Pilot light

Last updated
Merker tankless gas-fired water heater from the 1930s, with pilot light clearly visible through the aperture in the front cover. The large opening allowed for the manual lighting of the pilot light by a lit match or taper Merker Durchlauferhitzer.jpg
Merker tankless gas-fired water heater from the 1930s, with pilot light clearly visible through the aperture in the front cover. The large opening allowed for the manual lighting of the pilot light by a lit match or taper

A pilot light is a small gas flame, usually natural gas or liquefied petroleum gas, which serves as an ignition source for a more powerful gas burner. Originally a pilot light was kept permanently alight, but this wastes gas. Now it is more common to light a burner electrically, but gas pilot lights are still used when a high energy ignition source is necessary, as in when lighting a large burner.

Contents

A United States patent was filed May 13, 1922, for a "safety gas-control system" by two employees of the Newark, New Jersey–based Public Service Gas Company, Conrad Shuck, Jr. and George Layer. [1]

The term "pilot light" is also used occasionally for an electrical indicator light that illuminates to show that electrical power is available, or that an electrical device is operating. Such indicators were originally incandescent lamps or neon lamps, but now are usually LEDs.

Uses

Common applications include household water heaters, central heating systems, fireplaces, flamethrowers, and hot air balloons. While most commercial kitchens still rely on pilot lights for burners, ovens, and grills, current residential systems utilize an electrical ignition. This is more commonly known as standby on modern remote control fires.

Safety protection

In natural gas furnaces, water heaters, and room heating systems, a safety cut-off switch is normally included so that the gas supply to the pilot and heating system is shut off by an electrically operated valve if the pilot light goes out. This cut-off switch usually detects the pilot light in one of several ways:

Other units use a non-electrical approach, where the pilot heats a bimetallic element or a gas-filled tube to exert mechanical pressure to keep the gas valve open. If the pilot fails, the valve closes. To restart the system, the valve must be held open manually and the pilot lit, and then the valve must be held open until the element heats up enough to hold the valve open. Non-electrical schemes are appropriate for systems that do not use electricity.

The above methods are examples of the use of "fail-safe" safety protection.

Energy waste

In domestic heating systems with pilot lights, it has been estimated that half of the total energy usage is from the pilot light, with each pilot light on average using between 70 and 500 watts of gas power (between 8 and 16 gigajoules/year). [3] [4] The heat from a pilot light in many appliances (furnaces, space heaters, water heaters) is generally released in the same chamber as the primary burner. The energy loss is much smaller for pilot lights in space heaters than other products, because space heaters heat a smaller enclosed space and contribute more significantly to heating the room. The appliance efficiency of a gas-fired balanced flue local space heater in pilot light mode is almost equal with the appliance efficiency measured at the reduced power of the appliance, which efficiency is between 65–95% based on the low calorific value of the consumed gas, making part of the pilot light's energy consumption into useful heat.

Modern alternatives

An alternative to the pilot light is a system to create a high voltage electrical arc or spark between two electrodes, in order to light the gas flowing to the burner. Fail-safe design for such a system requires the burner flame to be detected by passing an electric current through the flame, which is received by the flame rectification circuit inside an ignition controller connected to the gas valve. Flame rectification occurs when electrons flow through the flame burning, which the ignition controller senses and knows the flame is there, keeping the gas valve open. If the appliance loses gas or the flame goes out, the ignition controller does not see the flame, closing the gas valve.

A red-hot surface can also be used to provide ignition. Such igniters are often made of silicon carbide, silicon nitride, or another material that is durable under prolonged exposure to extreme heat. Hot-surface igniters are commonly used in cooking ovens, boilers, and modern gas furnaces.

A disadvantage to modern alternatives requiring high voltage is that the appliances are rendered useless during a power outage. Pilot light solutions work independently of the electrical system. However, some appliances can be lit with an external flame source during a power outage. [5] This may include cooking stoves and ovens, but not heating boilers that are either room-sealed or rely on electricity to operate pumps.

Related Research Articles

<span class="mw-page-title-main">Thermocouple</span> Electrical device for measuring temperature

A thermocouple, also known as a "thermoelectrical thermometer", is an electrical device consisting of two dissimilar electrical conductors forming an electrical junction. A thermocouple produces a temperature-dependent voltage as a result of the Seebeck effect, and this voltage can be interpreted to measure temperature. Thermocouples are widely used as temperature sensors.

