This article needs additional citations for verification .(November 2019) |
Manufacturer | Apple Computer |
---|---|
Release date | 1993 |
Discontinued | 1998 |
Operating system | Newton OS |
CPU | ARM 610 RISC |
Memory | 4-8 MB (ROM) 640 KB-4 MB (RAM) 0-4 MB (Flash) (varies with model) |
Mass | 1.4 lb (640 g) with battery |
Successor | iPad (1st generation) |
The MessagePad is a series of personal digital assistant devices developed by Apple Computer for the Newton platform, first released in 1993. Some electronic engineering and the manufacture of Apple's MessagePad devices was undertaken in Japan by Sharp. The devices are based on the ARM 610 RISC processor, run Newton OS, and all feature handwriting recognition software. Alongside the MessagePad series, Apple also developed and released the eMate 300 Newton device.
The development of the Newton MessagePad first began with Apple's former senior vice president of research and development, Jean-Louis Gassée; his team included Steve Capps, co-writer of Mac OS Finder, and an employed engineer named Steve Sakoman. The development of the Newton MessagePad operated in secret until it was eventually revealed to the Apple Board of Directors in late 1990. [1]
When Gassée resigned from his position due to a significant disagreement with the board, seeing how his employer was treated, Sakoman also stopped developing the MessagePad on March 2, 1990. [2]
Bill Atkinson, an Apple Executive responsible for the company's Lisa graphical interface, invited Steve Capps, John Sculley, Andy Hertzfeld, Susan Kare, and Marc Porat to a meeting on March 11, 1990. There, they brainstormed a way of saving the MessagePad. Sculley suggested adding new features, including libraries, museums, databases, or institutional archives features, allowing customers to navigate through various window tabs or opened galleries/stacks. The Board later approved his suggestion; he then gave the Newton his official and full backing. [2]
The first MessagePad was unveiled by Sculley on the 29th of May 1992 at the summer Consumer Electronics Show (CES) in Chicago. [3] Sculley caved in to pressure to unveil the product early because the Newton did not officially ship until 14 months later on the 2nd of August 1993, starting at a price of $699. [1] [4] Over 50,000 units were sold by late November 1993. [1]
With the MessagePad 120 with Newton OS 2.0, the Newton Keyboard by Apple became available, which can also be used via the dongle on Newton devices with a Newton InterConnect port, most notably the Apple MessagePad 2000/2100 series, as well as the Apple eMate 300.
Newton devices featuring Newton OS 2.1 or higher can be used with the screen turned horizontally ("landscape") as well as vertically ("portrait"). A change of a setting rotates the contents of the display by 90, 180 or 270 degrees. Handwriting recognition still works properly with the display rotated, although display calibration is needed when rotation in any direction is used for the first time or when the Newton device is reset.
In initial versions (Newton OS 1.x) the handwriting recognition gave extremely mixed results for users and was sometimes inaccurate. The original handwriting recognition engine was called Calligrapher, and was licensed from a Russian company called Paragraph International. Calligrapher's design was quite sophisticated; it attempted to learn the user's natural handwriting, using a database of known words to make guesses as to what the user was writing, and could interpret writing anywhere on the screen, whether hand-printed, in cursive, or a mix of the two. By contrast, Palm Pilot's Graffiti had a less sophisticated design than Calligrapher, but was sometimes found to be more accurate and precise due to its reliance on a fixed, predefined stroke alphabet. The stroke alphabet used letter shapes which resembled standard handwriting, but which were modified to be both simple and very easy to differentiate. [5] Palm Computing also released two versions of Graffiti for Newton devices. The Newton version sometimes performed better and could also show strokes as they were being written as input was done on the display itself, rather than on a silkscreen area.
