This article needs additional citations for verification .(February 2022) |
In music, notes are distinct and isolatable sounds that act as the most basic building blocks for nearly all of music. This discretization facilitates performance, comprehension, and analysis. [1] Notes may be visually communicated by writing them in musical notation.
Notes can distinguish the general pitch class or the specific pitch played by a pitched instrument. Although this article focuses on pitch, notes for unpitched percussion instruments distinguish between different percussion instruments (and/or different manners to sound them) instead of pitch. Note value expresses the relative duration of the note in time. Dynamics for a note indicate how loud to play them. Articulations may further indicate how performers should shape the attack and decay of the note and express fluctuations in a note's timbre and pitch. Notes may even distinguish the use of different extended techniques by using special symbols.
The term note can refer to a specific musical event, for instance when saying the song "Happy Birthday to You", begins with two notes of identical pitch. Or more generally, the term can refer to a class of identically sounding events, for instance when saying "the song begins with the same note repeated twice".
This section needs expansion. You can help by adding to it. (March 2024) |
A note can have a note value that indicates the note's duration relative to the musical meter. In order of halving duration, these values are:
"American" name | "British" name | |
---|---|---|
double note | breve | |
whole note | semibreve | |
half note | minim | |
quarter note | crotchet | |
eighth note | quaver | |
sixteenth note | semiquaver | |
thirty-second note | demisemiquaver | |
sixty-fourth note | hemidemisemiquaver | |
𝅘𝅥𝅲 | hundred twenty-eighth note | semihemidemisemiquaver, quasihemidemisemiquaver |
Longer note values (e.g. the longa) and shorter note values (e.g. the two hundred fifty-sixth note) do exist, but are very rare in modern times. These durations can further be subdivided using tuplets.
A rhythm is formed from a sequence in time of consecutive notes (without particular focus on pitch) and rests (the time between notes) of various durations.
Music theory in most European countries and others [note 1] use the solfège naming convention. Fixed do uses the syllables re–mi–fa–sol–la–ti specifically for the C major scale, while movable do labels notes of any major scale with that same order of syllables.
Alternatively, particularly in English- and some Dutch-speaking regions, pitch classes are typically represented by the first seven letters of the Latin alphabet (A, B, C, D, E, F and G), corresponding to the A minor scale. Several European countries, including Germany, use H instead of B (see § 12-tone chromatic scale for details). Byzantium used the names Pa–Vu–Ga–Di–Ke–Zo–Ni (Πα–Βου–Γα–Δι–Κε–Ζω–Νη). [2]
In traditional Indian music, musical notes are called svaras and commonly represented using the seven notes, Sa, Re, Ga, Ma, Pa, Dha and Ni.
In a score, each note is assigned a specific vertical position on a staff position (a line or space) on the staff, as determined by the clef. Each line or space is assigned a note name. These names are memorized by musicians and allow them to know at a glance the proper pitch to play on their instruments.
The staff above shows the notes C, D, E, F, G, A, B, C and then in reverse order, with no key signature or accidentals.
Notes that belong to the diatonic scale relevant in a tonal context are called diatonic notes. Notes that do not meet that criterion are called chromatic notes or accidentals . Accidental symbols visually communicate a modification of a note's pitch from its tonal context. Most commonly, [note 2] the sharp symbol (♯) raises a note by a half step, while the flat symbol (♭) lowers a note by a half step. This half step interval is also known as a semitone (which has an equal temperament frequency ratio of 12√2 ≅ 1.0595). The natural symbol (♮) indicates that any previously applied accidentals should be cancelled. Advanced musicians use the double-sharp symbol ( ) to raise the pitch by two semitones, the double-flat symbol ( ) to lower it by two semitones, and even more advanced accidental symbols (e.g. for quarter tones). Accidental symbols are placed to the right of a note's letter when written in text (e.g. F♯ is F-sharp, B♭ is B-flat, and C♮ is C natural), but are placed to the left of a note's head when drawn on a staff.
