Inner automorphism

Last updated

In abstract algebra, an inner automorphism is an automorphism of a group, ring, or algebra given by the conjugation action of a fixed element, called the conjugating element. They can be realized via operations from within the group itself, hence the adjective "inner". These inner automorphisms form a subgroup of the automorphism group, and the quotient of the automorphism group by this subgroup is defined as the outer automorphism group.

Contents

Definition

If G is a group and g is an element of G (alternatively, if G is a ring, and g is a unit), then the function

is called (right) conjugation by g (see also conjugacy class). This function is an endomorphism of G: for all

where the second equality is given by the insertion of the identity between and Furthermore, it has a left and right inverse, namely Thus, is both an monomorphism and epimorphism, and so an isomorphism of G with itself, i.e. an automorphism. An inner automorphism is any automorphism that arises from conjugation. [1]

General relationship between various homomorphisms. Venn Diagram of Homomorphisms.jpg
General relationship between various homomorphisms.

When discussing right conjugation, the expression is often denoted exponentially by This notation is used because composition of conjugations satisfies the identity: for all This shows that right conjugation gives a right action of G on itself.

A common example is as follows: [2] [3]

Relationship of morphisms and elements Diagram of Inn(G) Example.jpg
Relationship of morphisms and elements

Describe a homomorphism for which the image, , is a normal subgroup of inner automorphisms of a group ; alternatively, describe a natural homomorphism of which the kernel of is the center of (all for which conjugating by them returns the trivial automorphism), in other words, . There is always a natural homomorphism , which associates to every an (inner) automorphism in . Put identically, .

Let as defined above. This requires demonstrating that (1) is a homomorphism, (2) is also a bijection, (3) is a homomorphism.

  1. The condition for bijectivity may be verified by simply presenting an inverse such that we can return to from . In this case it is conjugation by denoted as .
  2. and

Inner and outer automorphism groups

The composition of two inner automorphisms is again an inner automorphism, and with this operation, the collection of all inner automorphisms of G is a group, the inner automorphism group of G denoted Inn(G).

Inn(G) is a normal subgroup of the full automorphism group Aut(G) of G. The outer automorphism group, Out(G) is the quotient group

The outer automorphism group measures, in a sense, how many automorphisms of G are not inner. Every non-inner automorphism yields a non-trivial element of Out(G), but different non-inner automorphisms may yield the same element of Out(G).

Saying that conjugation of x by a leaves x unchanged is equivalent to saying that a and x commute:

Therefore the existence and number of inner automorphisms that are not the identity mapping is a kind of measure of the failure of the commutative law in the group (or ring).

An automorphism of a group G is inner if and only if it extends to every group containing G. [4]

By associating the element aG with the inner automorphism f(x) = xa in Inn(G) as above, one obtains an isomorphism between the quotient group G / Z(G) (where Z(G) is the center of G) and the inner automorphism group:

This is a consequence of the first isomorphism theorem, because Z(G) is precisely the set of those elements of G that give the identity mapping as corresponding inner automorphism (conjugation changes nothing).

Non-inner automorphisms of finite p-groups

A result of Wolfgang Gaschütz says that if G is a finite non-abelian p-group, then G has an automorphism of p-power order which is not inner.

It is an open problem whether every non-abelian p-group G has an automorphism of order p. The latter question has positive answer whenever G has one of the following conditions:

  1. G is nilpotent of class 2
  2. G is a regular p-group
  3. G / Z(G) is a powerful p-group
  4. The centralizer in G, CG, of the center, Z, of the Frattini subgroup, Φ, of G, CGZ ∘ Φ(G), is not equal to Φ(G)

Types of groups

The inner automorphism group of a group G, Inn(G), is trivial (i.e., consists only of the identity element) if and only if G is abelian.

The group Inn(G) is cyclic only when it is trivial.

At the opposite end of the spectrum, the inner automorphisms may exhaust the entire automorphism group; a group whose automorphisms are all inner and whose center is trivial is called complete. This is the case for all of the symmetric groups on n elements when n is not 2 or 6. When n = 6, the symmetric group has a unique non-trivial class of non-inner automorphisms, and when n = 2, the symmetric group, despite having no non-inner automorphisms, is abelian, giving a non-trivial center, disqualifying it from being complete.

If the inner automorphism group of a perfect group G is simple, then G is called quasisimple.

Lie algebra case

An automorphism of a Lie algebra 𝔊 is called an inner automorphism if it is of the form Adg, where Ad is the adjoint map and g is an element of a Lie group whose Lie algebra is 𝔊. The notion of inner automorphism for Lie algebras is compatible with the notion for groups in the sense that an inner automorphism of a Lie group induces a unique inner automorphism of the corresponding Lie algebra.

