Paraconodontida

Last updated

Paraconodontida
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Subphylum: Vertebrata (?)
Order: Paraconodontida
Müller, 1962
Subgroups
Synonyms
  • Paraconodonta
  • WestergaardodinidaLindström, 1970

Paraconodonts (Paraconodontida) are an extinct order of probable chordates, closely related or ancestral to euconodonts (true conodonts). [1] [2] [3] The order contains the superfamily Furnishinacea, itself containing the families Westergaardodinidae and Furnishinidae. [3]

Contents

Paraconodonts were introduced into the scientific literature by Klaus Müller, who sought out the Cambrian ancestors of conodonts through the 1950s and 1960s and proclaimed success upon the discovery of paraconodont fossils. Like early true conodonts, paraconodont elements were phosphatic fossils which generally had a horn- or tooth-like shape, and some were serrated with multiple cusps. Westergaardodina acquired an even more unusual W- or horseshoe-shaped form. [3] [4]

True conodont 'teeth' have a distinct crown and base tissue, with each component growing independently through the addition of external layers. In contrast, paraconodont 'teeth' have a single main component which only grows downwards via additional sheath-like layers. As a result, the tip of the 'tooth' remains fully exposed and unmodified through its entire lifetime, while the base of the 'tooth' eventually expands into a rimmed cavity. [5] [4]

In the earliest paraconodonts (such as Furnishina and Prooneotodus ), the basal cavity is very simple and entirely lacks internal growth. Later paraconodonts are more complex: Problematoconites , for example, has 'cone-filling laminae' (very thin layers which stack up within the basal cavity), while Rotundoconus adds a spherulitic infilling (thicker beady-textured layer) below the 'cone-filling laminae'. This trend of increasing complexity further supports the idea that paraconodonts are ancestral to euconodonts. In fact, the internal structure of Rotundoconus is nearly identical to the base tissue of the early euconodont Granatodontus . In addition, it also demonstrates how conodonts evolved their 'teeth' independently from the enamel-based true teeth of jawed vertebrates. [6]

During the 1970s and early 1980s, paraconodonts were frequently associated with an even more simplistic group of conodont-like Cambrian fossils, the protoconodonts (taxa such as Amphigeisina , Gapparodus , Hertzina , and Protohertzina ). [5] [3] [7] Both paraconodonts and protoconodonts were grouped together within the order Paraconodontida in the 1981 Treatise on Invertebrate Paleontology volume on conodonts (Part W revised, supplement 2). [3] Later research found little support for this association, instead arguing that protoconodonts were an unrelated group of invertebrates closer to modern chaetognaths (arrow worms). [8] [9]

Taxonomy

Related Research Articles

<span class="mw-page-title-main">Chordate</span> Phylum of animals having a dorsal nerve cord

A chordate is a deuterostomic animal belonging to the phylum Chordata. All chordates possess, at some point during their larval or adult stages, five distinctive physical characteristics (synapomorphies) that distinguish them from other taxa. These five synapomorphies are a notochord, a hollow dorsal nerve cord, an endostyle or thyroid, pharyngeal slits, and a post-anal tail. The name "chordate" comes from the first of these synapomorphies, the notochord, which plays a significant role in chordate body plan structuring and movements. Chordates are also bilaterally symmetric, have a coelom, possess a closed circulatory system, and exhibit metameric segmentation.

<span class="mw-page-title-main">Chaetognatha</span> Phylum of marine worms

The Chaetognatha or chaetognaths are a phylum of predatory marine worms that are a major component of plankton worldwide. Commonly known as arrow worms, they are mostly nektonic; however about 20% of the known species are benthic, and can attach to algae and rocks. They are found in all marine waters, from surface tropical waters and shallow tide pools to the deep sea and polar regions. Most chaetognaths are transparent and are torpedo shaped, but some deep-sea species are orange. They range in size from 2 to 120 millimetres.