Systematic alterations to any of the 7 lettered pitch classes are communicated using a key signature. When drawn on a staff, accidental symbols are positioned in a key signature to indicate that those alterations apply to all occurrences of the lettered pitch class corresponding to each symbol's position. Additional explicitly-noted accidentals can be drawn next to noteheads to override the key signature for all subsequent notes with the same lettered pitch class in that bar. However, this effect does not accumulate for subsequent accidental symbols for the same pitch class.
Assuming enharmonicity, accidentals can create pitch equivalences between different notes (e.g. the note B♯ represents the same pitch as the note C). Thus, a 12-note chromatic scale adds 5 pitch classes in addition to the 7 lettered pitch classes.
The following chart lists names used in different countries for the 12 pitch classes of a chromatic scale built on C. Their corresponding symbols are in parentheses. Differences between German and English notation are highlighted in bold typeface. Although the English and Dutch names are different, the corresponding symbols are identical.
English | C | C sharp (C♯) | D | D sharp (D♯) | E | F | F sharp (F♯) | G | G sharp (G♯) | A | A sharp (A♯) | B |
---|---|---|---|---|---|---|---|---|---|---|---|---|
D flat (D♭) | E flat (E♭) | G flat (G♭) | A flat (A♭) | B flat (B♭) | ||||||||
German [3] [note 3] | C | Cis (C♯) | D | Dis (D♯) | E | F | Fis (F♯) | G | Gis (G♯) | A | Ais (A♯) | H |
Des (D♭) | Es (E♭) | Ges (G♭) | As (A♭) | B | ||||||||
Swedish compromise [4] | C | Ciss (C♯) | D | Diss (D♯) | E | F | Fiss (F♯) | G | Giss (G♯) | A | Aiss (A♯) | H |
Dess (D♭) | Ess (E♭) | Gess (G♭) | Ass (A♭) | Bess (B♭) | ||||||||
Dutch [3] [note 4] | C | Cis (C♯) | D | Dis (D♯) | E | F | Fis (F♯) | G | Gis (G♯) | A | Ais (A♯) | B |
Des (D♭) | Es (E♭) | Ges (G♭) | As (A♭) | Bes (B♭) | ||||||||
Romance languages [5] [note 5] | do | do diesis (do♯) | re | re diesis (re♯) | mi | fa | fa diesis (fa♯) | sol | sol diesis (sol♯) | la | la diesis (la♯) | si |
re bemolle (re♭) | mi bemolle (mi♭) | sol bemolle (sol♭) | la bemolle (la♭) | si bemolle (si♭) | ||||||||
Byzantine [6] | Ni | Ni diesis | Pa | Pa diesis | Vu | Ga | Ga diesis | Di | Di diesis | Ke | Ke diesis | Zo |
Pa hyphesis | Vu hyphesis | Di hyphesis | Ke hyphesis | Zo hyphesis | ||||||||
Japanese [7] | Ha (ハ) | Ei-ha (嬰ハ) | Ni (ニ) | Ei-ni (嬰ニ) | Ho (ホ) | He (ヘ) | Ei-he (嬰へ) | To (ト) | Ei-to (嬰ト) | I (イ) | Ei-i (嬰イ) | Ro (ロ) |
Hen-ni (変ニ) | Hen-ho (変ホ) | Hen-to (変ト) | Hen-i (変イ) | Hen-ro (変ロ) | ||||||||
Hindustani Indian [8] | Sa (सा) | Re Komal (रे॒) | Re (रे) | Ga Komal (ग॒) | Ga (ग) | Ma (म) | Ma Tivra (म॑) | Pa (प) | Dha Komal (ध॒) | Dha (ध) | Ni Komal (नि॒) | Ni (नि) |
Carnatic Indian | Sa | Shuddha Ri (R1) | Chatushruti Ri (R2) | Sadharana Ga (G2) | Antara Ga (G3) | Shuddha Ma (M1) | Prati Ma (M2) | Pa | Shuddha Dha (D1) | Chatushruti Dha (D2) | Kaisika Ni (N2) | Kakali Ni (N3) |
Shuddha Ga (G1) | Shatshruti Ri (R3) | Shuddha Ni (N1) | Shatshruti Dha (D3) | |||||||||
Bengali Indian [9] | Sa (সা) | Komôl Re (ঋ) | Re (রে) | Komôl Ga (জ্ঞ) | Ga (গ) | Ma (ম) | Kôṛi Ma (হ্ম) | Pa (প) | Komôl Dha (দ) | Dha (ধ) | Komôl Ni (ণ) | Ni (নি) |
Two pitches that are any number of octaves apart (i.e. their fundamental frequencies are in a ratio equal to a power of two) are perceived as very similar. Because of that, all notes with these kinds of relations can be grouped under the same pitch class and are often given the same name.