Extension

If G is the group of units of a ring, A, then an inner automorphism on G can be extended to a mapping on the projective line over A by the group of units of the matrix ring, M2(A). In particular, the inner automorphisms of the classical groups can be extended in that way.

Related Research Articles

<span class="mw-page-title-main">Automorphism</span> Isomorphism of an object to itself

In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a group, called the automorphism group. It is, loosely speaking, the symmetry group of the object.

In abstract algebra, the center of a group G is the set of elements that commute with every element of G. It is denoted Z(G), from German Zentrum, meaning center. In set-builder notation,

In mathematics, particularly in the area of abstract algebra known as group theory, a characteristic subgroup is a subgroup that is mapped to itself by every automorphism of the parent group. Because every conjugation map is an inner automorphism, every characteristic subgroup is normal; though the converse is not guaranteed. Examples of characteristic subgroups include the commutator subgroup and the center of a group.

In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group.

In abstract algebra, the fundamental theorem on homomorphisms, also known as the fundamental homomorphism theorem, or the first isomorphism theorem, relates the structure of two objects between which a homomorphism is given, and of the kernel and image of the homomorphism.

In abstract algebra, a group isomorphism is a function between two groups that sets up a bijection between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished.

<span class="mw-page-title-main">Normal subgroup</span> Subgroup invariant under conjugation

In abstract algebra, a normal subgroup is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup of the group is normal in if and only if for all and . The usual notation for this relation is .

<span class="mw-page-title-main">Symmetric group</span> Type of group in abstract algebra

In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .

<span class="mw-page-title-main">Semidirect product</span> Operation in group theory

In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. It is usually denoted with the symbol . There are two closely related concepts of semidirect product:

<span class="mw-page-title-main">Adjoint representation</span> Mathematical term

In mathematics, the adjoint representation of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix to an endomorphism of the vector space of all linear transformations of defined by: .

<span class="mw-page-title-main">Free product</span> Operation that combines groups

In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and constructs a new group GH. The result contains both G and H as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from G and H into a group K factor uniquely through a homomorphism from GH to K. Unless one of the groups G and H is trivial, the free product is always infinite. The construction of a free product is similar in spirit to the construction of a free group.

In mathematics, the outer automorphism group of a group, G, is the quotient, Aut(G) / Inn(G), where Aut(G) is the automorphism group of G and Inn(G) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted Out(G). If Out(G) is trivial and G has a trivial center, then G is said to be complete.

In mathematics, a group G is said to be complete if every automorphism of G is inner, and it is centerless; that is, it has a trivial outer automorphism group and trivial center.

In mathematics, especially in the area of algebra known as group theory, the holomorph of a group , denoted , is a group that simultaneously contains and its automorphism group . It provides interesting examples of groups, and allows one to treat group elements and group automorphisms in a uniform context. The holomorph can be described as a semidirect product or as a permutation group.

In mathematics, the binary icosahedral group 2I or ⟨2,3,5⟩ is a certain nonabelian group of order 120. It is an extension of the icosahedral group I or (2,3,5) of order 60 by the cyclic group of order 2, and is the preimage of the icosahedral group under the 2:1 covering homomorphism

<span class="mw-page-title-main">Direct product of groups</span> Mathematical concept

In mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H. This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics.

In group theory, a branch of mathematics, the automorphisms and outer automorphisms of the symmetric groups and alternating groups are both standard examples of these automorphisms, and objects of study in their own right, particularly the exceptional outer automorphism of S6, the symmetric group on 6 elements.

<span class="mw-page-title-main">Complexification (Lie group)</span> Universal construction of a complex Lie group from a real Lie group

In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.

In mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself. If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X.

<span class="mw-page-title-main">Glossary of Lie groups and Lie algebras</span>

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

References

  1. Dummit, David S.; Foote, Richard M. (2004). Abstract algebra (3rd ed.). Hoboken, NJ: Wiley. p. 45. ISBN   978-0-4714-5234-8. OCLC   248917264.
  2. Grillet, Pierre (2010). Abstract Algebra (2nd ed.). New York: Springer. p. 56. ISBN   978-1-4419-2450-6.
  3. Lang, Serge (2002). Algebra (3rd ed.). New York: Springer-Verlag. p. 26. ISBN   978-0-387-95385-4.
  4. Schupp, Paul E. (1987), "A characterization of inner automorphisms" (PDF), Proceedings of the American Mathematical Society, 101 (2), American Mathematical Society: 226–228, doi: 10.2307/2045986 , JSTOR   2045986, MR   0902532

Further reading