For editing text, Newton had a very intuitive system for handwritten editing, such as scratching out words to be deleted, circling text to be selected, or using written carets to mark inserts. [6]
Later releases of the Newton operating system retained the original recognizer for compatibility, but added a hand-printed-text-only (not cursive) recognizer, called "Rosetta", which was developed by Apple, included in version 2.0 of the Newton operating system, and refined in Newton 2.1. Rosetta is generally considered a significant improvement and many reviewers, testers, and most users consider the Newton 2.1 handwriting recognition software better than any of the alternatives even 10 years after it was introduced. [7] Recognition and computation of handwritten horizontal and vertical formulas such as "1 + 2 =" was also under development but never released. [8] However, users wrote similar programs which could evaluate mathematical formulas using the Newton OS Intelligent Assistant, a unique part of every Newton device.
The handwriting recognition and parts of the user interface for the Newton are best understood in the context of the broad history of pen computing, which is quite extensive. [9]
A vital feature of the Newton handwriting recognition system is the modeless error correction. That is, correction done in situ without using a separate window or widget, using a minimum of gestures. If a word is recognized improperly, the user could double-tap the word and a list of alternatives would pop up in a menu under the stylus. Most of the time, the correct word will be in the list. If not, a button at the bottom of the list allows the user to edit individual characters in that word. Other pen gestures could do such things as transpose letters (also in situ ). The correction popup also allowed the user to revert to the original, un-recognized letter shapes - this would be useful in note-taking scenarios if there was insufficient time to make corrections immediately. To conserve memory and storage space, alternative recognition hypotheses would not be saved indefinitely. If the user returned to a note a week later, for example, they would only see the best match. Error correction in many current handwriting systems provides such functionality but adds more steps to the process, greatly increasing the interruption to a user's workflow that a given correction requires.[ citation needed ]
Text could also be entered by tapping with the stylus on a small on-screen pop-up QWERTY virtual keyboard, although more layouts were developed by users. Newton devices could also accept free-hand "Sketches", "Shapes", and "Ink Text", much like a desktop computer graphics tablet. With "Shapes", Newton could recognize that the user was attempting to draw a circle, a line, a polygon, etc., and it would clean them up into perfect vector representations (with modifiable control points and defined vertices) of what the user was attempting to draw. "Shapes" and "Sketches" could be scaled or deformed once drawn. "Ink text" captured the user's free-hand writing but allowed it to be treated somewhat like recognized text when manipulating for later editing purposes ("ink text" supported word wrap, could be formatted to be bold, italic, etc.). [10] At any time a user could also direct their Newton device to recognize selected "ink text" and turn it into recognized text (deferred recognition). A Newton note (or the notes attached to each contact in Names and each Dates calendar or to-do event) could contain any mix of interleaved text, Ink Text, Shapes, and Sketches.
While the Newton offered handwriting recognition training and would clean up sketches into vector shapes, both were unreliable and required much rewriting and redrawing. The most reliable application of the Newton was collecting and organizing address and phone numbers. While handwritten messages could be stored, they could not be easily filed, sorted or searched. While the technology was a probable cause for the failure of the device (which otherwise met or exceeded expectations), the technology has been instrumental in producing the future generation of handwriting software that realizes the potential and promise that began in the development of Newton-Apple's Ink Handwriting Recognition. [11]
The MessagePad 100 series of devices used Macintosh's proprietary serial ports —round Mini-DIN 8 connectors. The MessagePad 2000/2100 models (as well as the eMate 300) have a small, proprietary Newton InterConnect port. However, the development of the Newton hardware/software platform was canceled by Steve Jobs on February 27, 1998, so the InterConnect port, while itself very advanced, can only be used to connect a serial dongle. A prototype multi-purpose InterConnect device containing serial, audio in, audio out, and other ports was also discovered. In addition, all Newton devices have infrared connectivity, initially only the Sharp ASK protocol, but later also IrDA, though the Sharp ASK protocol was kept in for compatibility reasons. Unlike the Palm Pilot, all Newton devices are equipped with a standard PC Card expansion slot (two on the 2000/2100). This allows native modem and even Ethernet connectivity; Newton users have also written drivers for 802.11b wireless networking cards and ATA-type flash memory cards (including the popular CompactFlash format), as well as for Bluetooth cards. Newton can also dial a phone number through the built-in speaker of the Newton device by simply holding a telephone handset up to the speaker and transmitting the appropriate tones. Fax and printing support is also built in at the operating system level, although it requires peripherals such as parallel adapters, PCMCIA cards, or serial modems, the most notable of which is the lightweight Newton Fax Modem released by Apple in 1993. It is powered by 2 AA batteries, and can also be used with a power adapter. It provides data transfer at 2,400 bit/s, and can also send and receive fax messages at 9,600 and 4,800 bit/s respectively.
