Martinostat

Last updated
Martinostat
Martinostat.svg
Identifiers
  • (2E)-3-(4-{[(Adamantan-1-ylmethyl)(methyl)amino]methyl}phenyl)-N-hydroxyacrylamide
CAS Number
ChemSpider
UNII
Chemical and physical data
Formula C22H30N2O2
Molar mass 354.494 g·mol−1
3D model (JSmol)
  • CN(Cc1ccc(cc1)/C=C/C(=O)NO)CC23CC4CC(C2)CC(C4)C3

Martinostat is a histone deacetylase inhibitor (HDACi) that is potent against recombinant class I HDACs (isoforms 1-3) and class IIb HDAC (isoform 6) with low nanomolar affinities. [1] In tissue CETSA assays, [2] martinostat exhibits selectivity for class I HDACs (isoforms 1-3). [3] When tagged with the radioisotope carbon-11, martinostat can be used to quantify HDAC in the brain and peripheral organs using positron emission tomography. Martinostat was given a name that adopted the style of other HDAC inhibitors, such as vorinostat, entinostat, and crebinostat, that recognized the academic center in which it was developed, the Martinos Center for Biomedical Imaging.

C-labeled martinostat Martinostat-C11.svg
C-labeled martinostat

Related Research Articles

<span class="mw-page-title-main">Butyric acid</span> Chemical compound

Butyric acid, also known under the systematic name butanoic acid, is a straight-chain alkyl carboxylic acid with the chemical formula CH3CH2CH2CO2H. It is an oily, colorless liquid with an unpleasant odor. Isobutyric acid is an isomer. Salts and esters of butyric acid are known as butyrates or butanoates. The acid does not occur widely in nature, but its esters are widespread. It is a common industrial chemical and an important component in the mammalian gut.

<span class="mw-page-title-main">Histone deacetylase</span> Class of enzymes important in regulating DNA transcription

Histone deacetylases (EC 3.5.1.98, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on both histone and non-histone proteins. HDACs allow histones to wrap the DNA more tightly. This is important because DNA is wrapped around histones, and DNA expression is regulated by acetylation and de-acetylation. HDAC's action is opposite to that of histone acetyltransferase. HDAC proteins are now also called lysine deacetylases (KDAC), to describe their function rather than their target, which also includes non-histone proteins.

Vorinostat (rINN) also known as Suberoylanilide hydroxamic acid is a member of a larger class of compounds that inhibit histone deacetylases (HDAC). Histone deacetylase inhibitors (HDI) have a broad spectrum of epigenetic activities.

<span class="mw-page-title-main">Histone acetylation and deacetylation</span>

Histone acetylation and deacetylation are the processes by which the lysine residues within the N-terminal tail protruding from the histone core of the nucleosome are acetylated and deacetylated as part of gene regulation.

Histone deacetylase inhibitors are chemical compounds that inhibit histone deacetylases.

<span class="mw-page-title-main">Histone deacetylase 2</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 2 (HDAC2) is an enzyme that in humans is encoded by the HDAC2 gene. It belongs to the histone deacetylase class of enzymes responsible for the removal of acetyl groups from lysine residues at the N-terminal region of the core histones. As such, it plays an important role in gene expression by facilitating the formation of transcription repressor complexes and for this reason is often considered an important target for cancer therapy.

<span class="mw-page-title-main">HDAC3</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 3 is an enzyme encoded by the HDAC3 gene in both humans and mice.

<span class="mw-page-title-main">HDAC6</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 6 is an enzyme that in humans is encoded by the HDAC6 gene. HDAC6 has emerged as a highly promising candidate to selectively inhibit as a therapeutic strategy to combat several types of cancer and neurodegenerative disorders.

<span class="mw-page-title-main">Histone deacetylase 5</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 5 is an enzyme that in humans is encoded by the HDAC5 gene.

<span class="mw-page-title-main">HDAC9</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 9 is an enzyme that in humans is encoded by the HDAC9 gene.

<span class="mw-page-title-main">HDAC7</span>

Histone deacetylase 7 is an enzyme that in humans is encoded by the HDAC7 gene.

<span class="mw-page-title-main">FOSB</span> Protein

Protein fosB, also known as FosB and G0/G1 switch regulatory protein 3 (G0S3), is a protein that in humans is encoded by the FBJ murine osteosarcoma viral oncogene homolog B (FOSB) gene.

<span class="mw-page-title-main">HDAC8</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 8 is an enzyme that in humans is encoded by the HDAC8 gene.

<span class="mw-page-title-main">HDAC11</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 11 is a 39kDa histone deacetylase enzyme that in humans is encoded by the HDAC11 gene on chromosome 3 in humans and chromosome 6 in mice.

<span class="mw-page-title-main">HDAC10</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 10 is an enzyme that in humans is encoded by the HDAC10 gene.

<span class="mw-page-title-main">Romidepsin</span> Chemical compound

Romidepsin, also known as Istodax, is an anticancer agent used in cutaneous T-cell lymphoma (CTCL) and other peripheral T-cell lymphomas (PTCLs). Romidepsin is a natural product obtained from the bacterium Chromobacterium violaceum, and works by blocking enzymes known as histone deacetylases, thus inducing apoptosis. It is sometimes referred to as depsipeptide, after the class of molecules to which it belongs. Romidepsin is branded and owned by Gloucester Pharmaceuticals, a part of Celgene.

<span class="mw-page-title-main">Quisinostat</span> Chemical compound

Quisinostat is an experimental drug candidate for the treatment of cancer. It is a "second generation" histone deacetylase inhibitor with antineoplastic activity. It is highly potent against class I and II HDACs.

<span class="mw-page-title-main">Pracinostat</span> Chemical compound

Pracinostat (SB939) is an orally bioavailable, small-molecule histone deacetylase (HDAC) inhibitor based on hydroxamic acid with potential anti-tumor activity characterized by favorable physicochemical, pharmaceutical, and pharmacokinetic properties.

<span class="mw-page-title-main">Jacob Hooker</span>

Jacob M. Hooker, Ph.D. is an American chemist and expert in molecular imaging, particularly in the development and application of simultaneous MRI and PET. He has contributed major advances on the entire spectrum of research from fundamental chemistry methodology with radioisotopes to human neuroimaging.

References

  1. Wang C, Schroeder FA, Wey HY, Borra R, Wagner FF, Reis S, et al. (October 2014). "In vivo imaging of histone deacetylases (HDACs) in the central nervous system and major peripheral organs". Journal of Medicinal Chemistry. 57 (19): 7999–8009. doi:10.1021/jm500872p. PMC   4191584 . PMID   25203558.
  2. Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundbäck T, Nordlund P, Martinez Molina D (September 2014). "The cellular thermal shift assay for evaluating drug target interactions in cells". Nature Protocols. 9 (9): 2100–22. doi:10.1038/nprot.2014.138. PMID   25101824. S2CID   14939791.
  3. Wey HY, Gilbert TM, Zürcher NR, She A, Bhanot A, Taillon BD, et al. (August 2016). "Insights into neuroepigenetics through human histone deacetylase PET imaging". Science Translational Medicine. 8 (351): 351ra106. doi:10.1126/scitranslmed.aaf7551. PMC   5784409 . PMID   27510902.