Information security

Last updated

Information security is the practice of protecting information by mitigating information risks. It is part of information risk management. [1] It typically involves preventing or reducing the probability of unauthorized or inappropriate access to data or the unlawful use, disclosure, disruption, deletion, corruption, modification, inspection, recording, or devaluation of information. It also involves actions intended to reduce the adverse impacts of such incidents. Protected information may take any form, e.g., electronic or physical, tangible (e.g., paperwork), or intangible (e.g., knowledge). [2] [3] Information security's primary focus is the balanced protection of data confidentiality, integrity, and availability (also known as the 'CIA' triad) [4] while maintaining a focus on efficient policy implementation, all without hampering organization productivity. [5] This is largely achieved through a structured risk management process. [6]

Contents

To standardize this discipline, academics and professionals collaborate to offer guidance, policies, and industry standards on passwords, antivirus software, firewalls, encryption software, legal liability, security awareness and training, and so forth. [7] This standardization may be further driven by a wide variety of laws and regulations that affect how data is accessed, processed, stored, transferred, and destroyed. [8]

While paper-based business operations are still prevalent, requiring their own set of information security practices, enterprise digital initiatives are increasingly being emphasized, [9] [10] with information assurance now typically being dealt with by information technology (IT) security specialists. These specialists apply information security to technology (most often some form of computer system).

IT security specialists are almost always found in any major enterprise/establishment due to the nature and value of the data within larger businesses. [11] They are responsible for keeping all of the technology within the company secure from malicious attacks that often attempt to acquire critical private information or gain control of the internal systems. [12] [13]

There are many specialist roles in Information Security including securing networks and allied infrastructure, securing applications and databases, security testing, information systems auditing, business continuity planning, electronic record discovery, and digital forensics. [14]

Standards

Information security standards are techniques generally outlined in published materials that attempt to protect the information of a user or organization. [15] This environment includes users themselves, networks, devices, all software, processes, information in storage or transit, applications, services, and systems that can be connected directly or indirectly to networks.

The principal objective is to reduce the risks, including preventing or mitigating attacks. These published materials consist of tools, policies, security concepts, security safeguards, guidelines, risk management approaches, actions, training, best practices, assurance and technologies.

Common information security standards include ISO/IEC 27001 and the NIST Cybersecurity Framework.

Threats

Information security threats come in many different forms. [16] Some of the most common threats today are software attacks, theft of intellectual property, theft of identity, theft of equipment or information, sabotage, and information extortion. [17] [18] Viruses, [19] worms, phishing attacks, and Trojan horses are a few common examples of software attacks. The theft of intellectual property has also been an extensive issue for many businesses. [20] Identity theft is the attempt to act as someone else usually to obtain that person's personal information or to take advantage of their access to vital information through social engineering. [21] [22] Sabotage usually consists of the destruction of an organization's website in an attempt to cause loss of confidence on the part of its customers. [23] Information extortion consists of theft of a company's property or information as an attempt to receive a payment in exchange for returning the information or property back to its owner, as with ransomware. [24] One of the most functional precautions against these attacks is to conduct periodical user awareness. [25]

Governments, military, corporations, financial institutions, hospitals, non-profit organisations, and private businesses amass a great deal of confidential information about their employees, customers, products, research, and financial status. [26] Should confidential information about a business's customers or finances or new product line fall into the hands of a competitor or hacker, a business and its customers could suffer widespread, irreparable financial loss, as well as damage to the company's reputation. [27] From a business perspective, information security must be balanced against cost; the Gordon-Loeb Model provides a mathematical economic approach for addressing this concern. [28]

For the individual, information security has a significant effect on privacy, which is viewed very differently in various cultures. [29]

History

Since the early days of communication, diplomats and military commanders understood that it was necessary to provide some mechanism to protect the confidentiality of correspondence and to have some means of detecting tampering. [30] Julius Caesar is credited with the invention of the Caesar cipher c. 50 B.C., which was created in order to prevent his secret messages from being read should a message fall into the wrong hands. [31] However, for the most part protection was achieved through the application of procedural handling controls. [32] [33] Sensitive information was marked up to indicate that it should be protected and transported by trusted persons, guarded and stored in a secure environment or strong box. [34] As postal services expanded, governments created official organizations to intercept, decipher, read, and reseal letters (e.g., the U.K.'s Secret Office, founded in 1653 [35] ).

In the mid-nineteenth century more complex classification systems were developed to allow governments to manage their information according to the degree of sensitivity. [36] For example, the British Government codified this, to some extent, with the publication of the Official Secrets Act in 1889. [37] Section 1 of the law concerned espionage and unlawful disclosures of information, while Section 2 dealt with breaches of official trust. [38] A public interest defense was soon added to defend disclosures in the interest of the state. [39] A similar law was passed in India in 1889, The Indian Official Secrets Act, which was associated with the British colonial era and used to crack down on newspapers that opposed the Raj's policies. [40] A newer version was passed in 1923 that extended to all matters of confidential or secret information for governance. [41] By the time of the First World War, multi-tier classification systems were used to communicate information to and from various fronts, which encouraged greater use of code making and breaking sections in diplomatic and military headquarters. [42] Encoding became more sophisticated between the wars as machines were employed to scramble and unscramble information. [43]

The establishment of computer security inaugurated the history of information security. The need for such appeared during World War II. [44] The volume of information shared by the Allied countries during the Second World War necessitated formal alignment of classification systems and procedural controls. [45] An arcane range of markings evolved to indicate who could handle documents (usually officers rather than enlisted troops) and where they should be stored as increasingly complex safes and storage facilities were developed. [46] The Enigma Machine, which was employed by the Germans to encrypt the data of warfare and was successfully decrypted by Alan Turing, can be regarded as a striking example of creating and using secured information. [47] Procedures evolved to ensure documents were destroyed properly, and it was the failure to follow these procedures which led to some of the greatest intelligence coups of the war (e.g., the capture of U-570 [47] ).

Various mainframe computers were connected online during the Cold War to complete more sophisticated tasks, in a communication process easier than mailing magnetic tapes back and forth by computer centers. As such, the Advanced Research Projects Agency (ARPA), of the United States Department of Defense, started researching the feasibility of a networked system of communication to trade information within the United States Armed Forces. In 1968, the ARPANET project was formulated by Larry Roberts, which would later evolve into what is known as the internet. [48]

In 1973, important elements of ARPANET security were found by internet pioneer Robert Metcalfe to have many flaws such as the: "vulnerability of password structure and formats; lack of safety procedures for dial-up connections; and nonexistent user identification and authorizations", aside from the lack of controls and safeguards to keep data safe from unauthorized access. Hackers had effortless access to ARPANET, as phone numbers were known by the public. [49] Due to these problems, coupled with the constant violation of computer security, as well as the exponential increase in the number of hosts and users of the system, "network security" was often alluded to as "network insecurity". [49]

Poster promoting information security by the Russian Ministry of Defence Posters for information security for the Ministry of Defense of the Russian Federation.jpg
Poster promoting information security by the Russian Ministry of Defence

The end of the twentieth century and the early years of the twenty-first century saw rapid advancements in telecommunications, computing hardware and software, and data encryption. [50] The availability of smaller, more powerful, and less expensive computing equipment made electronic data processing within the reach of small business and home users. [51] The establishment of Transfer Control Protocol/Internetwork Protocol (TCP/IP) in the early 1980s enabled different types of computers to communicate. [52] These computers quickly became interconnected through the internet. [53]

The rapid growth and widespread use of electronic data processing and electronic business conducted through the internet, along with numerous occurrences of international terrorism, fueled the need for better methods of protecting the computers and the information they store, process, and transmit. [54] The academic disciplines of computer security and information assurance emerged along with numerous professional organizations, all sharing the common goals of ensuring the security and reliability of information systems. [55]

Security Goals

CIA triad

The "CIA triad" of confidentiality, integrity, and availability is at the heart of information security. [56] The concept was introduced in the Anderson Report in 1972 and later repeated in The Protection of Information in Computer Systems. The abbreviation was coined by Steve Lipner around 1986. [57]

Debate continues about whether or not this triad is sufficient to address rapidly changing technology and business requirements, with recommendations to consider expanding on the intersections between availability and confidentiality, as well as the relationship between security and privacy. [4] Other principles such as "accountability" have sometimes been proposed; it has been pointed out that issues such as non-repudiation do not fit well within the three core concepts. [58]

Confidentiality

In information security, confidentiality "is the property, that information is not made available or disclosed to unauthorized individuals, entities, or processes." [59] While similar to "privacy," the two words are not interchangeable. Rather, confidentiality is a component of privacy that implements to protect our data from unauthorized viewers. [60] Examples of confidentiality of electronic data being compromised include laptop theft, password theft, or sensitive emails being sent to the incorrect individuals. [61]

Integrity

In IT security, data integrity means maintaining and assuring the accuracy and completeness of data over its entire lifecycle. [62] This means that data cannot be modified in an unauthorized or undetected manner. [63] This is not the same thing as referential integrity in databases, although it can be viewed as a special case of consistency as understood in the classic ACID model of transaction processing. [64] Information security systems typically incorporate controls to ensure their own integrity, in particular protecting the kernel or core functions against both deliberate and accidental threats. [65] Multi-purpose and multi-user computer systems aim to compartmentalize the data and processing such that no user or process can adversely impact another: the controls may not succeed however, as we see in incidents such as malware infections, hacks, data theft, fraud, and privacy breaches. [66]

More broadly, integrity is an information security principle that involves human/social, process, and commercial integrity, as well as data integrity. As such it touches on aspects such as credibility, consistency, truthfulness, completeness, accuracy, timeliness, and assurance. [67]

Availability

For any information system to serve its purpose, the information must be available when it is needed. [68] This means the computing systems used to store and process the information, the security controls used to protect it, and the communication channels used to access it must be functioning correctly. [69] High availability systems aim to remain available at all times, preventing service disruptions due to power outages, hardware failures, and system upgrades. [70] Ensuring availability also involves preventing denial-of-service attacks, such as a flood of incoming messages to the target system, essentially forcing it to shut down. [71]

In the realm of information security, availability can often be viewed as one of the most important parts of a successful information security program.[ citation needed ] Ultimately end-users need to be able to perform job functions; by ensuring availability an organization is able to perform to the standards that an organization's stakeholders expect. [72] This can involve topics such as proxy configurations, outside web access, the ability to access shared drives and the ability to send emails. [73] Executives oftentimes do not understand the technical side of information security and look at availability as an easy fix, but this often requires collaboration from many different organizational teams, such as network operations, development operations, incident response, and policy/change management. [74] A successful information security team involves many different key roles to mesh and align for the "CIA" triad to be provided effectively. [75]

Additional security goals

In addition to the classic CIA triad of security goals, some organisations may want to include security goals like authenticity, accountability, non-repudiation, and reliability.

Non-repudiation

In law, non-repudiation implies one's intention to fulfill their obligations to a contract. It also implies that one party of a transaction cannot deny having received a transaction, nor can the other party deny having sent a transaction. [76]

It is important to note that while technology such as cryptographic systems can assist in non-repudiation efforts, the concept is at its core a legal concept transcending the realm of technology. [77] It is not, for instance, sufficient to show that the message matches a digital signature signed with the sender's private key, and thus only the sender could have sent the message, and nobody else could have altered it in transit (data integrity). [78] The alleged sender could in return demonstrate that the digital signature algorithm is vulnerable or flawed, or allege or prove that his signing key has been compromised. [79] The fault for these violations may or may not lie with the sender, and such assertions may or may not relieve the sender of liability, but the assertion would invalidate the claim that the signature necessarily proves authenticity and integrity. As such, the sender may repudiate the message (because authenticity and integrity are pre-requisites for non-repudiation). [80]

Other Models

In 1992 and revised in 2002, the OECD's Guidelines for the Security of Information Systems and Networks [81] proposed the nine generally accepted principles: awareness, responsibility, response, ethics, democracy, risk assessment, security design and implementation, security management, and reassessment. [82] Building upon those, in 2004 the NIST's Engineering Principles for Information Technology Security [58] proposed 33 principles.