The original Apple MessagePad and MessagePad 100 used four AAA batteries. They were eventually replaced by AA batteries with the release of the Apple MessagePad 110.
The use of 4 AA NiCd (MessagePad 110, 120 and 130) and 4x AA NiMH cells (MP2x00 series, eMate 300) give a runtime of up to 30 hours (MP2100 with two 20 MB Linear Flash memory PC Cards, no backlight usage) and up to 24 hours with backlight on. While adding more weight to the handheld Newton devices than AAA batteries or custom battery packs, the choice of an easily replaceable/rechargeable cell format gives the user a still unsurpassed runtime and flexibility of power supply. This, together with the flash memory used as internal storage starting with the Apple MessagePad 120 (if all cells lost their power, no data was lost due to the non-volatility of this storage), gave birth to the slogan "Newton never dies, it only gets new batteries".
The Apple MessagePad 2000/2100, with a vastly improved handwriting recognition system, 162 MHz StrongARM SA-110 RISC processor, Newton OS 2.1, and a better, clearer, backlit screen, attracted critical plaudits. [12] [ failed verification ]
The eMate 300 was a Newton device in a laptop form factor offered to schools in 1997 as an inexpensive ($799 US, originally sold to education markets only) and durable computer for classroom use. However, in order to achieve its low price, the eMate 300 did not have all the speed and features of the contemporary MessagePad equivalent, the MessagePad 2000. The eMate was cancelled along with the rest of the Newton products in 1998. It is the only Newton device to use the ARM710 microprocessor (running at 25 MHz), have an integrated keyboard, use Newton OS 2.2 (officially numbered 2.1), and its batteries are officially irreplaceable, although several users replaced them with longer-lasting ones without any damage to the eMate hardware whatsoever.
Many prototypes of additional Newton devices were spotted. Most notable was a Newton tablet or "slate", a large, flat screen that could be written on. Others included a "Kids Newton" with side handgrips and buttons, "VideoPads" which would have incorporated a video camera and screen on their flip-top covers for two-way communications, the "Mini 2000" which would have been very similar to a Palm Pilot, and the NewtonPhone developed by Siemens, which incorporated a handset and a keyboard.
Fourteen months after Sculley demoed it at the May 1992, Chicago CES, the MessagePad was first offered for sale on August 2, 1993, at the Boston Macworld Expo. [13] The hottest item at the show, it cost $900. [14] 50,000 MessagePads were sold in the device's first three months on the market. [13]
The original Apple MessagePad and MessagePad 100 were limited by the very short lifetime of their inadequate AAA batteries.