The top note of a musical scale is the bottom note's second harmonic and has double the bottom note's frequency. Because both notes belong to the same pitch class, they are often called by the same name. That top note may also be referred to as the "octave" of the bottom note, since an octave is the interval between a note and another with double frequency.
Two nomenclature systems for differentiating pitches that have the same pitch class but which fall into different octaves are:
For instance, the standard 440 Hz tuning pitch is named A4 in scientific notation and instead named a′ in Helmholtz notation.
Meanwhile, the electronic musical instrument standard called MIDI doesn't specifically designate pitch classes, but instead names pitches by counting from its lowest note: number 0 (C−1 ≈ 8.1758 Hz); up chromatically to its highest: number 127 (G9 ≈ 12,544 Hz). (Although the MIDI standard is clear, the octaves actually played by any one MIDI device don't necessarily match the octaves shown below, especially in older instruments.)
Helmholtz notation | 'Scientific' note names | MIDI note numbers | Frequency of that octave's A (in Hertz) | |
---|---|---|---|---|
octave name | note names | |||
sub-subcontra | C„‚ – B„‚ | C−1 – B−1 | 0 – 11 | 13.75 |
sub-contra | C„ – B„ | C0 – B0 | 12 – 23 | 27.5 |
contra | C‚ – B‚ | C1 – B1 | 24 – 35 | 55 |
great | C – B | C2 – B2 | 36 – 47 | 110 |
small | c – b | C3 – B3 | 48 – 59 | 220 |
one-lined | c′ – b′ | C4 – B4 | 60 – 71 | 440 |
two-lined | c″ – b″ | C5 – B5 | 72 – 83 | 880 |
three-lined | c‴ – b‴ | C6 – B6 | 84 – 95 | 1 760 |
four-lined | c⁗ – b⁗ | C7 – B7 | 96 – 107 | 3 520 |
five-lined | c″‴ – b″‴ | C8 – B8 | 108 – 119 | 7 040 |
six-lined | c″⁗ – b″⁗ | C9 – B9 | 120 – 127 (ends at G9) | 14 080 |
Pitch is associated with the frequency of physical oscillations measured in hertz (Hz) representing the number of these oscillations per second. While notes can have any arbitrary frequency, notes in more consonant music tends to have pitches with simpler mathematical ratios to each other.
Western music defines pitches around a central reference "concert pitch" of A4, currently standardized as 440 Hz. Notes played in tune with the 12 equal temperament system will be an integer number of half-steps above (positive ) or below (negative ) that reference note, and thus have a frequency of:
Octaves automatically yield powers of two times the original frequency, since can be expressed as when is a multiple of 12 (with being the number of octaves up or down). Thus the above formula reduces to yield a power of 2 multiplied by 440 Hz:
The base-2 logarithm of the above frequency–pitch relation conveniently results in a linear relationship with or :
When dealing specifically with intervals (rather than absolute frequency), the constant can be conveniently ignored, because the difference between any two frequencies and in this logarithmic scale simplifies to:
Cents are a convenient unit for humans to express finer divisions of this logarithmic scale that are 1⁄100th of an equally-tempered semitone. Since one semitone equals 100 cents, one octave equals 12 ⋅ 100 cents = 1200 cents. Cents correspond to a difference in this logarithmic scale, however in the regular linear scale of frequency, adding 1 cent corresponds to multiplying a frequency by 1200√2 (≅ 1.000578).