In 1998, Donn Parker proposed an alternative model for the classic "CIA" triad that he called the six atomic elements of information. The elements are confidentiality, possession, integrity, authenticity, availability, and utility. The merits of the Parkerian Hexad are a subject of debate amongst security professionals. [83]

In 2011, The Open Group published the information security management standard O-ISM3. [84] This standard proposed an operational definition of the key concepts of security, with elements called "security objectives", related to access control (9), availability (3), data quality (1), compliance, and technical (4).

Risk management

Risk is the likelihood that something bad will happen that causes harm to an informational asset (or the loss of the asset). [85] A vulnerability is a weakness that could be used to endanger or cause harm to an informational asset. A threat is anything (man-made or act of nature) that has the potential to cause harm. [86] The likelihood that a threat will use a vulnerability to cause harm creates a risk. When a threat does use a vulnerability to inflict harm, it has an impact. [87] In the context of information security, the impact is a loss of availability, integrity, and confidentiality, and possibly other losses (lost income, loss of life, loss of real property). [88]

The Certified Information Systems Auditor (CISA) Review Manual 2006 defines risk management as "the process of identifying vulnerabilities and threats to the information resources used by an organization in achieving business objectives, and deciding what countermeasures, [89] if any, to take in reducing risk to an acceptable level, based on the value of the information resource to the organization." [90]

There are two things in this definition that may need some clarification. First, the process of risk management is an ongoing, iterative process. It must be repeated indefinitely. The business environment is constantly changing and new threats and vulnerabilities emerge every day. [91] Second, the choice of countermeasures (controls) used to manage risks must strike a balance between productivity, cost, effectiveness of the countermeasure, and the value of the informational asset being protected. [92] Furthermore, these processes have limitations as security breaches are generally rare and emerge in a specific context which may not be easily duplicated. [93] Thus, any process and countermeasure should itself be evaluated for vulnerabilities. [94] It is not possible to identify all risks, nor is it possible to eliminate all risk. The remaining risk is called "residual risk". [95]

A risk assessment is carried out by a team of people who have knowledge of specific areas of the business. [96] Membership of the team may vary over time as different parts of the business are assessed. [97] The assessment may use a subjective qualitative analysis based on informed opinion, or where reliable dollar figures and historical information is available, the analysis may use quantitative analysis.

Research has shown that the most vulnerable point in most information systems is the human user, operator, designer, or other human. [98] The ISO/IEC 27002:2005 Code of practice for information security management recommends the following be examined during a risk assessment:

In broad terms, the risk management process consists of: [99] [100]

  1. Identification of assets and estimating their value. Include: people, buildings, hardware, software, data (electronic, print, other), supplies. [101]
  2. Conduct a threat assessment. Include: Acts of nature, acts of war, accidents, malicious acts originating from inside or outside the organization. [102]
  3. Conduct a vulnerability assessment, and for each vulnerability, calculate the probability that it will be exploited. Evaluate policies, procedures, standards, training, physical security, quality control, technical security. [103]
  4. Calculate the impact that each threat would have on each asset. Use qualitative analysis or quantitative analysis. [104]
  5. Identify, select and implement appropriate controls. Provide a proportional response. Consider productivity, cost effectiveness, and value of the asset. [105]
  6. Evaluate the effectiveness of the control measures. Ensure the controls provide the required cost effective protection without discernible loss of productivity. [106]

For any given risk, management can choose to accept the risk based upon the relative low value of the asset, the relative low frequency of occurrence, and the relative low impact on the business. [107] Or, leadership may choose to mitigate the risk by selecting and implementing appropriate control measures to reduce the risk. In some cases, the risk can be transferred to another business by buying insurance or outsourcing to another business. [108] The reality of some risks may be disputed. In such cases leadership may choose to deny the risk. [109]

Security controls

Selecting and implementing proper security controls will initially help an organization bring down risk to acceptable levels. [110] Control selection should follow and should be based on the risk assessment. [111] Controls can vary in nature, but fundamentally they are ways of protecting the confidentiality, integrity or availability of information. ISO/IEC 27001 has defined controls in different areas. [112] Organizations can implement additional controls according to requirement of the organization. [113] ISO/IEC 27002 offers a guideline for organizational information security standards. [114]

Defense in depth

The onion model of defense in depth Defense In Depth - Onion Model.svg
The onion model of defense in depth

Defense in depth is a fundamental security philosophy that relies on overlapping security systems designed to maintain protection even if individual components fail. Rather than depending on a single security measure, it combines multiple layers of security controls both in the cloud and at network endpoints. This approach includes combinations like firewalls with intrusion-detection systems, email filtering services with desktop anti-virus, and cloud-based security alongside traditional network defenses. [115] The concept can be implemented through three distinct layers of administrative, logical, and physical controls, [116] or visualized as an onion model with data at the core, surrounded by people, network security, host-based security, and application security layers. [117] The strategy emphasizes that security involves not just technology, but also people and processes working together, with real-time monitoring and response being crucial components. [115]

Classification

An important aspect of information security and risk management is recognizing the value of information and defining appropriate procedures and protection requirements for the information. [118] Not all information is equal and so not all information requires the same degree of protection. [119] This requires information to be assigned a security classification. [120] The first step in information classification is to identify a member of senior management as the owner of the particular information to be classified. Next, develop a classification policy. [121] The policy should describe the different classification labels, define the criteria for information to be assigned a particular label, and list the required security controls for each classification. [122]

Some factors that influence which classification information should be assigned include how much value that information has to the organization, how old the information is and whether or not the information has become obsolete. [123] Laws and other regulatory requirements are also important considerations when classifying information. [124] The Information Systems Audit and Control Association (ISACA) and its Business Model for Information Security also serves as a tool for security professionals to examine security from a systems perspective, creating an environment where security can be managed holistically, allowing actual risks to be addressed. [125]

The type of information security classification labels selected and used will depend on the nature of the organization, with examples being: [122]

All employees in the organization, as well as business partners, must be trained on the classification schema and understand the required security controls and handling procedures for each classification. [128] The classification of a particular information asset that has been assigned should be reviewed periodically to ensure the classification is still appropriate for the information and to ensure the security controls required by the classification are in place and are followed in their right procedures. [129]

Access control

Access to protected information must be restricted to people who are authorized to access the information. [130] The computer programs, and in many cases the computers that process the information, must also be authorized. [131] This requires that mechanisms be in place to control the access to protected information. [131] The sophistication of the access control mechanisms should be in parity with the value of the information being protected; the more sensitive or valuable the information the stronger the control mechanisms need to be. [132] The foundation on which access control mechanisms are built start with identification and authentication. [133]

Access control is generally considered in three steps: identification, authentication, and authorization. [134] [61]

Identification

Identification is an assertion of who someone is or what something is. If a person makes the statement "Hello, my name is John Doe" they are making a claim of who they are. [135] However, their claim may or may not be true. Before John Doe can be granted access to protected information it will be necessary to verify that the person claiming to be John Doe really is John Doe. [136] Typically the claim is in the form of a username. By entering that username you are claiming "I am the person the username belongs to". [137]

Authentication

Authentication is the act of verifying a claim of identity. When John Doe goes into a bank to make a withdrawal, he tells the bank teller he is John Doe, a claim of identity. [138] The bank teller asks to see a photo ID, so he hands the teller his driver's license. [139] The bank teller checks the license to make sure it has John Doe printed on it and compares the photograph on the license against the person claiming to be John Doe. [140] If the photo and name match the person, then the teller has authenticated that John Doe is who he claimed to be. Similarly, by entering the correct password, the user is providing evidence that he/she is the person the username belongs to. [141]

There are three different types of information that can be used for authentication: [142] [143]

Strong authentication requires providing more than one type of authentication information (two-factor authentication). [149] The username is the most common form of identification on computer systems today and the password is the most common form of authentication. [150] Usernames and passwords have served their purpose, but they are increasingly inadequate. [151] Usernames and passwords are slowly being replaced or supplemented with more sophisticated authentication mechanisms such as time-based one-time password algorithms. [152]

Authorization

After a person, program or computer has successfully been identified and authenticated then it must be determined what informational resources they are permitted to access and what actions they will be allowed to perform (run, view, create, delete, or change). [153] This is called authorization. Authorization to access information and other computing services begins with administrative policies and procedures. [154] The policies prescribe what information and computing services can be accessed, by whom, and under what conditions. The access control mechanisms are then configured to enforce these policies. [155] Different computing systems are equipped with different kinds of access control mechanisms. Some may even offer a choice of different access control mechanisms. [156] The access control mechanism a system offers will be based upon one of three approaches to access control, or it may be derived from a combination of the three approaches. [61]

The non-discretionary approach consolidates all access control under a centralized administration. [157] The access to information and other resources is usually based on the individuals function (role) in the organization or the tasks the individual must perform. [158] [159] The discretionary approach gives the creator or owner of the information resource the ability to control access to those resources. [157] In the mandatory access control approach, access is granted or denied basing upon the security classification assigned to the information resource. [130]

Examples of common access control mechanisms in use today include role-based access control, available in many advanced database management systems; simple file permissions provided in the UNIX and Windows operating systems; [160] Group Policy Objects provided in Windows network systems; and Kerberos, RADIUS, TACACS, and the simple access lists used in many firewalls and routers. [161]

To be effective, policies and other security controls must be enforceable and upheld. Effective policies ensure that people are held accountable for their actions. [162] The U.S. Treasury's guidelines for systems processing sensitive or proprietary information, for example, states that all failed and successful authentication and access attempts must be logged, and all access to information must leave some type of audit trail. [163]

Also, the need-to-know principle needs to be in effect when talking about access control. This principle gives access rights to a person to perform their job functions. [164] This principle is used in the government when dealing with difference clearances. [165] Even though two employees in different departments have a top-secret clearance, they must have a need-to-know in order for information to be exchanged. Within the need-to-know principle, network administrators grant the employee the least amount of privilege to prevent employees from accessing more than what they are supposed to. [166] Need-to-know helps to enforce the confidentiality-integrity-availability triad. Need-to-know directly impacts the confidential area of the triad. [167]

Cryptography

Information security uses cryptography to transform usable information into a form that renders it unusable by anyone other than an authorized user; this process is called encryption. [168] Information that has been encrypted (rendered unusable) can be transformed back into its original usable form by an authorized user who possesses the cryptographic key, through the process of decryption. [169] Cryptography is used in information security to protect information from unauthorized or accidental disclosure while the information is in transit (either electronically or physically) and while information is in storage. [61]

Cryptography provides information security with other useful applications as well, including improved authentication methods, message digests, digital signatures, non-repudiation, and encrypted network communications. [170] Older, less secure applications such as Telnet and File Transfer Protocol (FTP) are slowly being replaced with more secure applications such as Secure Shell (SSH) that use encrypted network communications. [171] Wireless communications can be encrypted using protocols such as WPA/WPA2 or the older (and less secure) WEP. Wired communications (such as ITU‑T G.hn) are secured using AES for encryption and X.1035 for authentication and key exchange. [172] Software applications such as GnuPG or PGP can be used to encrypt data files and email. [173]

Cryptography can introduce security problems when it is not implemented correctly. [174] Cryptographic solutions need to be implemented using industry-accepted solutions that have undergone rigorous peer review by independent experts in cryptography. [175] The length and strength of the encryption key is also an important consideration. [176] A key that is weak or too short will produce weak encryption. [176] The keys used for encryption and decryption must be protected with the same degree of rigor as any other confidential information. [177] They must be protected from unauthorized disclosure and destruction, and they must be available when needed.[ citation needed ] Public key infrastructure (PKI) solutions address many of the problems that surround key management. [61]

Process

U.S. Federal Sentencing Guidelines now make it possible to hold corporate officers liable for failing to exercise due care and due diligence in the management of their information systems. [178]

In the field of information security, Harris [179] offers the following definitions of due care and due diligence:

"Due care are steps that are taken to show that a company has taken responsibility for the activities that take place within the corporation and has taken the necessary steps to help protect the company, its resources, and employees [180] ." And, [Due diligence are the]"continual activities that make sure the protection mechanisms are continually maintained and operational." [181]

Attention should be made to two important points in these definitions. [182] [183] First, in due care, steps are taken to show; this means that the steps can be verified, measured, or even produce tangible artifacts. [184] [185] Second, in due diligence, there are continual activities; this means that people are actually doing things to monitor and maintain the protection mechanisms, and these activities are ongoing. [186]

Organizations have a responsibility with practicing duty of care when applying information security. The Duty of Care Risk Analysis Standard (DoCRA) [187] provides principles and practices for evaluating risk. [188] It considers all parties that could be affected by those risks. [189] DoCRA helps evaluate safeguards if they are appropriate in protecting others from harm while presenting a reasonable burden. [190] With increased data breach litigation, companies must balance security controls, compliance, and its mission. [191]

Incident response plans

Computer security incident management is a specialized form of incident management focused on monitoring, detecting, and responding to security events on computers and networks in a predictable way. [192]

Organizations implement this through incident response plans (IRPs) that are activated when security breaches are detected. [193] These plans typically involve an incident response team (IRT) with specialized skills in areas like penetration testing, computer forensics, and network security. [194]

Change management

Change management is a formal process for directing and controlling alterations to the information processing environment. [195] [196] This includes alterations to desktop computers, the network, servers, and software. [197] The objectives of change management are to reduce the risks posed by changes to the information processing environment and improve the stability and reliability of the processing environment as changes are made. [198] It is not the objective of change management to prevent or hinder necessary changes from being implemented. [199] [200]

Any change to the information processing environment introduces an element of risk. [201] Even apparently simple changes can have unexpected effects. [202] One of management's many responsibilities is the management of risk. [203] [204] Change management is a tool for managing the risks introduced by changes to the information processing environment. [205] Part of the change management process ensures that changes are not implemented at inopportune times when they may disrupt critical business processes or interfere with other changes being implemented. [206]

Not every change needs to be managed. [207] [208] Some kinds of changes are a part of the everyday routine of information processing and adhere to a predefined procedure, which reduces the overall level of risk to the processing environment. [209] Creating a new user account or deploying a new desktop computer are examples of changes that do not generally require change management. [210] However, relocating user file shares, or upgrading the Email server pose a much higher level of risk to the processing environment and are not a normal everyday activity. [211] The critical first steps in change management are (a) defining change (and communicating that definition) and (b) defining the scope of the change system. [212]

Change management is usually overseen by a change review board composed of representatives from key business areas, [213] security, networking, systems administrators, database administration, application developers, desktop support, and the help desk. [214] The tasks of the change review board can be facilitated with the use of automated work flow application. [215] The responsibility of the change review board is to ensure the organization's documented change management procedures are followed. [216] The change management process is as follows [217]

Change management procedures that are simple to follow and easy to use can greatly reduce the overall risks created when changes are made to the information processing environment. [249] Good change management procedures improve the overall quality and success of changes as they are implemented. [250] This is accomplished through planning, peer review, documentation, and communication. [251]

ISO/IEC 20000, The Visible OPS Handbook: Implementing ITIL in 4 Practical and Auditable Steps [252] (Full book summary), [253] and ITIL all provide valuable guidance on implementing an efficient and effective change management program information security. [254]

Business continuity

Business continuity management (BCM) concerns arrangements aiming to protect an organization's critical business functions from interruption due to incidents, or at least minimize the effects. [255] [256] BCM is essential to any organization to keep technology and business in line with current threats to the continuation of business as usual. [257] The BCM should be included in an organizations risk analysis plan to ensure that all of the necessary business functions have what they need to keep going in the event of any type of threat to any business function. [258]

It encompasses:

Whereas BCM takes a broad approach to minimizing disaster-related risks by reducing both the probability and the severity of incidents, a disaster recovery plan (DRP) focuses specifically on resuming business operations as quickly as possible after a disaster. [268] A disaster recovery plan, invoked soon after a disaster occurs, lays out the steps necessary to recover critical information and communications technology (ICT) infrastructure. [269] Disaster recovery planning includes establishing a planning group, performing risk assessment, establishing priorities, developing recovery strategies, preparing inventories and documentation of the plan, developing verification criteria and procedure, and lastly implementing the plan. [270]

Laws and regulations

Privacy International 2007 privacy ranking
green: Protections and safeguards
red: Endemic surveillance societies Privacy International 2007 privacy ranking map.png
Privacy International 2007 privacy ranking
green: Protections and safeguards
red: Endemic surveillance societies

Below is a partial listing of governmental laws and regulations in various parts of the world that have, had, or will have, a significant effect on data processing and information security. [271] [272] Important industry sector regulations have also been included when they have a significant impact on information security. [271]

The US Department of Defense (DoD) issued DoD Directive 8570 in 2004, supplemented by DoD Directive 8140, requiring all DoD employees and all DoD contract personnel involved in information assurance roles and activities to earn and maintain various industry Information Technology (IT) certifications in an effort to ensure that all DoD personnel involved in network infrastructure defense have minimum levels of IT industry recognized knowledge, skills and abilities (KSA). Andersson and Reimers (2019) report these certifications range from CompTIA's A+ and Security+ through the ICS2.org's CISSP, etc. [307]

Culture

Describing more than simply how security aware employees are, information security culture is the ideas, customs, and social behaviors of an organization that impact information security in both positive and negative ways. [308] Cultural concepts can help different segments of the organization work effectively or work against effectiveness towards information security within an organization. The way employees think and feel about security and the actions they take can have a big impact on information security in organizations. Roer & Petric (2017) identify seven core dimensions of information security culture in organizations: [309]

Andersson and Reimers (2014) found that employees often do not see themselves as part of the organization Information Security "effort" and often take actions that ignore organizational information security best interests. [311] Research shows information security culture needs to be improved continuously. In Information Security Culture from Analysis to Change, authors commented, "It's a never ending process, a cycle of evaluation and change or maintenance." To manage the information security culture, five steps should be taken: pre-evaluation, strategic planning, operative planning, implementation, and post-evaluation. [312]


Other definitions

Information Security Attributes: or qualities, i.e., Confidentiality, Integrity and Availability (CIA). Information Systems are composed in three main portions, hardware, software and communications with the purpose to help identify and apply information security industry standards, as mechanisms of protection and prevention, at three levels or layers: physical, personal and organizational. Essentially, procedures or policies are implemented to tell administrators, users and operators how to use products to ensure information security within the organizations. CIAJMK1209-en.svg
Information Security Attributes: or qualities, i.e., Confidentiality, Integrity and Availability (CIA). Information Systems are composed in three main portions, hardware, software and communications with the purpose to help identify and apply information security industry standards, as mechanisms of protection and prevention, at three levels or layers: physical, personal and organizational. Essentially, procedures or policies are implemented to tell administrators, users and operators how to use products to ensure information security within the organizations.

Various definitions of information security are suggested below, summarized from different sources:

  1. "Preservation of confidentiality, integrity and availability of information. Note: In addition, other properties, such as authenticity, accountability, non-repudiation and reliability can also be involved." (ISO/IEC 27000:2018) [314]
  2. "The protection of information and information systems from unauthorized access, use, disclosure, disruption, modification, or destruction in order to provide confidentiality, integrity, and availability." (CNSS, 2010) [315]
  3. "Ensures that only authorized users (confidentiality) have access to accurate and complete information (integrity) when required (availability)." (ISACA, 2008) [316]
  4. "Information Security is the process of protecting the intellectual property of an organisation." (Pipkin, 2000) [317]
  5. "...information security is a risk management discipline, whose job is to manage the cost of information risk to the business." (McDermott and Geer, 2001) [318]
  6. "A well-informed sense of assurance that information risks and controls are in balance." (Anderson, J., 2003) [319]
  7. "Information security is the protection of information and minimizes the risk of exposing information to unauthorized parties." (Venter and Eloff, 2003) [320]
  8. "Information Security is a multidisciplinary area of study and professional activity which is concerned with the development and implementation of security mechanisms of all available types (technical, organizational, human-oriented and legal) in order to keep information in all its locations (within and outside the organization's perimeter) and, consequently, information systems, where information is created, processed, stored, transmitted and destroyed, free from threats. [321]
  9. Information and information resource security using telecommunication system or devices means protecting information, information systems or books from unauthorized access, damage, theft, or destruction (Kurose and Ross, 2010). [322]


See also

Related Research Articles

<span class="mw-page-title-main">Computer security</span> Protection of computer systems from information disclosure, theft or damage

Computer security is the protection of computer software, systems and networks from threats that can lead to unauthorized information disclosure, theft or damage to hardware, software, or data, as well as from the disruption or misdirection of the services they provide.

<span class="mw-page-title-main">Enterprise resource planning</span> Corporate task of optimizing the existing resources in a company

Enterprise resource planning (ERP) is the integrated management of main business processes, often in real time and mediated by software and technology. ERP is usually referred to as a category of business management software—typically a suite of integrated applications—that an organization can use to collect, store, manage and interpret data from many business activities. ERP systems can be local-based or cloud-based. Cloud-based applications have grown in recent years due to the increased efficiencies arising from information being readily available from any location with Internet access.

<span class="mw-page-title-main">Risk management</span> Identification, evaluation and control of risks

Risk management is the identification, evaluation, and prioritization of risks, followed by the minimization, monitoring, and control of the impact or probability of those risks occurring. Risks can come from various sources including uncertainty in international markets, political instability, dangers of project failures, legal liabilities, credit risk, accidents, natural causes and disasters, deliberate attack from an adversary, or events of uncertain or unpredictable root-cause.

An information system (IS) is a formal, sociotechnical, organizational system designed to collect, process, store, and distribute information. From a sociotechnical perspective, information systems comprise four components: task, people, structure, and technology. Information systems can be defined as an integration of components for collection, storage and processing of data, comprising digital products that process data to facilitate decision making and the data being used to provide information and contribute to knowledge.

<span class="mw-page-title-main">Analytics</span> Discovery, interpretation, and communication of meaningful patterns in data

Analytics is the systematic computational analysis of data or statistics. It is used for the discovery, interpretation, and communication of meaningful patterns in data, which also falls under and directly relates to the umbrella term, data science. Analytics also entails applying data patterns toward effective decision-making. It can be valuable in areas rich with recorded information; analytics relies on the simultaneous application of statistics, computer programming, and operations research to quantify performance.

Network security consists of the policies, processes and practices adopted to prevent, detect and monitor unauthorized access, misuse, modification, or denial of a computer network and network-accessible resources. Network security involves the authorization of access to data in a network, which is controlled by the network administrator. Users choose or are assigned an ID and password or other authenticating information that allows them access to information and programs within their authority. Network security covers a variety of computer networks, both public and private, that are used in everyday jobs: conducting transactions and communications among businesses, government agencies and individuals. Networks can be private, such as within a company, and others which might be open to public access. Network security is involved in organizations, enterprises, and other types of institutions. It does as its title explains: it secures the network, as well as protecting and overseeing operations being done. The most common and simple way of protecting a network resource is by assigning it a unique name and a corresponding password.

Identity and access management, sometimes also referred to as just Identity management (IdM), is a framework of policies and technologies to ensure that the right users have the appropriate access to technology resources. IAM systems fall under the overarching umbrellas of IT security and data management. Identity and access management systems not only identify, authenticate, and control access for individuals who will be utilizing IT resources but also the hardware and applications employees need to access.

In the context of software engineering, software quality refers to two related but distinct notions:

An information security audit is an audit of the level of information security in an organization. It is an independent review and examination of system records, activities, and related documents. These audits are intended to improve the level of information security, avoid improper information security designs, and optimize the efficiency of the security safeguards and security processes.