Another factor which limited the early Newton devices' appeal was that desktop connectivity was not included in the basic retail package, a problem that was later solved with 2.x Newton devices - these were bundled with a serial cable and the appropriate Newton Connection Utilities software.[ citation needed ]
Later versions of Newton OS offered improved handwriting recognition, quite possibly a leading reason for the continued popularity of the devices among Newton users. Even given the age of the hardware and software, Newtons still demand a sale price on the used market far greater than that of comparatively aged PDAs produced by other companies. In 2006, CNET compared an Apple MessagePad 2000 to a Samsung Q1, and the Newton was declared better. [15] In 2009, CNET compared an Apple MessagePad 2000 to an iPhone 3GS, and the Newton was declared more innovative at its time of release. [16]
A chain of dedicated Newton-only stores called Newton Source, independently run by Stephen Elms, existed from 1994 until 1998[ citation needed ]. Locations included New York, Los Angeles, San Francisco, Chicago and Boston. The Westwood Village, California, near UCLA featured the trademark red and yellow light bulb Newton logo in neon. The stores provided an informative educational venue to learn about the Newton platform in a hands on relaxed fashion. The stores had no traditional computer retail counters and featured oval desktops where interested users could become intimately involved with the Newton product range. The stores were a model for the later Apple Stores. [17] [18] [19]
Brand | Apple Computer | Sharp | Siemens | Apple | Sharp | Apple Computer | Digital Ocean | Motorola | Harris | Digital Ocean | Apple | Harris | Siemens | Schlumberger | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Device | OMP (Original Newton MessagePad) [20] | Newton "Dummy" | ExpertPad PI-7000 [21] | Notephone. [22] [ better source needed ] | MessagePad 100 [20] | MessagePad 110 | Sharp ExpertPad PI-7100 [21] | MessagePad 120 | Tarpon | Marco [23] [24] | SuperTech 2000 [25] | Seahorse [26] | MessagePad 130 | eMate 300 | MessagePad 2000 | MessagePad 2100 | Access Device 2000 | Access Device, GPS | Access Device, Wireline | Online Terminal , also known as Online Access Device(OAD) | Watson |
Introduced | August 3, 1993 (US) December 1993 (Germany) | ? | August 3, 1993 (US and Japan) | 1993? | March 1994 | April 1994 | October 1994 (Germany), January 1995 (US) | January 1995 (US) | August 1995 (US) | January 1996 (US) | March 1996 | March 1997 | November 1997 | 1998 | Announced 1997 | ? | |||||
Discontinued | March 1994 | ? | April 1995 | late 1994 | June 1996 | ? | ? | ? | ? | April 1997 | February 1998 | ||||||||||
Code name | Junior | ? | ? | Junior | Lindy | ? | Gelato | ? | ? | ? | ? | Dante | ? | Q | ? | ||||||
Model No. | H1000 | ? | ? | H1000 | H0059 | ? | H0131 | ? | ? | ? | ? | H0196 | H0208 | H0136 | H0149 | ||||||
Processor | ARM 610 (20 MHz) | ARM 710a (25 MHz) | StrongARM SA-110 (162 MHz) | ||||||||||||||||||
ROM | 4 MB | 4 MB (OS 1.3) or 8 MB (OS 2.0) | 5 MB | 4 MB | 8 MB | ||||||||||||||||
System Memory (RAM) | 490 KB* SRAM | 544 KB SRAM | 490 KB* SRAM | 639/687 KB DRAM | 544 KB SRAM | 639 KB DRAM | 1199 KB DRAM | 1 MB DRAM (Upgradable) | 1 MB DRAM | 4 MB DRAM | 1 MB DRAM | ? | 1 MB DRAM | ||||||||
User Storage | 150 KB* SRAM | 480 KB SRAM | 150 KB* SRAM | 385/1361 KB Flash RAM | 480 KB SRAM | 385 KB Flash RAM | 1361 KB Flash RAM | 2 MB Flash RAM(Upgradable) | 4 MB Flash RAM | ? | 4 MB Flash RAM | ||||||||||
Total RAM | 640 KB | 1 MB | 640 KB | 1.0/2.0 MB | 1 MB | 2.5 MB | 3 MB (Upgradable via Internal Expansion) | 5 MB | 8 MB | 5 MB | ? | 5 MB | |||||||||
Display | 336 × 240 (B&W) | 320 × 240 (B&W) | 336 × 240 (B&W) | 320 × 240 (B&W) | 320 × 240 (B&W) w/ backlight | 320 × 240 (B&W) | 320 × 240 (B&W) w/ backlight | 480 × 320 grayscale (16 shades) w/ backlight | 480 × 320 greyscale (16 shades) w/ backlight | ||||||||||||
Newton OS version | 1.0 to 1.05, or 1.10 to 1.11 | 1.11 | 1.2 or 1.3 | 1.3 | 1.3 or 2.0 | 1.3 | 2.0 | 2.1 (2.2) | 2.1 | 2.1 | |||||||||||