<span class="mw-page-title-main">Furnace (central heating)</span> Device used for heating buildings

A furnace, referred to as a heater or boiler in British English, is an appliance used to generate heat for all or part of a building. Furnaces are mostly used as a major component of a central heating system. Furnaces are permanently installed to provide heat to an interior space through intermediary fluid movement, which may be air, steam, or hot water. Heating appliances that use steam or hot water as the fluid are normally referred to as a residential steam boilers or residential hot water boilers. The most common fuel source for modern furnaces in North America and much of Europe is natural gas; other common fuel sources include LPG, fuel oil, wood and in rare cases coal. In some areas electrical resistance heating is used, especially where the cost of electricity is low or the primary purpose is for air conditioning. Modern high-efficiency furnaces can be up to 98% efficient and operate without a chimney, with a typical gas furnace being about 80% efficient. Waste gas and heat are mechanically ventilated through either metal flue pipes or polyvinyl chloride (PVC) pipes that can be vented through the side or roof of the structure. Fuel efficiency in a gas furnace is measured in AFUE.

<span class="mw-page-title-main">Thermostat</span> Component which maintains a setpoint temperature

A thermostat is a regulating device component which senses the temperature of a physical system and performs actions so that the system's temperature is maintained near a desired setpoint.

<span class="mw-page-title-main">Water heating</span> Thermodynamic process that uses energy sources to heat water

Water heating is a heat transfer process that uses an energy source to heat water above its initial temperature. Typical domestic uses of hot water include cooking, cleaning, bathing, and space heating. In industry, hot water and water heated to steam have many uses.

<span class="mw-page-title-main">Central heating</span> Type of heating system

A central heating system provides warmth to a number of spaces within a building from one main source of heat. It is a component of heating, ventilation, and air conditioning systems, which can both cool and warm interior spaces.

<span class="mw-page-title-main">Heating element</span> Device that converts electricity into heat

A heating element is a device used for conversion of electric energy into heat, consisting of a heating resistor and accessories. Heat is generated by the passage of electric current through a resistor through a process known as Joule Heating. Heating elements are used in household appliances, industrial equipment, and scientific instruments enabling them to perform tasks such as cooking, warming, or maintaining specific temperatures higher than the ambient.

<span class="mw-page-title-main">Gas stove</span> Type of cooking stove

A gas stove is a stove that is fuelled by combustible gas such as natural gas, propane, butane, liquefied petroleum gas, syngas, or other flammable gas. Before the advent of gas, cooking stoves relied on solid fuels such as coal or wood. The first gas stoves were developed in the 1820s and a gas stove factory was established in England in 1836. This new cooking technology had the advantage of being easily adjustable and could be turned off when not in use. The gas stove, however, did not become a commercial success until the 1880s, by which time supplies of piped gas were available in cities and large towns in Britain. The stoves became widespread on the European Continent and in the United States in the early 20th century.

<span class="mw-page-title-main">Gas heater</span>

A gas heater is a space heater used to heat a room or outdoor area by burning natural gas, liquefied petroleum gas, propane, or butane.

<span class="mw-page-title-main">Pellet stove</span> Stove that uses pellet fuel

A pellet stove is a stove that burns compressed wood or biomass pellets to create a source of heat for residential and sometimes industrial spaces. By steadily feeding fuel from a storage container (hopper) into a burn pot area, it produces a constant flame that requires little to no physical adjustments. Today's central heating systems operated with wood pellets as a renewable energy source can reach an efficiency factor of more than 90%.

<span class="mw-page-title-main">Electric heating</span> Process in which electrical energy is converted to heat

Electric heating is a process in which electrical energy is converted directly to heat energy. Common applications include space heating, cooking, water heating and industrial processes. An electric heater is an electrical device that converts an electric current into heat. The heating element inside every electric heater is an electrical resistor, and works on the principle of Joule heating: an electric current passing through a resistor will convert that electrical energy into heat energy. Most modern electric heating devices use nichrome wire as the active element; the heating element, depicted on the right, uses nichrome wire supported by ceramic insulators.