<span class="mw-page-title-main">Conodont</span> Extinct agnathan chordates resembling eels

Conodonts are an extinct group of eel-looking agnathan (jawless) vertebrates, classified in the class Conodonta. For many years, they were known only from fossils of their spiky oral elements, which are usually found in isolation and are now called conodont elements, while knowledge about soft tissues remains limited. A resilient group of prehistoric fish, conodonts existed in the world's oceans for over 300 million years, from the Cambrian to the beginning of the Jurassic. Due to their cosmopolitan distribution, conodont elements are widely used as index fossils, fossils used to define and identify geological periods.

<span class="mw-page-title-main">Sclerite</span> Hardened body part

A sclerite is a hardened body part. In various branches of biology the term is applied to various structures, but not as a rule to vertebrate anatomical features such as bones and teeth. Instead it refers most commonly to the hardened parts of arthropod exoskeletons and the internal spicules of invertebrates such as certain sponges and soft corals. In paleontology, a scleritome is the complete set of sclerites of an organism, often all that is known from fossil invertebrates.

Pikaia gracilens is an extinct, primitive chordate animal known from the Middle Cambrian Burgess Shale of British Columbia. Described in 1911 by Charles Doolittle Walcott as an annelid, and in 1979 by Harry B. Whittington and Simon Conway Morris as a chordate, it became "the most famous early chordate fossil", or "famously known as the earliest described Cambrian chordate". It is estimated to have lived during the latter period of the Cambrian explosion. Since its initial discovery, more than a hundred specimens have been recovered.

<span class="mw-page-title-main">Ostracoderm</span> Armored jawless fish of the Paleozoic

Ostracoderms are the armored jawless fish of the Paleozoic Era. The term does not often appear in classifications today because it is paraphyletic and thus does not correspond to one evolutionary lineage. However, the term is still used as an informal way of loosely grouping together the armored jawless fishes.

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils. This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 1962.

<span class="mw-page-title-main">Deuterostome</span> Superphylum of bilateral animals

Deuterostomes are bilaterian animals of the superphylum Deuterostomia, typically characterized by their anus forming before the mouth during embryonic development. Deuterostomia is further divided into 4 phyla: Chordata, Echinodermata, Hemichordata, and the extinct Vetulicolia known from Cambrian fossils. The extinct clade Cambroernida is also thought to be a member of Deuterostomia.

<span class="mw-page-title-main">Gnathifera (clade)</span> Taxonomic clade

Gnathifera is a clade of generally small spiralians characterized by complex jaws made of chitin. It comprises the phyla Gnathostomulida, Rotifera and Micrognathozoa. Chaetognatha has recently been recognised as closely related to the group, with it either being included within Gnathifera or the broader group Chaetognathifera.

<span class="mw-page-title-main">Rhynchonelliformea</span> Subphylum of brachiopods

Rhynchonelliformea is a major subphylum and clade of brachiopods. It is roughly equivalent to the former class Articulata, which was used previously in brachiopod taxonomy up until the 1990s. These so-called articulated brachiopods have many anatomical differences relative to "inarticulate" brachiopods of the subphyla Linguliformea and Craniformea. Articulates have hard calcium carbonate shells with tongue-and-groove hinge articulations and separate sets of simple opening and closing muscles.

Mongolitubulus is a form genus encapsulating a range of ornamented conical small shelly fossils of the Cambrian period. It is potentially synonymous with Rushtonites, Tubuterium and certain species of Rhombocorniculum, and owing to the similarity of the genera, they are all dealt with herein. Organisms that bore Mongolitubulus-like projections include trilobites, bradoriid arthropods and hallucigeniid lobopodians.

<span class="mw-page-title-main">Reticulosa</span> Extinct order of sponges

Reticulosa is an extinct order of sea sponges in the class Hexactinellida and the subclass Amphidiscophora. Reticulosans were diverse in shape and size, similar to their modern relatives, the amphidiscosidans. Some were smooth and attached to a surface at a flat point, others were polyhedral or ornamented with nodes, many were covered in bristles, and a few were even suspended above the seabed by a rope-like anchor of braided glass spicules.

Westergaardodina is a species-rich genus of spine, U or W-shaped paraconodont known from Middle Cambrian to Lower Ordovician strata.