Newton OS languages | English or German | English or Japanese | German | English, German or French | English or French | English or Japanese | English, German or French | English | English or German | English | English or German | English | German | French | |||||||
Connectivity | RS-422, LocalTalk & SHARP ASK Infrared | Modem and Telephone dock Attachment | RS-422, LocalTalk & SHARP ASK Infrared | RS-422, LocalTalk & SHARP ASK Infrared | RS-422, LocalTalk, Infrared, ARDIS Network | RS-232, LocalTalk WLAN, V.22bis modem, Analog/Digital Cellular, CDPD, RAM, ARDIS, Trunk Radio | RS-232, LocalTalk, CDPD, WLAN, Optional dGPS, GSM, or IR via modular attachments | RS-422, LocalTalk & SHARP ASK Infrared | IrDA, headphone port, Interconnect port, LocalTalk, Audio I/O, Autodock | Dual-mode IR;IrDA & SHARP ASK, LocalTalk, Audio I/O, Autodock, Phone I/O | Dual-mode IR; IrDA & SHARP ASK, LocalTalk, Audio I/O, Autodock | Dual-mode IR;IrDA & SHARP ASK, LocalTalk, Audio I/O, Autodock, Phone I/O | ? | Dual-mode IR;IrDA & SHARP ASK, LocalTalk, Audio I/O, Autodock, Phone I/O | |||||||
PCMCIA | 1 PCMCIA-slot II, 5v or 12v | 1 PCMCIA-slot I/II/III, 5v | 2 PCMCIA-slot II, 5v or 12v | 1 PCMCIA-slot II, 5v or 12v | 1 PCMCIA-slot II, 5v or 12v, 2nd slot Propriety Rado Card | 1 PCMCIA-slot II, 5v or 12v, 1 Smart Card Reader | |||||||||||||||
Power | 4 AAA or NiCd rechargeable or external power supply | 4 AA or NiCd rechargeable or external power supply | 4 AAA or NiCd rechargeable or external power supply | 4 AA or NiCd rechargeable or external power supply | NiCd battery pack or external power supply | 4 AA or NiCd rechargeable or external power supply | NiCd battery pack or external power supply | 4 AA or NiCd rechargeable or external power supply | NiMH battery pack (built-in) or external power supply | 4 AA or NiMH rechargeable or external power supply | Custom NiMH rechargeable or external power supply | ? Unknown, but likely external power supply | 4 AA or NiMH rechargeable or external power supply | ||||||||
Dimensions (HxWxD) | 184.75 mm × 114.3 mm × 19.05 mm (7.274 in × 4.500 in × 0.750 in) | 182 mm × 112 mm × 28 mm (7.2 in × 4.4 in × 1.1 in) (lid open) | 184.75 mm × 114.3 mm × 19.05 mm (7.274 in × 4.500 in × 0.750 in) | 203.2 mm × 101.6 mm × 30 mm (8.00 in × 4.00 in × 1.18 in) | 182 mm × 112 mm × 28 mm (7.2 in × 4.4 in × 1.1 in) (lid open) | 203.2 mm × 101.6 mm × 30 mm (8.00 in × 4.00 in × 1.18 in) | 254 mm × 114.3 mm × 63.5 mm (10.00 in × 4.50 in × 2.50 in) | 190.5 mm × 147.32 mm × 35.56 mm (7.500 in × 5.800 in × 1.400 in) | ? | 241.3 mm × 114.3 mm × 63.5 mm (9.50 in × 4.50 in × 2.50 in) | 203.2 mm × 101.6 mm × 30 mm (8.00 in × 4.00 in × 1.18 in) | 305 mm × 290 mm × 53.3 mm (12.01 in × 11.42 in × 2.10 in) | 211 mm × 119.4 mm × 27.9 mm (8.31 in × 4.70 in × 1.10 in) | ? | ? | ? | 9 x 14.5 x 5.1 inches (23 x 37 x 13 cm) | ? | |||
Weight | 0.4 kg (0.88 lb) | 0.44 kg (0.97 lb) with batteries installed | 0.4 kg (0.88 lb) | 0.475 or 0.58 kg (1.05 or 1.28 lb) with batteries installed | 0.44 kg (0.97 lb) with batteries installed | 0.475 or 0.58 kg (1.05 or 1.28 lb)with batteries installed | 1.45 kg (3 lb 3 oz) | 0.82 kg (1 lb 13 oz) | ? | 1.36 kg (3.0 lb) | 0.475 or 0.58 kg (1.05 or 1.28 lb) with batteries installed | 1.81 kg (4.0 lb) | 0.64 kg (1.4 lb) | ? | ? | ? | ? | ? |
* Varies with installed OS
Notes: The eMate 300 actually has ROM chips silk screened with 2.2 on them. Stephanie Mak on her website discusses this: [27] If one removes all patches to the eMate 300 (by replacing the ROM chip, and then putting in the original one again, as the eMate and the MessagePad 2000/2100 devices erase their memory completely after replacing the chip), the result will be the Newton OS saying that this is version 2.2.00. Also, the Original MessagePad and the MessagePad 100 share the same model number, as they only differ in the ROM chip version. (The OMP has OS versions 1.0 to 1.05, or 1.10 to 1.11, while the MP100 has 1.3 that can be upgraded with various patches.)