<span class="mw-page-title-main">SAP ERP</span> German enterprise resource planning software

SAP ERP is enterprise resource planning software developed by the German company SAP SE. SAP ERP incorporates the key business functions of an organization. The latest version of SAP ERP (V.6.0) was made available in 2006. The most recent SAP enhancement package 8 for SAP ERP 6.0 was released in 2016. It is now considered legacy technology, having been superseded by SAP S/4HANA.

Information assurance (IA) is the practice of assuring information and managing risks related to the use, processing, storage, and transmission of information. Information assurance includes protection of the integrity, availability, authenticity, non-repudiation and confidentiality of user data. IA encompasses both digital protections and physical techniques. These methods apply to data in transit, both physical and electronic forms, as well as data at rest. IA is best thought of as a superset of information security, and as the business outcome of information risk management.

Internet of things (IoT) describes devices with sensors, processing ability, software and other technologies that connect and exchange data with other devices and systems over the Internet or other communication networks. The Internet of things encompasses electronics, communication, and computer science engineering. "Internet of things" has been considered a misnomer because devices do not need to be connected to the public internet; they only need to be connected to a network and be individually addressable.

Computer security software or cybersecurity software is any computer program designed to influence information security. This is often taken in the context of defending computer systems or data, yet can incorporate programs designed specifically for subverting computer systems due to their significant overlap, and the adage that the best defense is a good offense.

Cloud computing security or, more simply, cloud security, refers to a broad set of policies, technologies, applications, and controls utilized to protect virtualized IP, data, applications, services, and the associated infrastructure of cloud computing. It is a sub-domain of computer security, network security, and, more broadly, information security.

Security information and event management (SIEM) is a field within computer security that combines security information management (SIM) and security event management (SEM) to enable real-time analysis of security alerts generated by applications and network hardware. SIEM systems are central to security operations centers (SOCs), where they are employed to detect, investigate, and respond to security incidents. SIEM technology collects and aggregates data from various systems, allowing organizations to meet compliance requirements while safeguarding against threats.

<span class="mw-page-title-main">Risk Management Framework</span> US federal government guideline

The Risk Management Framework (RMF) is a United States federal government guideline, standard, and process for managing risk to help secure information systems. The RMF was developed by the National Institute of Standards and Technology (NIST), and provides a structured process that integrates information security, privacy, and risk management activities into the system development life cycle. The RMF is an important aspect of a systems attainment of its Authority to Operate (ATO).

<span class="mw-page-title-main">IT risk management</span>

IT risk management is the application of risk management methods to information technology in order to manage IT risk. Various methodologies exist to manage IT risks, each involving specific processes and steps.

Information technology (IT) is a set of related fields that encompass computer systems, software, programming languages, data and information processing, and storage. IT forms part of information and communications technology (ICT). An information technology system is generally an information system, a communications system, or, more specifically speaking, a computer system — including all hardware, software, and peripheral equipment — operated by a limited group of IT users, and an IT project usually refers to the commissioning and implementation of an IT system. IT systems play a vital role in facilitating efficient data management, enhancing communication networks, and supporting organizational processes across various industries. Successful IT projects require meticulous planning, seamless integration, and ongoing maintenance to ensure optimal functionality and alignment with organizational objectives.

A cyberattack occurs when there is an unauthorized action against computer infrastructure that compromises the confidentiality, integrity, or availability of its content.

The NIST Cybersecurity Framework (CSF) is a set of voluntary guidelines designed to help organizations assess and improve their ability to prevent, detect, and respond to cybersecurity risks. Developed by the U.S. National Institute of Standards and Technology (NIST), the framework was initially published in 2014 for critical infrastructure sectors but has since been widely adopted across various industries, including government and private enterprises globally. The framework integrates existing standards, guidelines, and best practices to provide a structured approach to cybersecurity risk management.