For use with the MIDI (Musical Instrument Digital Interface) standard, a frequency mapping is defined by:
where is the MIDI note number. 69 is the number of semitones between C−1 (MIDI note 0) and A4.
Conversely, the formula to determine frequency from a MIDI note is:
This section may contain an excessive amount of intricate detail that may interest only a particular audience.(November 2023) |
Music notation systems have used letters of the alphabet for centuries. The 6th century philosopher Boethius is known to have used the first fourteen letters of the classical Latin alphabet (the letter J did not exist until the 16th century),
to signify the notes of the two-octave range that was in use at the time [10] and in modern scientific pitch notation are represented as
Though it is not known whether this was his devising or common usage at the time, this is nonetheless called Boethian notation. Although Boethius is the first author known to use this nomenclature in the literature, Ptolemy wrote of the two-octave range five centuries before, calling it the perfect system or complete system – as opposed to other, smaller-range note systems that did not contain all possible species of octave (i.e., the seven octaves starting from A, B, C, D, E, F, and G). A modified form of Boethius' notation later appeared in the Dialogus de musica (ca. 1000) by Pseudo-Odo, in a discussion of the division of the monochord. [11]
Following this, the range (or compass) of used notes was extended to three octaves, and the system of repeating letters A–G in each octave was introduced, these being written as lower-case for the second octave (a–g) and double lower-case letters for the third (aa–gg). When the range was extended down by one note, to a G, that note was denoted using the Greek letter gamma (Γ), the lowest note in Medieval music notation.[ citation needed ] (It is from this gamma that the French word for scale, gamme derives,[ citation needed ] and the English word gamut, from "gamma-ut".[ citation needed ])
The remaining five notes of the chromatic scale (the black keys on a piano keyboard) were added gradually; the first being B♭, since B was flattened in certain modes to avoid the dissonant tritone interval. This change was not always shown in notation, but when written, B♭ (B flat) was written as a Latin, cursive "𝑏 ", and B♮ (B natural) a Gothic script (known as Blackletter) or "hard-edged" 𝕭. These evolved into the modern flat (♭) and natural (♮) symbols respectively. The sharp symbol arose from a ƀ (barred b), called the "cancelled b".[ citation needed ]
In parts of Europe, including Germany, the Czech Republic, Slovakia, Poland, Hungary, Norway, Denmark, Serbia, Croatia, Slovenia, Finland, and Iceland (and Sweden before the 1990s), the Gothic 𝕭 transformed into the letter H (possibly for hart , German for "harsh", as opposed to blatt , German for "planar", or just because the Gothic 𝕭 resembles an H). Therefore, in current German music notation, H is used instead of B♮ (B natural), and B instead of B♭ (B flat). Occasionally, music written in German for international use will use H for B natural and Bb for B flat (with a modern-script lower-case b, instead of a flat sign, ♭).[ citation needed ] Since a Bes or B♭ in Northern Europe (notated B in modern convention) is both rare and unorthodox (more likely to be expressed as Heses), it is generally clear what this notation means.