Timeline of Newton models |
---|
The Newton OS was also licensed to a number of third-party developers including Sharp and Motorola who developed additional PDA devices based on the Newton platform. Motorola added wireless connectivity, as well as made a unique two-part design, and shipped additional software with its Newton device, called the Marco. [28] Sharp developed a line of Newton devices called the ExpertPad PI-7000/7100; those were the same as Apple's MessagePad and MessagePad 100, the only difference is the physical design (the ExpertPads feature a screen lid, which Apple added in 1994 with the release of the MessagePad 110) and the naming.
There were a number of projects that used the Newton as a portable information device in cultural settings such as museums. For example, Visible Interactive created a walking tour in San Francisco's Chinatown but the most significant effort took place in Malaysia at the Petronas Discovery Center, known as Petrosains. [29]
In 1995, an exhibit design firm, DMCD Inc., was awarded the contract to design a new 100,000-square-foot (9,300 m2) science museum in the Petronas Towers in Kuala Lumpur. A major factor in the award was the concept that visitors would use a Newton device to access additional information, find out where they were in the museum, listen to audio, see animations, control robots and other media, and to bookmark information for printout at the end of the exhibit.
The device became known as the ARIF, a Malay word for "wise man" or "seer" and it was also an acronym for A Resourceful Informative Friend. Some 400 ARIFS were installed and over 300 are still in use today. The development of the ARIF system was extremely complex and required a team of hardware and software engineers, designers, and writers. ARIF is an ancestor of the PDA systems used in museums today and it boasted features that have not been attempted since.
Anyway & Company firm was involved with the Petronas Discovery Center project back in 1998 and NDAs were signed which prevents getting to know more information about this project. It was confirmed that they purchased of MP2000u or MP2100's by this firm on the behalf of the project under the name of "Petrosains Project Account". By 1998 they had invested heavily into the R&D of this project with the Newton at the center. After Apple officially cancelled the Newton in 1998 they had to acquire as many Newtons as possible for this project. It was estimated initially 1000 Newtons, but later readjusted the figure to possibly 750 Newtons. They placed an “Internet Call” for Newtons. They purchased them in large and small quantities.[ citation needed ]
The Newton was also used in healthcare applications, for example in collecting data directly from patients. Newtons were used as electronic diaries, with patients entering their symptoms and other information concerning their health status on a daily basis. The compact size of the device and its ease of use made it possible for the electronic diaries to be carried around and used in the patients' everyday life setting. This was an early example of electronic patient-reported outcomes (ePRO). [30]
A personal digital assistant (PDA) is a multi-purpose mobile device which functions as a personal information manager. Following a boom in the 1990s and 2000s, PDA's were mostly displaced by the widespread adoption of more highly capable smartphones, in particular those based on iOS and Android in the late 2000's, and thus saw a rapid decline.
Handwriting recognition (HWR), also known as handwritten text recognition (HTR), is the ability of a computer to receive and interpret intelligible handwritten input from sources such as paper documents, photographs, touch-screens and other devices. The image of the written text may be sensed "off line" from a piece of paper by optical scanning or intelligent word recognition. Alternatively, the movements of the pen tip may be sensed "on line", for example by a pen-based computer screen surface, a generally easier task as there are more clues available. A handwriting recognition system handles formatting, performs correct segmentation into characters, and finds the most possible words.