References

  1. Joshi, Chanchala; Singh, Umesh Kumar (August 2017). "Information security risks management framework – A step towards mitigating security risks in university network". Journal of Information Security and Applications. 35: 128–137. doi:10.1016/j.jisa.2017.06.006. ISSN   2214-2126.
  2. Daniel, Kent; Titman, Sheridan (August 2006). "Market Reactions to Tangible and Intangible Information". The Journal of Finance. 61 (4): 1605–1643. doi:10.1111/j.1540-6261.2006.00884.x. SSRN   414701.
  3. Fink, Kerstin (2004). Knowledge Potential Measurement and Uncertainty. Deutscher Universitätsverlag. ISBN   978-3-322-81240-7. OCLC   851734708.
  4. 1 2 Samonas, S.; Coss, D. (2014). "The CIA Strikes Back: Redefining Confidentiality, Integrity and Availability in Security". Journal of Information System Security. 10 (3): 21–45. Archived from the original on September 22, 2018. Retrieved January 25, 2018.
  5. Keyser, Tobias (April 19, 2018), "Security policy", The Information Governance Toolkit, CRC Press, pp. 57–62, doi:10.1201/9781315385488-13, ISBN   978-1-315-38548-8 , retrieved May 28, 2021
  6. Danzig, Richard; National Defense University Washington DC Inst for National Strategic Studies (1995). "The big three: Our greatest security risks and how to address them". DTIC ADA421883.
  7. Lyu, M.R.; Lau, L.K.Y. (2000). "Firewall security: Policies, testing and performance evaluation". Proceedings 24th Annual International Computer Software and Applications Conference. COMPSAC2000. IEEE Comput. Soc. pp. 116–121. doi:10.1109/cmpsac.2000.884700. ISBN   0-7695-0792-1. S2CID   11202223.
  8. "How the Lack of Data Standardization Impedes Data-Driven Healthcare", Data-Driven Healthcare, Hoboken, NJ, US: John Wiley & Sons, Inc., p. 29, October 17, 2015, doi:10.1002/9781119205012.ch3, ISBN   978-1-119-20501-2 , retrieved May 28, 2021
  9. "Gartner Says Digital Disruptors Are Impacting All Industries; Digital KPIs Are Crucial to Measuring Success". Gartner. October 2, 2017. Retrieved January 25, 2018.
  10. "Gartner Survey Shows 42 Percent of CEOs Have Begun Digital Business Transformation". Gartner. April 24, 2017. Retrieved January 25, 2018.
  11. Fetzer, James; Highfill, Tina; Hossiso, Kassu; Howells, Thomas; Strassner, Erich; Young, Jeffrey (November 2018). "Accounting for Firm Heterogeneity within U.S. Industries: Extended Supply-Use Tables and Trade in Value Added using Enterprise and Establishment Level Data". Working Paper Series. National Bureau of Economic Research. doi:10.3386/w25249. S2CID   169324096.
  12. "Secure estimation subject to cyber stochastic attacks", Cloud Control Systems, Emerging Methodologies and Applications in Modelling, Elsevier: 373–404, 2020, doi:10.1016/b978-0-12-818701-2.00021-4, ISBN   978-0-12-818701-2, S2CID   240746156 , retrieved May 28, 2021
  13. Nijmeijer, H. (2003). Synchronization of mechanical systems. World Scientific. ISBN   978-981-279-497-0. OCLC   262846185.
  14. "9 Types of Cybersecurity Specializations".
  15. "ITU-T Recommendation database".
  16. Rahim, Noor H. (March 2006). Human Rights and Internal Security in Malaysia: Rhetoric and Reality. Defense Technical Information Center. OCLC   74288358.
  17. Kramer, David (September 14, 2018). "Nuclear theft and sabotage threats remain high, report warns". Physics Today (9): 30951. Bibcode:2018PhT..2018i0951K. doi:10.1063/pt.6.2.20180914a. ISSN   1945-0699. S2CID   240223415.
  18. Wilding, Edward (March 2, 2017). Information risk and security : preventing and investigating workplace computer crime. Routledge. ISBN   978-1-351-92755-0. OCLC   1052118207.
  19. Stewart, James (2012). CISSP Study Guide. Canada: John Wiley & Sons. pp. 255–257. ISBN   978-1-118-31417-3.
  20. "Why has productivity growth declined?". OECD Economic Surveys: Denmark 2009. OECD. 2009. pp. 65–96. doi:10.1787/eco_surveys-dnk-2009-4-en. ISBN   9789264076556 . Retrieved November 30, 2023.
  21. "Identity Theft: The Newest Digital Attackking Industry Must Take Seriously". Issues in Information Systems. 2007. doi: 10.48009/2_iis_2007_297-302 . ISSN   1529-7314.
  22. Wendel-Persson, Anna; Ronnhed, Fredrik (2017). IT-säkerhet och människan : De har världens starkaste mur men porten står alltid på glänt. Umeå universitet, Institutionen för informatik. OCLC   1233659973.
  23. Shao, Ruodan; Skarlicki, Daniel P. (2014). "Sabotage toward the Customers who Mistreated Employees Scale". PsycTESTS Dataset. doi:10.1037/t31653-000 . Retrieved May 28, 2021.
  24. Kitchen, Julie (June 2008). "7side – Company Information, Company Formations and Property Searches". Legal Information Management. 8 (2): 146. doi:10.1017/s1472669608000364. ISSN   1472-6696. S2CID   144325193.
  25. Young, Courtenay (May 8, 2018), "Working with panic attacks", Help Yourself Towards Mental Health, Routledge, pp. 209–214, doi:10.4324/9780429475474-32, ISBN   978-0-429-47547-4 , retrieved May 28, 2021
  26. Lequiller, F.; Blades, D. (2014). Table 7.7 France: Comparison of the profit shares of non-financial corporations and non-financial corporations plus unincorporated enterprises (PDF). OECD. p. 217. doi:10.1787/9789264214637-en. ISBN   978-92-64-21462-0 . Retrieved December 1, 2023.
  27. "How Did it All Come About?", The Compliance Business and Its Customers, Basingstoke: Palgrave Macmillan, 2012, doi:10.1057/9781137271150.0007 (inactive November 11, 2024), ISBN   978-1-137-27115-0 {{citation}}: CS1 maint: DOI inactive as of November 2024 (link)
  28. Gordon, Lawrence A.; Loeb, Martin P. (November 2002). "The Economics of Information Security Investment". ACM Transactions on Information and System Security. 5 (4): 438–457. doi:10.1145/581271.581274. S2CID   1500788.
  29. Cho Kim, Byung; Khansa, Lara; James, Tabitha (July 2011). "Individual Trust and Consumer Risk Perception". Journal of Information Privacy and Security. 7 (3): 3–22. doi:10.1080/15536548.2011.10855915. ISSN   1553-6548. S2CID   144643691.
  30. Larsen, Daniel (October 31, 2019). "Creating An American Culture Of Secrecy: Cryptography In Wilson-Era Diplomacy". Diplomatic History. doi:10.1093/dh/dhz046. ISSN   0145-2096.
  31. "Introduction : Caesar Is Dead. Long Live Caesar!", Julius Caesar's Self-Created Image and Its Dramatic Afterlife, Bloomsbury Academic, 2018, doi:10.5040/9781474245784.0005, ISBN   978-1-4742-4578-4 , retrieved May 29, 2021
  32. Suetonius Tranquillus, Gaius (2008). Lives of the Caesars (Oxford World's Classics). New York: Oxford University Press. p. 28. ISBN   978-0-19-953756-3.
  33. Singh, Simon (2000). The Code Book. Anchor. pp.  289–290. ISBN   978-0-385-49532-5.
  34. Tan, Heng Chuan (2017). Towards trusted and secure communications in a vehicular environment (Thesis). Nanyang Technological University. doi:10.32657/10356/72758.
  35. Johnson, John (1997). The Evolution of British Sigint: 1653–1939. Her Majesty's Stationery Office. ASIN   B00GYX1GX2.
  36. Willison, M. (September 21, 2018). "Were Banks Special? Contrasting Viewpoints in Mid-Nineteenth Century Britain". Monetary Economics: International Financial Flows. doi:10.2139/ssrn.3249510 . Retrieved December 1, 2023.
  37. Ruppert, K. (2011). "Official Secrets Act (1889; New 1911; Amended 1920, 1939, 1989)". In Hastedt, G.P. (ed.). Spies, Wiretaps, and Secret Operations: An Encyclopedia of American Espionage. Vol. 2. ABC-CLIO. pp. 589–590. ISBN   9781851098088.
  38. "2. The Clayton Act: A consideration of section 2, defining unlawful price discrimination". The Federal Anti-Trust Law. Columbia University Press. December 31, 1930. pp. 18–28. doi:10.7312/dunn93452-003. ISBN   978-0-231-89377-0 . Retrieved May 29, 2021.
  39. Maer, Lucinda; Gay (December 30, 2008). "Official Secrecy" (PDF). Federation of American Scientists.
  40. "The Official Secrets Act 1989 which replaced section 2 of the 1911 Act", Espionage and Secrecy (Routledge Revivals), Routledge, pp. 267–282, June 10, 2016, doi:10.4324/9781315542515-21 (inactive December 12, 2024), ISBN   978-1-315-54251-5 {{citation}}: CS1 maint: DOI inactive as of December 2024 (link)
  41. "Official Secrets Act: what it covers; when it has been used, questioned". The Indian Express. March 8, 2019. Retrieved August 7, 2020.
  42. Singh, Gajendra (November 2015). ""Breaking the Chains with Which We were Bound": The Interrogation Chamber, the Indian National Army and the Negation of Military Identities, 1941–1947". Brill's Digital Library of World War I. doi:10.1163/2352-3786_dlws1_b9789004211452_019 . Retrieved May 28, 2021.
  43. Duncanson, Dennis (June 1982). "The scramble to unscramble French Indochina". Asian Affairs. 13 (2): 161–170. doi:10.1080/03068378208730070. ISSN   0306-8374.
  44. Whitman et al. 2017, pp. 3.
  45. "Allied Power. Mobilizing Hydro-Electricity During Canada'S Second World War", Allied Power, University of Toronto Press, pp. 1–2, December 31, 2015, doi:10.3138/9781442617117-003, ISBN   978-1-4426-1711-7 , retrieved May 29, 2021
  46. Glatthaar, Joseph T. (June 15, 2011), "Officers and Enlisted Men", Soldiering in the Army of Northern Virginia, University of North Carolina Press, pp. 83–96, doi:10.5149/9780807877869_glatthaar.11, ISBN   978-0-8078-3492-3 , retrieved May 28, 2021
  47. 1 2 Sebag–Montefiore, H. (2011). Enigma: The Battle for the Code. Orion. p. 576. ISBN   9781780221236.
  48. Whitman et al. 2017, pp. 4–5.
  49. 1 2 Whitman et al. 2017, p. 5.
  50. Dekar, Paul R. (April 26, 2012). Thomas Merton: Twentieth-Century Wisdom for Twenty-First-Century Living. The Lutterworth Press. pp. 160–184. doi:10.2307/j.ctt1cg4k28.13. ISBN   978-0-7188-4069-3 . Retrieved May 29, 2021.
  51. Murphy, Richard C. (September 1, 2009). Building more powerful less expensive supercomputers using Processing-In-Memory (PIM) LDRD final report (Report). doi:10.2172/993898.
  52. "A Brief History of the Internet". www.usg.edu. Retrieved August 7, 2020.
  53. "Walking through the view of Delft - on Internet". Computers & Graphics. 25 (5): 927. October 2001. doi:10.1016/s0097-8493(01)00149-2. ISSN   0097-8493.
  54. DeNardis, L. (2007). "Chapter 24: A History of Internet Security". In de Leeuw, K.M.M.; Bergstra, J. (eds.). The History of Information Security: A Comprehensive Handbook . Elsevier. pp.  681–704. ISBN   9780080550589.
  55. Parrish, Allen; Impagliazzo, John; Raj, Rajendra K.; Santos, Henrique; Asghar, Muhammad Rizwan; Jøsang, Audun; Pereira, Teresa; Stavrou, Eliana (July 2, 2018). "Global perspectives on cybersecurity education for 2030: A case for a meta-discipline". Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education. ACM. pp. 36–54. doi:10.1145/3293881.3295778. hdl:1822/71620. ISBN   978-1-4503-6223-8. S2CID   58004425.
  56. Perrin, Chad (June 30, 2008). "The CIA Triad" . Retrieved May 31, 2012.
  57. Ham, Jeroen Van Der (June 8, 2021). "Toward a Better Understanding of "Cybersecurity"". Digital Threats: Research and Practice. 2 (3): 1–3. doi:10.1145/3442445. ISSN   2692-1626.
  58. 1 2 Stoneburner, G.; Hayden, C.; Feringa, A. (2004). "Engineering Principles for Information Technology Security" (PDF). csrc.nist.gov. doi:10.6028/NIST.SP.800-27rA. Archived from the original (PDF) on August 15, 2011. Retrieved August 28, 2011.
  59. Beckers, K. (2015). Pattern and Security Requirements: Engineering-Based Establishment of Security Standards. Springer. p. 100. ISBN   9783319166643.
  60. Fienberg, Stephen E.; Slavković, Aleksandra B. (2011), "Data Privacy and Confidentiality", International Encyclopedia of Statistical Science, pp. 342–345, doi:10.1007/978-3-642-04898-2_202, ISBN   978-3-642-04897-5
  61. 1 2 3 4 5 Andress, J. (2014). The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice. Syngress. p. 240. ISBN   9780128008126.
  62. Boritz, J. Efrim (2005). "IS Practitioners' Views on Core Concepts of Information Integrity". International Journal of Accounting Information Systems. 6 (4). Elsevier: 260–279. doi:10.1016/j.accinf.2005.07.001.
  63. Hryshko, I. (2020). "Unauthorized Occupation of Land and Unauthorized Construction: Concepts and Types of Tactical Means of Investigation". International Humanitarian University Herald. Jurisprudence (43): 180–184. doi: 10.32841/2307-1745.2020.43.40 . ISSN   2307-1745.
