Foundation, which is the first time for such availability of IBM's highest-end processors.
Linux on IBM Z or Linux on zSystems is the collective term for the Linux operating system compiled to run on IBM mainframes, especially IBM Z / IBM zSystems and IBM LinuxONE servers. Similar terms which imply the same meaning are Linux/390, Linux/390x, etc. The three Linux distributions certified for usage on the IBM Z hardware platform are Red Hat Enterprise Linux, SUSE Linux Enterprise Server, and Ubuntu.
PureSystems is an IBM product line of factory pre-configured components and servers also being referred to as an "Expert Integrated System". The centrepiece of PureSystems is the IBM Flex System Manager in tandem with the so-called "Patterns of Expertise" for the automated configuration and management of PureSystems.
POWER9 is a family of superscalar, multithreading, multi-core microprocessors produced by IBM, based on the Power ISA. It was announced in August 2016. The POWER9-based processors are being manufactured using a 14 nm FinFET process, in 12- and 24-core versions, for scale out and scale up applications, and possibly other variations, since the POWER9 architecture is open for licensing and modification by the OpenPOWER Foundation members.
A system virtual machine is a virtual machine (VM) that provides a complete system platform and supports the execution of a complete operating system (OS). These usually emulate an existing architecture, and are built with the purpose of either providing a platform to run programs where the real hardware is not available for use, or of having multiple instances of virtual machines leading to more efficient use of computing resources, both in terms of energy consumption and cost effectiveness, or both. A VM was originally defined by Popek and Goldberg as "an efficient, isolated duplicate of a real machine".