Graffiti is an essentially single-stroke shorthand handwriting recognition system used in PDAs based on the Palm OS. Graffiti was originally written by Palm, Inc. as the recognition system for GEOS-based devices such as HP's OmniGo 100 and 120 or the Magic Cap-line and was available as an alternate recognition system for the Apple Newton MessagePad, when NewtonOS 1.0 could not recognize handwriting very well. Graffiti also runs on the Windows Mobile platform, where it is called "Block Recognizer", and on the Symbian UIQ platform as the default recognizer and was available for Casio's Zoomer PDA.
GO Corporation was a company founded in 1987 to create pen-based portable computers, and a pen-based operating system and software. It was a pioneer of pen-based computing and was one of the most well-funded start-up companies of its time.
Apple Inc. uses a large variety of typefaces in its marketing, operating systems, and industrial design with each product cycle. These change throughout the years with Apple's change of style in their products. This is evident in the design and marketing of the company. The current logo is a white apple with a bite out of it, which was first utilized in 2013.
Newton OS is a discontinued operating system for the Apple Newton PDAs produced by Apple Computer, Inc. between 1993 and 1997. It was written entirely in C++ and trimmed to be low power consuming and use the available memory efficiently. Many applications were pre-installed in the ROM of the Newton to save on RAM and flash memory storage for user applications.
General Magic was an American software and electronics company co-founded by Bill Atkinson, Andy Hertzfeld, and Marc Porat. Based in Mountain View, California, the company developed precursors to "USB, software modems, small touchscreens, touchscreen controller ICs, ASICs, multimedia email, networked games, streaming TV, and early e-commerce notions." General Magic's main product was Magic Cap, the operating system used in 1994 by the Motorola Envoy and Sony's Magic Link PDA. It also introduced the programming language Telescript. After announcing it would cease operations in 2002, it was liquidated in 2004 with Paul Allen purchasing most of its patents.
Inkwell, or simply Ink, is the name of the handwriting recognition technology developed by Apple Inc. and built into the Mac OS X operating system. Introduced in an update to Mac OS X v10.2 "Jaguar", Inkwell can translate English, French, and German writing. The technology made its debut as "Rosetta", an integral feature of Apple Newton OS, the operating system of the short-lived Apple Newton personal digital assistant. Inkwell's inclusion in Mac OS X led many to believe Apple would be using this technology in a new PDA or other portable tablet computer. None of the touchscreen iOS devices – iPhone/iPod/iPad – has offered Inkwell handwriting recognition. However in iPadOS 14 handwriting recognition has been introduced, as a feature called Scribble.
A voice-user interface (VUI) enables spoken human interaction with computers, using speech recognition to understand spoken commands and answer questions, and typically text to speech to play a reply. A voice command device is a device controlled with a voice user interface.
ShapeWriter was a keyboard text input method for tablet, handheld PCs, and mobile phones invented by Shumin Zhai and Per Ola Kristensson at IBM Almaden Research Center and the Department of Computer and Information Science at Linköping University.
The eMate 300 is a personal digital assistant designed, manufactured and sold by Apple Computer to the education market as a low-cost laptop running the Newton operating system. It was the only Apple Newton Device with a built-in keyboard. The eMate was introduced on March 7, 1997 for US$799 and was discontinued along with the Apple Newton product line and its operating system on February 27, 1998.
A tablet computer, commonly shortened to tablet, is a mobile device, typically with a mobile operating system and touchscreen display processing circuitry, and a rechargeable battery in a single, thin and flat package. Tablets, being computers, have similar capabilities, but lack some input/output (I/O) abilities that others have. Modern tablets largely resemble modern smartphones, the only differences being that tablets are relatively larger than smartphones, with screens 7 inches (18 cm) or larger, measured diagonally, and may not support access to a cellular network. Unlike laptops, tablets usually run mobile operating systems, alongside smartphones.