  64. Kim, Bonn-Oh (September 21, 2000), "Referential Integrity for Database Design", High-Performance Web Databases, Auerbach Publications, pp. 427–434, doi:10.1201/9781420031560-34, ISBN   978-0-429-11600-1 , retrieved May 29, 2021
  65. Pevnev, V. (2018). "Model Threats and Ensure the Integrity of Information". Systems and Technologies. 2 (56): 80–95. doi: 10.32836/2521-6643-2018.2-56.6 . ISSN   2521-6643.
  66. Fan, Lejun; Wang, Yuanzhuo; Cheng, Xueqi; Li, Jinming; Jin, Shuyuan (February 26, 2013). "Privacy theft malware multi-process collaboration analysis". Security and Communication Networks. 8 (1): 51–67. doi: 10.1002/sec.705 . ISSN   1939-0114.
  67. "Completeness, Consistency, and Integrity of the Data Model". Measuring Data Quality for Ongoing Improvement. MK Series on Business Intelligence. Elsevier. 2013. pp. e11–e19. doi:10.1016/b978-0-12-397033-6.00030-4. ISBN   978-0-12-397033-6 . Retrieved May 29, 2021.
  68. Video from SPIE - the International Society for Optics and Photonics. doi:10.1117/12.2266326.5459349132001 . Retrieved May 29, 2021.
  69. "Communication Skills Used by Information Systems Graduates". Issues in Information Systems. 2005. doi: 10.48009/1_iis_2005_311-317 . ISSN   1529-7314.
  70. Outages of electric power supply resulting from cable failures Boston Edison Company system (Report). July 1, 1980. doi:10.2172/5083196. OSTI   5083196 . Retrieved January 18, 2022.
  71. Loukas, G.; Oke, G. (September 2010) [August 2009]. "Protection Against Denial of Service Attacks: A Survey" (PDF). Comput. J. 53 (7): 1020–1037. doi:10.1093/comjnl/bxp078. Archived from the original (PDF) on March 24, 2012. Retrieved August 28, 2015.
  72. "Be Able To Perform a Clinical Activity", Definitions, Qeios, February 2, 2020, doi: 10.32388/dine5x , S2CID   241238722
  73. Ohta, Mai; Fujii, Takeo (May 2011). "Iterative cooperative sensing on shared primary spectrum for improving sensing ability". 2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE. pp. 623–627. doi:10.1109/dyspan.2011.5936257. ISBN   978-1-4577-0177-1. S2CID   15119653.
  74. Information technology. Information security incident management, BSI British Standards, doi:10.3403/30387743 , retrieved May 29, 2021
  75. Blum, Dan (2020), "Identify and Align Security-Related Roles", Rational Cybersecurity for Business, Berkeley, CA: Apress, pp. 31–60, doi: 10.1007/978-1-4842-5952-8_2 , ISBN   978-1-4842-5951-1, S2CID   226626983
  76. McCarthy, C. (2006). "Digital Libraries: Security and Preservation Considerations". In Bidgoli, H. (ed.). Handbook of Information Security, Threats, Vulnerabilities, Prevention, Detection, and Management. Vol. 3. John Wiley & Sons. pp. 49–76. ISBN   9780470051214.
  77. Information technology. Open systems interconnection. Security frameworks for open systems, BSI British Standards, doi:10.3403/01110206u , retrieved May 29, 2021
  78. Christofori, Ralf (January 1, 2014), "Thus could it have been", Julio Rondo - O.k., Meta Memory, Wilhelm Fink Verlag, doi:10.30965/9783846757673_003 (inactive November 1, 2024), ISBN   978-3-7705-5767-7 {{citation}}: CS1 maint: DOI inactive as of November 2024 (link)
  79. Atkins, D. (May 2021). "Use of the Walnut Digital Signature Algorithm with CBOR Object Signing and Encryption (COSE)". RFC Editor. doi: 10.17487/rfc9021 . S2CID   182252627 . Retrieved January 18, 2022.
  80. Le May, I. (2003), "Structural Integrity in the Petrochemical Industry", Comprehensive Structural Integrity, Elsevier, pp. 125–149, doi:10.1016/b0-08-043749-4/01001-6, ISBN   978-0-08-043749-1 , retrieved May 29, 2021
  81. "oecd.org" (PDF). Archived from the original (PDF) on May 16, 2011. Retrieved January 17, 2014.
  82. "GSSP (Generally-Accepted system Security Principles): A trip to abilene". Computers & Security. 15 (5): 417. January 1996. doi:10.1016/0167-4048(96)82630-7. ISSN   0167-4048.
  83. Slade, Rob. "(ICS)2 Blog". Archived from the original on November 17, 2017. Retrieved November 17, 2017.
  84. Aceituno, Vicente. "Open Information Security Maturity Model" . Retrieved February 12, 2017.
  85. Sodjahin, Amos; Champagne, Claudia; Coggins, Frank; Gillet, Roland (January 11, 2017). "Leading or lagging indicators of risk? The informational content of extra-financial performance scores". Journal of Asset Management. 18 (5): 347–370. doi:10.1057/s41260-016-0039-y. ISSN   1470-8272. S2CID   157485290.
  86. Reynolds, E H (July 22, 1995). "Folate has potential to cause harm". BMJ. 311 (6999): 257. doi:10.1136/bmj.311.6999.257. ISSN   0959-8138. PMC   2550299 . PMID   7503870.
  87. Randall, Alan (2011), "Harm, risk, and threat", Risk and Precaution, Cambridge: Cambridge University Press, pp. 31–42, doi:10.1017/cbo9780511974557.003, ISBN   978-0-511-97455-7 , retrieved May 29, 2021
  88. Grama, J.L. (2014). Legal Issues in Information Security. Jones & Bartlett Learning. p. 550. ISBN   9781284151046.
  89. Cannon, David L. (March 4, 2016). "Audit Process". CISA: Certified Information Systems Auditor Study Guide (Fourth ed.). pp. 139–214. doi:10.1002/9781119419211.ch3. ISBN   9781119056249.
  90. CISA Review Manual 2006. Information Systems Audit and Control Association. 2006. p. 85. ISBN   978-1-933284-15-6.
  91. Kadlec, Jaroslav (November 2, 2012). "Two-dimensional process modeling (2DPM)". Business Process Management Journal. 18 (6): 849–875. doi:10.1108/14637151211283320. ISSN   1463-7154.
  92. "All Countermeasures Have Some Value, But No Countermeasure Is Perfect", Beyond Fear, New York: Springer-Verlag, pp. 207–232, 2003, doi:10.1007/0-387-21712-6_14, ISBN   0-387-02620-7 , retrieved May 29, 2021
  93. "Data breaches: Deloitte suffers serious hit while more details emerge about Equifax and Yahoo". Computer Fraud & Security. 2017 (10): 1–3. October 2017. doi:10.1016/s1361-3723(17)30086-6. ISSN   1361-3723.
  94. Spagnoletti, Paolo; Resca A. (2008). "The duality of Information Security Management: fighting against predictable and unpredictable threats". Journal of Information System Security. 4 (3): 46–62.
  95. Yusoff, Nor Hashim; Yusof, Mohd Radzuan (August 4, 2009). "Managing HSE Risk in Harsh Environment". All Days. SPE. doi:10.2118/122545-ms.
  96. Baxter, Wesley (2010). Sold out: how Ottawa's downtown business improvement areas have secured and valorized urban space (Thesis). Carleton University. doi:10.22215/etd/2010-09016.
  97. de Souza, André; Lynch, Anthony (June 2012). "Does Mutual Fund Performance Vary over the Business Cycle?". Cambridge, MA. doi:10.3386/w18137. S2CID   262620435.
  98. Kiountouzis, E.A.; Kokolakis, S.A. (May 31, 1996). Information systems security: facing the information society of the 21st century. London: Chapman & Hall, Ltd. ISBN   978-0-412-78120-9.
  99. Newsome, B. (2013). A Practical Introduction to Security and Risk Management. SAGE Publications. p. 208. ISBN   9781483324852.
  100. Whitman, M.E.; Mattord, H.J. (2016). Management of Information Security (5th ed.). Cengage Learning. p. 592. ISBN   9781305501256.
  101. "Hardware, Fabrics, Adhesives, and Other Theatrical Supplies", Illustrated Theatre Production Guide, Routledge, pp. 203–232, March 20, 2013, doi:10.4324/9780080958392-20, ISBN   978-0-08-095839-2 , retrieved May 29, 2021
  102. Reason, James (March 2, 2017), "Perceptions of Unsafe Acts", The Human Contribution, CRC Press, pp. 69–103, doi:10.1201/9781315239125-7, ISBN   978-1-315-23912-5 , retrieved May 29, 2021
  103. "Information Security Procedures and Standards", Information Security Policies, Procedures, and Standards, Boca Raton, FL: Auerbach Publications, pp. 81–92, March 27, 2017, doi:10.1201/9781315372785-5, ISBN   978-1-315-37278-5 , retrieved May 29, 2021
  104. Zhuang, Haifeng; Chen, Yu; Sheng, Xianfu; Hong, Lili; Gao, Ruilan; Zhuang, Xiaofen (June 25, 2020). "Figure S1: Analysis of the prognostic impact of each single signature gene". PeerJ. 8: e9437. doi: 10.7717/peerj.9437/supp-1 .
  105. Standaert, B.; Ethgen, O.; Emerson, R.A. (June 2012). "CO4 Cost-Effectiveness Analysis - Appropriate for All Situations?". Value in Health. 15 (4): A2. doi: 10.1016/j.jval.2012.03.015 . ISSN   1098-3015.
  106. "GRP canopies provide cost-effective over-door protection". Reinforced Plastics. 40 (11): 8. November 1996. doi:10.1016/s0034-3617(96)91328-4. ISSN   0034-3617.
  107. "Figure 2.3. Relative risk of being a low performer depending on personal circumstances (2012)". doi:10.1787/888933171410 . Retrieved May 29, 2021.
  108. Stoneburner, Gary; Goguen, Alice; Feringa, Alexis (2002). "NIST SP 800-30 Risk Management Guide for Information Technology Systems". doi:10.6028/NIST.SP.800-30 . Retrieved January 18, 2022.
  109. "May I Choose? Can I Choose? Oppression and Choice", A Theory of Freedom, Palgrave Macmillan, 2012, doi:10.1057/9781137295026.0007 (inactive November 11, 2024), ISBN   978-1-137-29502-6 {{citation}}: CS1 maint: DOI inactive as of November 2024 (link)
  110. Parker, Donn B. (January 1994). "A Guide to Selecting and Implementing Security Controls". Information Systems Security. 3 (2): 75–86. doi:10.1080/10658989409342459. ISSN   1065-898X.
  111. Zoccali, Carmine; Mallamaci, Francesca; Tripepi, Giovanni (September 25, 2007). "Guest Editor: Rajiv Agarwal: Cardiovascular Risk Profile Assessment and Medication Control Should Come First". Seminars in Dialysis. 20 (5): 405–408. doi:10.1111/j.1525-139x.2007.00317.x. ISSN   0894-0959. PMID   17897245. S2CID   33256127.
  112. Guide to the Implementation and Auditing of ISMS Controls based on ISO/IEC 27001. London: BSI British Standards. November 1, 2013. doi:10.3403/9780580829109. ISBN   978-0-580-82910-9.
  113. Johnson, L. (2015). Security Controls Evaluation, Testing, and Assessment Handbook. Syngress. p. 678. ISBN   9780128025642.
  114. Information technology. Security techniques. Mapping the revised editions of ISO/IEC 27001 and ISO/IEC 27002, BSI British Standards, doi:10.3403/30310928 , retrieved May 29, 2021
  115. 1 2 Schneier on Security: Security in the Cloud
  116. "Administrative Controls", Occupational Ergonomics, CRC Press, pp. 443–666, March 26, 2003, doi:10.1201/9780203507933-6, ISBN   978-0-429-21155-3 , retrieved May 29, 2021
  117. "Security Onion Control Scripts". Applied Network Security Monitoring. Elsevier. 2014. pp. 451–456. doi:10.1016/b978-0-12-417208-1.09986-4. ISBN   978-0-12-417208-1 . Retrieved May 29, 2021.
  118. "Overview", Information Security Policies, Procedures, and Standards, Auerbach Publications, December 20, 2001, doi:10.1201/9780849390326.ch1 (inactive November 11, 2024), ISBN   978-0-8493-1137-6 {{citation}}: CS1 maint: DOI inactive as of November 2024 (link)
  119. Electrical protection relays. Information and requirements for all protection relays, BSI British Standards, doi:10.3403/bs142-1 , retrieved May 29, 2021
  120. Dibattista, Joseph D.; Reimer, James D.; Stat, Michael; Masucci, Giovanni D.; Biondi, Piera; Brauwer, Maarten De; Bunce, Michael (February 6, 2019). "Supplemental Information 4: List of all combined families in alphabetical order assigned in MEGAN vers. 5.11.3". PeerJ. 7: e6379. doi: 10.7717/peerj.6379/supp-4 .
  121. Kim, Sung-Won (March 31, 2006). "A Quantitative Analysis of Classification Classes and Classified Information Resources of Directory". Journal of Information Management. 37 (1): 83–103. doi: 10.1633/jim.2006.37.1.083 . ISSN   0254-3621.
  122. 1 2 Bayuk, J. (2009). "Chapter 4: Information Classification". In Axelrod, C.W.; Bayuk, J.L.; Schutzer, D. (eds.). Enterprise Information Security and Privacy. Artech House. pp. 59–70. ISBN   9781596931916.
  123. "Welcome to the Information Age", Overload!, Hoboken, NJ, US: John Wiley & Sons, Inc., pp. 43–65, September 11, 2015, doi:10.1002/9781119200642.ch5, ISBN   978-1-119-20064-2 , retrieved May 29, 2021
  124. Crooks, S. (2006). "102. Case Study: When Exposure Control Efforts Override Other Important Design Considerations". AIHce 2006. AIHA. pp. V102. doi:10.3320/1.2759009 (inactive November 1, 2024).{{cite book}}: CS1 maint: DOI inactive as of November 2024 (link)