<span class="mw-page-title-main">Cooktop</span> Device that applies heat to the base of cookware

A cooktop, stovetop or hob, is a device commonly used for cooking that is commonly found in kitchens and used to apply heat to the base of pans or pots. Cooktops are often found integrated with an oven into a kitchen stove but may also be standalone devices. Cooktops are commonly powered by gas or electricity, though oil or other fuels are sometimes used.

<span class="mw-page-title-main">Forced-air gas</span>

Forced-air gas heating systems are used in central air heating/cooling systems for houses. Sometimes the system is referred to as "forced hot air".

<span class="mw-page-title-main">Convection heater</span> Type of heating device

A convection heater, also known as a convector heater, is a type of heater that utilizes convection currents to heat and circulate air. These currents move through the appliance and across its heating element, using thermal conduction to warm the air and decrease its density relative to colder air, causing it to rise.

<span class="mw-page-title-main">Oil burner</span>

An oil burner is a heating device which burns #1, #2 and #6 heating oils, diesel fuel or other similar fuels. In the United States, ultra low sulfur #2 diesel is the common fuel used. It is dyed red to show that it is road-tax exempt. In most markets of the United States, heating oil is the same specification of fuel as on-road un-dyed diesel.

Auto reignition is a process used in gas burners to control ignition devices based on whether a burner flame is lit. This information can be used to stop an ignition device from sparking, which is no longer necessary after the flame is lit. It can also be used to start the sparking device again if the flame goes out while the burner is still supplying gas, for example, from a gust of wind or vibration.

<span class="mw-page-title-main">Infrared heater</span> Device designed to create radiative heat

An infrared heater or heat lamp is a heating appliance containing a high-temperature emitter that transfers energy to a cooler object through electromagnetic radiation. Depending on the temperature of the emitter, the wavelength of the peak of the infrared radiation ranges from 750 nm to 1 mm. No contact or medium between the emitter and cool object is needed for the energy transfer. Infrared heaters can be operated in vacuum or atmosphere.

<span class="mw-page-title-main">Time switch</span>

A time switch is a device that operates an electric switch controlled by a timer.

An electric boiler is a device that uses electrical energy to boil water instead of fossil fuels used in traditional gas or oil boilers.

For gas appliances, a flame supervision device (FSD) – alternative name: flame failure device (FFD) – is a general term for any device designed to stop flammable gas going to the burner of a gas appliance if the flame is extinguished. This is to prevent a dangerous buildup of gas within the appliance, its chimney or the room. Causes of flame failure include chimney downdraught, temporary interruption of the gas supply, gas under-pressure, liquid overspill on cooker hotplates or the draught from an oven door being opened and closed.

<span class="mw-page-title-main">Industrial furnace</span> Device used for providing heat in industrial applications

An industrial furnace, also known as a direct heater or a direct fired heater, is a device used to provide heat for an industrial process, typically higher than 400 degrees Celsius. They are used to provide heat for a process or can serve as reactor which provides heats of reaction. Furnace designs vary as to its function, heating duty, type of fuel and method of introducing combustion air. Heat is generated by an industrial furnace by mixing fuel with air or oxygen, or from electrical energy. The residual heat will exit the furnace as flue gas. These are designed as per international codes and standards the most common of which are ISO 13705 / American Petroleum Institute (API) Standard 560. Types of industrial furnaces include batch ovens, metallurgical furnaces, vacuum furnaces, and solar furnaces. Industrial furnaces are used in applications such as chemical reactions, cremation, oil refining, and glasswork.

References

  1. "Recent Gas Patents". Gas Age-Record. June 23, 1923. Retrieved 2022-05-13.
  2. Treloar, R.D. (2005). Gas Installation Technology. Blackwell Publishing. pp. 92–99. ISBN   978-1-4051-1880-4.
  3. Hayden, A. C. S. (January–February 1997). "Fireplace Pilots Take Gas Use Sky High". Home Energy Magazine Online. Archived from the original on 2022-08-29. Retrieved 2009-05-04.
  4. Dumont, Rob (March–April 1997). "Pilot Lights Use More Energy". Home Energy Magazine Online. Archived from the original on 2022-08-29. Retrieved 2009-05-04.
  5. GE Appliances. "Gas Range - Lighting Electric Ignition During a Power Failure" http://www.geappliances.com/search/fast/infobase/10000763.htm