The term PenPad was used as a product name for a number of Pen computing products by different companies in the 1980s and 1990s. The earliest was the Penpad series of products by Pencept, such as the PenPad M200 handwriting terminal, and the PenPad M320 handwriting/gesture recognition tablet for MS-DOS and other personal computers.
The Advanced Technology Group (ATG) was a corporate research laboratory at Apple Computer from 1986 to 1997. ATG was an evolution of Apple's Education Research Group (ERG) and was started by Larry Tesler in October 1986 to study long-term research into future technologies that were beyond the time frame or organizational scope of any individual product group. Over the next decade, it was led by David Nagel, Richard LeFaivre, and Donald Norman. It was known as Apple Research Labs during Norman's tenure as VP of the organization. Steve Jobs closed the group when he returned to Apple in 1997.
Pen computing refers to any computer user-interface using a pen or stylus and tablet, over input devices such as a keyboard or a mouse.
A text entry interface or text entry device is an interface that is used to enter text information in an electronic device. A commonly used device is a mechanical computer keyboard. Most laptop computers have an integrated mechanical keyboard, and desktop computers are usually operated primarily using a keyboard and mouse. Devices such as smartphones and tablets mean that interfaces such as virtual keyboards and voice recognition are becoming more popular as text entry systems.
The Newton is a specified standard and series of personal digital assistants (PDAs) developed and marketed by Apple Computer, Inc. from 1993 to 1998. An early device in the PDA category — the term itself originating with the Newton — it was the first to feature handwriting recognition. Newton devices run on a proprietary operating system, Newton OS; unlike the company's Macintosh computers, Apple licensed the software to third-parties, who released Newton devices alongside Apple's own MessagePad line.
The history of tablet computers and the associated special operating software is an example of pen computing technology, and thus the development of tablets has deep historical roots. The first patent for a system that recognized handwritten characters by analyzing the handwriting motion was granted in 1914. The first publicly demonstrated system using a tablet and handwriting recognition instead of a keyboard for working with a modern digital computer dates to 1956.
Microsoft Tablet PC is a term coined by Microsoft for tablet computers conforming to hardware specifications, devised by Microsoft, and announced in 2001 for a pen-enabled personal computer and running a licensed copy of the Windows XP Tablet PC Edition operating system or a derivative thereof.
The first-generation iPad is a tablet computer designed and marketed by Apple Inc. as the first device in the iPad lineup of tablet computers. The device features an Apple A4 SoC, a 9.7 in (250 mm) touchscreen display, and, on certain variants, the capability of accessing cellular networks. Using the iOS operating system, the iPad can play music, send and receive email and browse the web. Other functions, which include the ability to play games and access references, GPS navigation software and social network services can be enabled by downloading apps.
{{cite web}}
: CS1 maint: others (link){{cite web}}
: External link in |postscript=
(help)CS1 maint: postscript (link)This is a short outline of a presentation on the history of "pen computing" I gave for the Pen Computing group of the Boston Computer Society, March 11, 1992. Unfortunately, I did not keep the full set of slides, which had pictures of the products and systems. However, Dan Bricklin (CTO at Slate Corporation at the time) has posted a video of the same presentation on youtube, which does show all the pictures and slides: http://www.youtube.com/watch?v=4xnqKdWMa_8.
{{cite web}}
: External link in |quote=
(help){{cite web}}
: CS1 maint: numeric names: authors list (link)Electronic diary cards have advantages over paper diaries for daily collection of data on lung function and symptoms in patients with respiratory disorders. The suitability of a pen-based electronic diary (Apple MessagePad) for this purpose was assessed in a clinical trial setting.
A video of Jean Renard Ward re-creating a talk he gave to a Boston Computer Society special interest group two days before in 1992. This covers many, many devices and approaches in the years before that time. For more info from him, see: http://users.erols.com/rwservices/biblio.html
{{cite AV media}}
: External link in |quote=
(help)Mirrors of this page can be found at: http://ruetersward/biblio.html, http://users.rcn.com/rwservices/biblio.html, http://users.erols.com/rwservices/biblio.html, http://rwservices.no-ip.info:81/biblio.html