  125. "Business Model for Information Security (BMIS)". ISACA. Archived from the original on January 26, 2018. Retrieved January 25, 2018.
  126. McAuliffe, Leo (January 1987). "Top secret/trade secret: Accessing and safeguarding restricted information". Government Information Quarterly. 4 (1): 123–124. doi:10.1016/0740-624x(87)90068-2. ISSN   0740-624X.
  127. Iqbal, Javaid; Soroya, Saira Hanif; Mahmood, Khalid (January 5, 2023). "Financial information security behavior in online banking". Information Development. 40 (4): 550–565. doi:10.1177/02666669221149346. ISSN   0266-6669. S2CID   255742685.
  128. Khairuddin, Ismail Mohd; Sidek, Shahrul Naim; Abdul Majeed, Anwar P.P.; Razman, Mohd Azraai Mohd; Puzi, Asmarani Ahmad; Yusof, Hazlina Md (February 25, 2021). "Figure 7: Classification accuracy for each model for all features". PeerJ Computer Science. 7: e379. doi: 10.7717/peerj-cs.379/fig-7 .
  129. "Asset Classification", Information Security Fundamentals, Auerbach Publications, pp. 327–356, October 16, 2013, doi:10.1201/b15573-18, ISBN   978-0-429-13028-1 , retrieved June 1, 2021
  130. 1 2 Almehmadi, Abdulaziz; El-Khatib, Khalil (2013). "Authorized! Access denied, unauthorized! Access granted". Proceedings of the 6th International Conference on Security of Information and Networks. Sin '13. New York, New York, US: ACM Press. pp. 363–367. doi:10.1145/2523514.2523612. ISBN   978-1-4503-2498-4. S2CID   17260474.
  131. 1 2 Peiss, Kathy (2020), "The Country of the Mind Must Also Attack", Information Hunters, Oxford University Press, pp. 16–39, doi:10.1093/oso/9780190944612.003.0003, ISBN   978-0-19-094461-2 , retrieved June 1, 2021
  132. Fugini, M.G.; Martella, G. (January 1988). "A petri-net model of access control mechanisms". Information Systems. 13 (1): 53–63. doi:10.1016/0306-4379(88)90026-9. ISSN   0306-4379.
  133. Information technology. Personal identification. ISO-compliant driving licence, BSI British Standards, doi:10.3403/30170670u , retrieved June 1, 2021
  134. Santos, Omar (2015). Ccna security 210-260 official cert guide. Cisco press. ISBN   978-1-58720-566-8. OCLC   951897116.
  135. "What is Assertion?", ASSERTION TRAINING, Abingdon, UK: Taylor & Francis, pp. 1–7, 1991, doi:10.4324/9780203169186_chapter_one, ISBN   978-0-203-28556-5 , retrieved June 1, 2021
  136. Doe, John (1960). "Field Season In Illinois Begins May 2". Soil Horizons. 1 (2): 10. doi:10.2136/sh1960.2.0010. ISSN   2163-2812.
  137. Leech, M. (March 1996). "Username/Password Authentication for SOCKS V5". doi:10.17487/rfc1929 . Retrieved January 18, 2022.
  138. Kirk, John; Wall, Christine (2011), "Teller, Seller, Union Activist: Class Formation and Changing Bank Worker Identities", Work and Identity, London: Palgrave Macmillan UK, pp. 124–148, doi:10.1057/9780230305625_6, ISBN   978-1-349-36871-6 , retrieved June 1, 2021
  139. Dewi, Mila Nurmala (December 23, 2020). "Perbandingan Kinerja Teller Kriya Dan Teller Organik Pt. Bank Syariah Mandiri". Nisbah: Jurnal Perbankan Syariah. 6 (2): 75. doi: 10.30997/jn.v6i2.1932 . ISSN   2528-6633. S2CID   234420571.
  140. Vile, John (2013), "License Checks", Encyclopedia of the Fourth Amendment, Washington DC: CQ Press, doi:10.4135/9781452234243.n462, ISBN   978-1-60426-589-7 , retrieved June 1, 2021
  141. "He Said/She Said", My Ghost Has a Name, University of South Carolina Press, pp. 17–32, doi:10.2307/j.ctv6wgjjv.6, ISBN   978-1-61117-827-2 , retrieved May 29, 2021
  142. Bacigalupo, Sonny A.; Dixon, Linda K.; Gubbins, Simon; Kucharski, Adam J.; Drewe, Julian A. (October 26, 2020). "Supplemental Information 8: Methods used to monitor different types of contact". PeerJ. 8: e10221. doi: 10.7717/peerj.10221/supp-8 .
  143. Igelnik, Boris M.; Zurada, Jacek (2013). Efficiency and scalability methods for computational intellect. Information Science Reference. ISBN   978-1-4666-3942-3. OCLC   833130899.
  144. "The Insurance Superbill Must Have Your Name as the Provider", Before You See Your First Client, Routledge, pp. 37–38, January 1, 2005, doi:10.4324/9780203020289-11, ISBN   978-0-203-02028-9 , retrieved June 1, 2021
  145. Kissell, Joe. Take Control of Your Passwords. ISBN   978-1-4920-6638-5. OCLC   1029606129.
  146. "New smart Queensland driver license announced". Card Technology Today. 21 (7): 5. July 2009. doi:10.1016/s0965-2590(09)70126-4. ISSN   0965-2590.
  147. Lawrence Livermore National Laboratory. United States. Department of Energy. Office of Scientific and Technical Information (1995). A human engineering and ergonomic evaluation of the security access panel interface. United States. Dept. of Energy. OCLC   727181384.
  148. Lee, Paul (April 2017). "Prints charming: how fingerprints are trailblazing mainstream biometrics". Biometric Technology Today. 2017 (4): 8–11. doi:10.1016/s0969-4765(17)30074-7. ISSN   0969-4765.
  149. Landrock, Peter (2005). "Two-Factor Authentication". Encyclopedia of Cryptography and Security. p. 638. doi:10.1007/0-387-23483-7_443. ISBN   978-0-387-23473-1.
  150. "Figure 1.5. Marriage remains the most common form of partnership among couples, 2000-07". doi:10.1787/888932392533 . Retrieved June 1, 2021.
  151. Akpeninor, James Ohwofasa (2013). Modern Concepts of Security. Bloomington, IN: AuthorHouse. p. 135. ISBN   978-1-4817-8232-6 . Retrieved January 18, 2018.
  152. Richards, G. (April 2012). "One-Time Password (OTP) Pre-Authentication". doi:10.17487/rfc6560.
  153. Schumacher, Dietmar (April 3, 2016). "Surface geochemical exploration after 85 years: What has been accomplished and what more must be done". International Conference and Exhibition, Barcelona, Spain, 3-6 April 2016. SEG Global Meeting Abstracts. Society of Exploration Geophysicists and American Association of Petroleum Geologists. p. 100. doi:10.1190/ice2016-6522983.1.
  154. "Authorization And Approval Program", Internal Controls Policies and Procedures, Hoboken, NJ, US: John Wiley & Sons, Inc., pp. 69–72, October 23, 2015, doi:10.1002/9781119203964.ch10, ISBN   978-1-119-20396-4 , retrieved June 1, 2021
  155. "What responses under what conditions?", Local Policies and the European Social Fund, Policy Press, pp. 81–102, October 2, 2019, doi:10.2307/j.ctvqc6hn1.12, ISBN   978-1-4473-4652-4, S2CID   241438707 , retrieved June 1, 2021
  156. Cheng, Liang; Zhang, Yang; Han, Zhihui (June 2013). "Quantitatively Measure Access Control Mechanisms across Different Operating Systems". 2013 IEEE 7th International Conference on Software Security and Reliability. IEEE. pp. 50–59. doi:10.1109/sere.2013.12. ISBN   978-1-4799-0406-8. S2CID   13261344.
  157. 1 2 Weik, Martin H. (2000), "discretionary access control", Computer Science and Communications Dictionary, p. 426, doi:10.1007/1-4020-0613-6_5225, ISBN   978-0-7923-8425-0
  158. Grewer, C.; Balani, P.; Weidenfeller, C.; Bartusel, T.; Zhen Tao; Rauen, T. (August 10, 2005). "Individual Subunits of the Glutamate Transporter EAAC1 Homotrimer Function Independently of Each Other". Biochemistry . 44 (35): 11913–11923. doi:10.1021/bi050987n. PMC   2459315 . PMID   16128593.
  159. Ellis Ormrod, Jeanne (2012). Essentials of educational psychology: big ideas to guide effective teaching. Pearson. ISBN   978-0-13-136727-2. OCLC   663953375.
  160. Belim, S. V.; Bogachenko, N. F.; Kabanov, A. N. (November 2018). "Severity Level of Permissions in Role-Based Access Control". 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE. pp. 1–5. arXiv: 1812.11404 . doi:10.1109/dynamics.2018.8601460. ISBN   978-1-5386-5941-0. S2CID   57189531.
  161. "Configuring TACACS and Extended TACACS", Securing and Controlling Cisco Routers, Auerbach Publications, May 15, 2002, doi:10.1201/9781420031454.ch11 (inactive November 11, 2024), ISBN   978-0-8493-1290-8 {{citation}}: CS1 maint: DOI inactive as of November 2024 (link)
  162. "Developing Effective Security Policies", Risk Analysis and Security Countermeasure Selection, CRC Press, pp. 261–274, December 18, 2009, doi:10.1201/9781420078718-18, ISBN   978-0-429-24979-2 , retrieved June 1, 2021
  163. "The Use of Audit Trails to Monitor Key Networks and Systems Should Remain Part of the Computer Security Material Weakness". www.treasury.gov. Retrieved October 6, 2017.
  164. "fixing-canadas-access-to-medicines-regime-what-you-need-to-know-about-bill-c398". Human Rights Documents online. doi:10.1163/2210-7975_hrd-9902-0152 . Retrieved June 1, 2021.
  165. Salazar, Mary K. (January 2006). "Dealing with Uncertain Risks—When to Apply the Precautionary Principle". AAOHN Journal. 54 (1): 11–13. doi:10.1177/216507990605400102. ISSN   0891-0162. S2CID   87769508.
  166. "We Need to Know More About How the Government Censors Its Employees". Human Rights Documents Online. doi:10.1163/2210-7975_hrd-9970-2016117 . Retrieved June 1, 2021.
  167. Pournelle, Jerry (April 22, 2004), "1001 Computer Words You Need to Know", 1001 Computer Words You Need to Know: The Ultimate Guide To The Language Of Computers, Oxford Scholarship Online, Oxford University Press, doi:10.1093/oso/9780195167757.003.0007, ISBN   978-0-19-516775-7 , retrieved July 30, 2021
  168. Easttom, William (2021), "Elliptic Curve Cryptography", Modern Cryptography, Cham: Springer International Publishing, pp. 245–256, doi:10.1007/978-3-030-63115-4_11, ISBN   978-3-030-63114-7, S2CID   234106555 , retrieved June 1, 2021
  169. Follman, Rebecca (March 1, 2014). From Someone Who Has Been There: Information Seeking in Mentoring. IConference 2014 Proceedings (Thesis). iSchools. doi:10.9776/14322. hdl: 1903/14292 . ISBN   978-0-9884900-1-7.
  170. Weiss, Jason (2004), "Message Digests, Message Authentication Codes, and Digital Signatures", Java Cryptography Extensions, Elsevier, pp. 101–118, doi:10.1016/b978-012742751-5/50012-8, ISBN   978-0-12-742751-5 , retrieved June 5, 2021
  171. Bider, D. (March 2018). "Use of RSA Keys with SHA-256 and SHA-512 in the Secure Shell (SSH) Protocol" (PDF). The RFC Series. doi:10.17487/RFC8332 . Retrieved November 30, 2023.
  172. Noh, Jaewon; Kim, Jeehyeong; Kwon, Giwon; Cho, Sunghyun (October 2016). "Secure key exchange scheme for WPA/WPA2-PSK using public key cryptography". 2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). IEEE. pp. 1–4. doi:10.1109/icce-asia.2016.7804782. ISBN   978-1-5090-2743-9. S2CID   10595698.
  173. Van Buren, Roy F. (May 1990). "How you can use the data encryption standard to encrypt your files and data bases". ACM SIGSAC Review. 8 (2): 33–39. doi:10.1145/101126.101130. ISSN   0277-920X.
  174. Bonneau, Joseph (2016), "Why Buy when You Can Rent?", Financial Cryptography and Data Security, Lecture Notes in Computer Science, vol. 9604, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 19–26, doi:10.1007/978-3-662-53357-4_2, ISBN   978-3-662-53356-7, S2CID   18122687 , retrieved June 5, 2021
  175. Coleman, Heather; Andron, Jeff (August 1, 2015), "What GIS Experts and Policy Professionals Need to Know about Using Marxan in Multiobjective Planning Processes", Ocean Solutions, Earth Solutions, Esri Press, doi:10.17128/9781589483651_2, ISBN   978-1-58948-365-1 , retrieved June 5, 2021
  176. 1 2 Landrock, Peter (2005), "Key Encryption Key", Encyclopedia of Cryptography and Security, pp. 326–327, doi:10.1007/0-387-23483-7_220, ISBN   978-0-387-23473-1
  177. Giri, Debasis; Barua, Prithayan; Srivastava, P. D.; Jana, Biswapati (2010), "A Cryptosystem for Encryption and Decryption of Long Confidential Messages", Information Security and Assurance, Communications in Computer and Information Science, vol. 76, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 86–96, Bibcode:2010isa..conf...86G, doi:10.1007/978-3-642-13365-7_9, ISBN   978-3-642-13364-0 , retrieved June 5, 2021
  178. Vallabhaneni, S.R. (2008). Corporate Management, Governance, and Ethics Best Practices. John Wiley & Sons. p. 288. ISBN   9780470255803.
  179. Shon Harris (2003). All-in-one CISSP Certification Exam Guide (2nd ed.). Emeryville, California: McGraw-Hill/Osborne. ISBN   978-0-07-222966-0.