In Italian, Portuguese, Spanish, French, Romanian, Greek, Albanian, Russian, Mongolian, Flemish, Persian, Arabic, Hebrew, Ukrainian, Bulgarian, Turkish and Vietnamese the note names are do–re–mi–fa–sol–la–si rather than C–D–E–F–G–A–B. These names follow the original names reputedly given by Guido d'Arezzo, who had taken them from the first syllables of the first six musical phrases of a Gregorian chant melody Ut queant laxis , whose successive lines began on the appropriate scale degrees. These became the basis of the solfège system. For ease of singing, the name ut was largely replaced by do (most likely from the beginning of Dominus, "Lord"), though ut is still used in some places. It was the Italian musicologist and humanist Giovanni Battista Doni (1595–1647) who successfully promoted renaming the name of the note from ut to do. For the seventh degree, the name si (from Sancte Iohannes, St. John, to whom the hymn is dedicated), though in some regions the seventh is named ti (again, easier to pronounce while singing).[ citation needed ]
In Western musical notation, a key signature is a set of sharp, flat, or rarely, natural symbols placed on the staff at the beginning of a section of music. The initial key signature in a piece is placed immediately after the clef at the beginning of the first line. If the piece contains a section in a different key, the new key signature is placed at the beginning of that section.
The major scale is one of the most commonly used musical scales, especially in Western music. It is one of the diatonic scales. Like many musical scales, it is made up of seven notes: the eighth duplicates the first at double its frequency so that it is called a higher octave of the same note.
In music, an octave or perfect octave is a series of eight notes occupying the interval between two notes, one having twice the frequency of vibration of the other. The octave relationship is a natural phenomenon that has been referred to as the "basic miracle of music", the use of which is "common in most musical systems". The interval between the first and second harmonics of the harmonic series is an octave. In Western music notation, notes separated by an octave have the same name and are of the same pitch class.
In musical notation, an accidental is a symbol that indicates an alteration of a given pitch. The most common accidentals are the flat and the sharp, which represent alterations of a semitone, and the natural, which cancels a sharp or flat. Accidentals alter the pitch of individual scale tones in a given key signature; the sharps or flats in the key signature itself are not considered accidentals.
C or Do is the first note of the C major scale, the third note of the A minor scale, and the fourth note of the Guidonian hand, commonly pitched around 261.63 Hz. The actual frequency has depended on historical pitch standards, and for transposing instruments a distinction is made between written and sounding or concert pitch. It has enharmonic equivalents of B♯ and D.
Pitch is a perceptual property that allows sounds to be ordered on a frequency-related scale, or more commonly, pitch is the quality that makes it possible to judge sounds as "higher" and "lower" in the sense associated with musical melodies. Pitch is a major auditory attribute of musical tones, along with duration, loudness, and timbre.
In music, two written notes have enharmonic equivalence if they produce the same pitch but are notated differently. Similarly, written intervals, chords, or key signatures are considered enharmonic if they represent identical pitches that are notated differently. The term derives from Latin enharmonicus, in turn from Late Latin enarmonius, from Ancient Greek ἐναρμόνιος, from ἐν ('in') and ἁρμονία ('harmony').
In music, sharp – eqv. dièse or diesis – means higher in pitch. The sharp symbol, ♯, indicates that the note to which the symbol is applied is played one semitone higher. The opposite of sharp is flat, indicating a lowering of pitch. The ♯ symbol derives from a square form of the letter b.
In music, a pitch class (p.c. or pc) is a set of all pitches that are a whole number of octaves apart; for example, the pitch class C consists of the Cs in all octaves. "The pitch class C stands for all possible Cs, in whatever octave position." Important to musical set theory, a pitch class is "all pitches related to each other by octave, enharmonic equivalence, or both." Thus, using scientific pitch notation, the pitch class "C" is the set
In music, letter notation is a system of representing a set of pitches, for example, the notes of a scale, by letters. For the complete Western diatonic scale, for example, these would be the letters A-G, possibly with a trailing symbol to indicate a half-step raise or a half-step lowering. This is the most common way of specifying a note in speech or in written text in English or German. In Germany, Scandinavia, and parts of Central and Eastern Europe, H is used instead of B, and B is used instead of B♭. In traditional Irish music, where almost all tunes are restricted to two octaves, notes in the lower octave are written in lower case while those in the upper octave are written in upper case.
B, also known as Si, Ti, or, in some European countries, H, is the seventh note and the twelfth semitone of the fixed-Do solfège. Its enharmonic equivalents are C♭ (C-flat) and A.