Proconodontida is an order of conodonts which originated in the late Cambrian (Furongian) and persisted partly through the Ordovician. The ancestral proconodont, Proconodontus, was one of the earliest euconodonts to appear. Proconodonts are often equated with the broader group Cavidonti, which occupies one side of a basal division in the evolution of early euconodonts in the Cambrian. All other euconodonts occupy Conodonti, the other side of the Cambrian split.

Furnishinidae is an extinct family of paraconodonts.

Furnishina is an extinct genus of conodonts in the family Furnishinidae from the Cambrian.

Klaus Jürgen Müller was a German paleontologist.

Fryxellodontidae is an extinct family of conodonts in the order Proconodontida.

Protoconodonts are an extinct group of Cambrian animals known from fossilized phosphatic tooth-like structures. They were originally described as an informal group of early conodonts, though more recent studies consider them to be more closely related to chaetognaths.

<i>Panderodus</i> A venomous Conodont from the Early Paleozoic

Panderodus Is an extinct genus of jawless fish belonging to the order Conodonta. This genus had a long temporal range, surviving from the middle Ordovician to late Devonian. In 2021, extremely rare body fossils of Panderodus from the Waukesha Biota were described, and it revealed that Panderodus had a more thick body compared to the more slender bodies of more advanced conodonts. It also revealed that this conodont was a macrophagous predator, meaning it went after large prey.

References

  1. Supplement to systematics of conodonts. KJ Müller and RC Moore, in Treatise on invertebrate paleontology, Part W: Miscellanea : Conodonts Conoidal Shells of Uncertain Affinities, Worms, Trace Fossils, and Problema, 1962 - Geological Society of America
  2. Donoghue, P.C.J.; Forey, P.L.; Aldridge, R.J. (2000). "Conodont affinity and chordate phylogeny". Biological Reviews. 75 (2): 191–251. doi:10.1111/j.1469-185X.1999.tb00045.x. PMID   10881388. S2CID   22803015.
  3. 1 2 3 4 5 6 Clark, David L. (1981). "Chapter 3: Systematic Descriptions". In Moore, Raymond C.; Robison, R.A. (eds.). Part W, Miscellanea, Supplement 2: Conodonta. Treatise on Invertebrate Paleontology. Boulder, Colorado; Lawrence, Kansas: Geological Society of America; University of Kansas. pp. 111–180. ISBN   0-8137-3028-7.
  4. 1 2 Müller, K. J.; Hinz-Schallreuter, I. (1998). "Internal structure of Cambrian Conodonts". Journal of Paleontology. 72 (1): 91–112. doi:10.1017/S0022336000024045. ISSN   0022-3360.
  5. 1 2 Bengtson, Stefan (1976). "The structure of some Middle Cambrian conodonts, and the early evolution of conodont structure and function". Lethaia. 9 (2): 185–206. doi:10.1111/j.1502-3931.1976.tb00966.x. ISSN   0024-1164.
  6. Murdock, Duncan J. E.; Dong, Xi-Ping; Repetski, John E.; Marone, Federica; Stampanoni, Marco; Donoghue, Philip C. J. (2013). "The origin of conodonts and of vertebrate mineralized skeletons". Nature. 502 (7472): 546–549. doi:10.1038/nature12645. ISSN   0028-0836.
  7. Bengtson, Stefan (1983). "The early history of the Conodont" (PDF). Fossils and Strata. 15: 5–19.
  8. Szaniawski, Hubert (1982). "Chaetognath Grasping Spines Recognized among Cambrian Protoconodonts". Journal of Paleontology. 56 (3): 806–810. JSTOR   1304409.
  9. Szaniawski, H. (2002). "New evidence for the protoconodont origin of chaetognaths" (PDF). Acta Palaeontologica Polonica . 47 (3): 405–419.
  10. Dong, Xi‐Ping; Bergström, Stig M. (2001). "Middle and Upper Cambrian Protoconodonts and Paraconodonts from Hunan, South China". Palaeontology. 44 (5): 949–985. doi:10.1111/1475-4983.00210. ISSN   0031-0239.