Scientific pitch notation (SPN), also known as American standard pitch notation (ASPN) and international pitch notation (IPN), is a method of specifying musical pitch by combining a musical note name and a number identifying the pitch's octave.
This is a list of the fundamental frequencies in hertz (cycles per second) of the keys of a modern 88-key standard or 108-key extended piano in twelve-tone equal temperament, with the 49th key, the fifth A (called A4), tuned to 440 Hz (referred to as A440). Every octave is made of twelve steps called semitones. A jump from the lowest semitone to the highest semitone in one octave doubles the frequency (for example, the fifth A is 440 Hz and the sixth A is 880 Hz). The frequency of a pitch is derived by multiplying (ascending) or dividing (descending) the frequency of the previous pitch by the twelfth root of two (approximately 1.059463). For example, to get the frequency one semitone up from A4 (A♯4), multiply 440 Hz by the twelfth root of two. To go from A4 up two semitones (one whole tone) to B4, multiply 440 twice by the twelfth root of two (or once by the sixth root of two, approximately 1.122462). To go from A4 up three semitones to C5 (a minor third), multiply 440 Hz three times by the twelfth root of two (or once by the fourth root of two, approximately 1.189207). For other tuning schemes, refer to musical tuning.
In music theory, a comma is a very small interval, the difference resulting from tuning one note two different ways. Traditionally, there are two most common comma; the syntonic comma, "the difference between a just major 3rd and four just perfect 5ths less two octaves", and the Pythagorean comma, "the difference between twelve 5ths and seven octaves". The word comma used without qualification refers to the syntonic comma, which can be defined, for instance, as the difference between an F♯ tuned using the D-based Pythagorean tuning system, and another F♯ tuned using the D-based quarter-comma meantone tuning system. Intervals separated by the ratio 81:80 are considered the same note because the 12-note Western chromatic scale does not distinguish Pythagorean intervals from 5-limit intervals in its notation. Other intervals are considered commas because of the enharmonic equivalences of a tuning system. For example, in 53TET, B♭ and A♯ are both approximated by the same interval although they are a septimal kleisma apart.
A is a musical note equivalent to 440 Hz in typical A440 tuning. It is the sixth note of La and the tenth semitone of the fixed-do solfège.
Quarter-comma meantone, or 1 / 4 -comma meantone, was the most common meantone temperament in the sixteenth and seventeenth centuries, and was sometimes used later. In this system the perfect fifth is flattened by one quarter of a syntonic comma ( 81 : 80 ), with respect to its just intonation used in Pythagorean tuning ; the result is 3 / 2 × [ 80 / 81 ] 1 / 4 = 4√5 ≈ 1.49535, or a fifth of 696.578 cents. This fifth is then iterated to generate the diatonic scale and other notes of the temperament. The purpose is to obtain justly intoned major thirds. It was described by Pietro Aron in his Toscanello de la Musica of 1523, by saying the major thirds should be tuned to be "sonorous and just, as united as possible." Later theorists Gioseffo Zarlino and Francisco de Salinas described the tuning with mathematical exactitude.
In music, 53 equal temperament, called 53 TET, 53 EDO, or 53 ET, is the tempered scale derived by dividing the octave into 53 equal steps. Each step represents a frequency ratio of 21 ∕ 53 , or 22.6415 cents, an interval sometimes called the Holdrian comma.
MIDI Tuning Standard (MTS) is a specification of precise musical pitch agreed to by the MIDI Manufacturers Association in the MIDI protocol. MTS allows for both a bulk tuning dump message, giving a tuning for each of 128 notes, and a tuning message for individual notes as they are played.
B♭ (B-flat), or, in some European countries, B, is the eleventh step of the Western chromatic scale. It lies a diatonic semitone above A and a chromatic semitone below B, thus being enharmonic to A♯, even though in some musical tunings, B♭ will have a different sounding pitch than A♯. B-flat is also enharmonic to C.
A♭ is the ninth semitone of the solfège.