  180. Boncardo, Robert (September 20, 2018). "Jean-Claude Milner's Mallarmé: Nothing Has Taken Place". Edinburgh University Press. 1. doi:10.3366/edinburgh/9781474429528.003.0005. S2CID   172045429.
  181. "The Importance of Operational Due Diligence", Hedge Fund Operational Due Diligence, Hoboken, NJ, US: John Wiley & Sons, Inc., pp. 49–67, October 16, 2015, doi:10.1002/9781119197485.ch2, ISBN   978-1-119-19748-5 , retrieved June 5, 2021
  182. Hall, Gaylord C. (March 1917). "Some Important Diagnostic Points the General Practioner[sic] Should Know About the Nose". Southern Medical Journal. 10 (3): 211. doi:10.1097/00007611-191703000-00007 (inactive November 11, 2024). ISSN   0038-4348.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  183. Renes, J. (1999). Landschappen van Maas en Peel: een toegepast historisch-geografisch onderzoek in het streekplangebied Noord- en Midden-Limburg. Eisma. ISBN   90-74252-84-2. OCLC   782897414.
  184. Thomas, Brook (June 22, 2017). "Minding Previous Steps Taken". Oxford Scholarship Online. doi:10.1093/acprof:oso/9780190456368.003.0002. ISBN   978-0-19-045639-9.
  185. Lundgren, Regina E. (2018). Risk communication : a handbook for communicating environmental, safety, and health risks. Wiley. ISBN   978-1-119-45613-1. OCLC   1043389392.
  186. Jensen, Eric Talbot (December 3, 2020), "Due Diligence in Cyber Activities", Due Diligence in the International Legal Order, Oxford University Press, pp. 252–270, doi:10.1093/oso/9780198869900.003.0015, ISBN   978-0-19-886990-0 , retrieved June 5, 2021
  187. "The Duty of Care Risk Analysis Standard". DoCRA. Archived from the original on August 14, 2018. Retrieved August 15, 2018.
  188. Sutton, Adam; Cherney, Adrian; White, Rob (2008), "Evaluating crime prevention", Crime Prevention, Cambridge: Cambridge University Press, pp. 70–90, doi:10.1017/cbo9780511804601.006, ISBN   978-0-511-80460-1 , retrieved June 5, 2021
  189. Check, Erika (September 15, 2004). "FDA considers antidepressant risks for kids". Nature. doi:10.1038/news040913-15. ISSN   0028-0836.
  190. Auckland, Cressida (August 16, 2017). "Protecting me from my Directive: Ensuring Appropriate Safeguards for Advance Directives in Dementia". Medical Law Review. 26 (1): 73–97. doi:10.1093/medlaw/fwx037. ISSN   0967-0742. PMID   28981694.
  191. Takach, George S. (2016), "Preparing for Breach Litigation", Data Breach Preparation and Response, Elsevier, pp. 217–230, doi:10.1016/b978-0-12-803451-4.00009-5, ISBN   978-0-12-803451-4 , retrieved June 5, 2021
  192. "ISO 17799|ISO/IEC 17799:2005(E)". Information technology - Security techniques - Code of practice for information security management. ISO copyright office. June 15, 2005. pp. 90–94.
  193. Fowler, Kevvie (2016), "Developing a Computer Security Incident Response Plan", Data Breach Preparation and Response, Elsevier, pp. 49–77, doi:10.1016/b978-0-12-803451-4.00003-4, ISBN   978-0-12-803451-4
  194. Johnson, Leighton R. (2014), "Part 1. Incident Response Team", Computer Incident Response and Forensics Team Management, Elsevier, pp. 17–19, doi:10.1016/b978-1-59749-996-5.00038-8, ISBN   978-1-59749-996-5 , retrieved June 5, 2021
  195. Kampfner, Roberto R. (1985). "Formal specification of information systems requirements". Information Processing & Management. 21 (5): 401–414. doi:10.1016/0306-4573(85)90086-x. ISSN   0306-4573.
  196. Jenner, H.A. (1995). Assessment of ecotoxicological risks of element leaching from pulverized coal ashes. s.n.] OCLC   905474381.
  197. "Desktop Computers: Software". Practical Pathology Informatics. New York: Springer-Verlag. 2006. pp. 51–82. doi:10.1007/0-387-28058-8_3. ISBN   0-387-28057-X . Retrieved June 5, 2021.
  198. Wilby, R.L.; Orr, H.G.; Hedger, M.; Forrow, D.; Blackmore, M. (December 2006). "Risks posed by climate change to the delivery of Water Framework Directive objectives in the UK". Environment International. 32 (8): 1043–1055. Bibcode:2006EnInt..32.1043W. doi:10.1016/j.envint.2006.06.017. ISSN   0160-4120. PMID   16857260.
  199. Campbell, T. (2016). "Chapter 14: Secure Systems Development". Practical Information Security Management: A Complete Guide to Planning and Implementation. Apress. p. 218. ISBN   9781484216859.
  200. Koppelman, Kent L. (2011). Understanding human differences : multicultural education for a diverse America. Pearson/Allyn & Bacon. OCLC   1245910610.
  201. "Post-processing". Simple Scene, Sensational Shot. Routledge. April 12, 2013. pp. 128–147. doi:10.4324/9780240821351-9. ISBN   978-0-240-82135-1 . Retrieved June 5, 2021.
  202. Kumar, Binay; Mahto, Tulsi; Kumari, Vinita; Ravi, Binod Kumar; Deepmala (2016). "Quackery: How It Can Prove Fatal Even in Apparently Simple Cases-A Case Report". Medico-Legal Update. 16 (2): 75. doi:10.5958/0974-1283.2016.00063.3. ISSN   0971-720X.
  203. Priest, Sally (February 22, 2019). "Shared roles and responsibilities in flood risk management". Journal of Flood Risk Management. 12 (1): e12528. Bibcode:2019JFRM...12E2528P. doi:10.1111/jfr3.12528. ISSN   1753-318X. S2CID   133789858.
  204. United States. Department of Energy. Office of Inspector General. Office of Scientific and Technical Information (2009). Audit Report, "Fire Protection Deficiencies at Los Alamos National Laboratory.". United States. Dept. of Energy. OCLC   727225166.
  205. Toms, Elaine G. (January 1992). "Managing change in libraries and information services; A systems approach". Information Processing & Management. 28 (2): 281–282. doi:10.1016/0306-4573(92)90052-2. ISSN   0306-4573.
  206. Abolhassan, Ferri (2003). "The Change Management Process Implemented at IDS Scheer". Business Process Change Management. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 15–22. doi:10.1007/978-3-540-24703-6_2. ISBN   978-3-642-05532-4 . Retrieved June 5, 2021.
  207. Dawson, Chris (July 1, 2020). Leading Culture Change. doi:10.1515/9780804774673. ISBN   9780804774673. S2CID   242348822.
  208. McCormick, Douglas P. (March 22, 2016). Family Inc. : using business principles to maximize your family's wealth. John Wiley & Sons. ISBN   978-1-119-21976-7. OCLC   945632737.
  209. Schuler, Rainer (August 1995). "Some properties of sets tractable under every polynomial-time computable distribution". Information Processing Letters. 55 (4): 179–184. doi:10.1016/0020-0190(95)00108-o. ISSN   0020-0190.
  210. "Figure 12.2. Share of own-account workers who generally do not have more than one client" (Excel). doi:10.1787/888933881610 . Retrieved June 5, 2021.
  211. "Multi-user file server for DOS LANs". Computer Communications. 10 (3): 153. June 1987. doi:10.1016/0140-3664(87)90353-7. ISSN   0140-3664.
  212. "Defining Organizational Change", Organizational Change, Oxford, UK: Wiley-Blackwell, pp. 21–51, April 19, 2011, doi:10.1002/9781444340372.ch1, ISBN   978-1-4443-4037-2 , retrieved June 5, 2021
  213. Kirchmer, Mathias; Scheer, August-Wilhelm (2003), "Change Management — Key for Business Process Excellence", Business Process Change Management, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1–14, doi:10.1007/978-3-540-24703-6_1, ISBN   978-3-642-05532-4 , retrieved June 5, 2021
  214. More, Josh; Stieber, Anthony J.; Liu, Chris (2016), "Tier 2—Advanced Help Desk—Help Desk Supervisor", Breaking Into Information Security, Elsevier, pp. 111–113, doi:10.1016/b978-0-12-800783-9.00029-x, ISBN   978-0-12-800783-9 , retrieved June 5, 2021
  215. "An Application of Bayesian Networks in Automated Scoring of Computerized Simulation Tasks", Automated Scoring of Complex Tasks in Computer-Based Testing, Routledge, pp. 212–264, April 4, 2006, doi:10.4324/9780415963572-10, ISBN   978-0-415-96357-2 , retrieved June 5, 2021
  216. Kavanagh, Michael J. (June 1994). "Change, Change, Change". Group & Organization Management. 19 (2): 139–140. doi:10.1177/1059601194192001. ISSN   1059-6011. S2CID   144169263.
  217. Taylor, J. (2008). "Chapter 10: Understanding the Project Change Process". Project Scheduling and Cost Control: Planning, Monitoring and Controlling the Baseline. J. Ross Publishing. pp. 187–214. ISBN   9781932159110.
  218. "17. Innovation and Change: Can Anyone Do This?", Backstage in a Bureaucracy, University of Hawaii Press, pp. 87–96, December 31, 2017, doi:10.1515/9780824860936-019, ISBN   978-0-8248-6093-6 , retrieved June 5, 2021
  219. Braun, Adam (February 3, 2015). Promise of a pencil : how an ordinary person can create extraordinary change. Simon and Schuster. ISBN   978-1-4767-3063-9. OCLC   902912775.
  220. "Describing Within-Person Change Over Time", Longitudinal Analysis, Routledge, pp. 235–306, January 30, 2015, doi:10.4324/9781315744094-14, ISBN   978-1-315-74409-4 , retrieved June 5, 2021
  221. Ingraham, Carolyn; Ban, Patricia W. (1984). Legislating bureaucratic change : the Civil Service Reform Act of 1978. State University of New York Press. ISBN   0-87395-886-1. OCLC   10300171.
  222. Wei, J. (May 4, 2000). "Preliminary Change Request for the SNS 1.3 GeV-Compatible Ring". OSTI.GOV. doi:10.2172/1157253. OSTI   1157253 . Retrieved January 18, 2022.
  223. Chen Liang (May 2011). "Allocation priority management of agricultural water resources based on the theory of virtual water". 2011 International Conference on Business Management and Electronic Information. Vol. 1. IEEE. pp. 644–647. doi:10.1109/icbmei.2011.5917018. ISBN   978-1-61284-108-3. S2CID   29137725.
  224. "Change risks and best practices in Business Change Management Unmanaged change risk leads to problems for change management", Leading and Implementing Business Change Management, Routledge, pp. 32–74, July 18, 2013, doi:10.4324/9780203073957-9 (inactive December 12, 2024), ISBN   978-0-203-07395-7 {{citation}}: CS1 maint: DOI inactive as of December 2024 (link)
  225. Bragg, Steven M. (2016). Accounting Best Practices. Wiley. ISBN   978-1-118-41780-5. OCLC   946625204.
  226. "Successful change requires more than change management". Human Resource Management International Digest. 16 (7). October 17, 2008. doi:10.1108/hrmid.2008.04416gad.005. ISSN   0967-0734.
  227. "Planning for water resources under climate change", Spatial Planning and Climate Change, Routledge, pp. 287–313, September 13, 2010, doi:10.4324/9780203846537-20, ISBN   978-0-203-84653-7 , retrieved June 5, 2021
  228. Rowan, John (January 1967). "Answering the computer back". Management Decision. 1 (1): 51–54. doi:10.1108/eb000776. ISSN   0025-1747.
  229. Biswas, Margaret R.; Biswas, Asit K. (February 1981). "Climatic change and food production". Agriculture and Environment. 5 (4): 332. doi:10.1016/0304-1131(81)90050-3. ISSN   0304-1131.
  230. Weik, Martin H. (2000), "backout", Computer Science and Communications Dictionary, p. 96, doi:10.1007/1-4020-0613-6_1259, ISBN   978-0-7923-8425-0
  231. "Editorial Advisory and Review Board", Business and Sustainability: Concepts, Strategies and Changes, Critical Studies on Corporate Responsibility, Governance and Sustainability, vol. 3, Emerald Group Publishing Limited, pp. xv–xvii, December 6, 2011, doi:10.1108/s2043-9059(2011)0000003005, ISBN   978-1-78052-438-2 , retrieved June 5, 2021
  232. "Where a Mirage Has Once Been, Life Must Be", New and Selected Poems, University of South Carolina Press, p. 103, 2014, doi:10.2307/j.ctv6sj8d1.65, ISBN   978-1-61117-323-9 , retrieved June 5, 2021
  233. Bell, Marvin (1983). "Two, When There Might Have Been Three". The Antioch Review. 41 (2): 209. doi:10.2307/4611230. JSTOR   4611230.
  234. "We can also make change". Human Rights Documents Online. doi:10.1163/2210-7975_hrd-0148-2015175 . Retrieved June 5, 2021.
  235. Mazikana, Anthony Tapiwa (November 5, 2020). "'Change Is the Law of Life. and Those Who Look only to the past or Present Are Certain to Miss the Future- John F. Kennedy' Assessing This Statement with References to Organizations in Zimbabwe Who Have Been Affected by Change". SSRN   3725707.
  236. Ramanadham, V. V. (ed.). Privatisation in the UK. ISBN   978-0-429-19973-8. OCLC   1085890184.
  237. "More complex/realistic rheology must be implemented; Numerical convergence tests must be performed". Geoloscientific Model Development Discussions. September 22, 2020. doi: 10.5194/gmd-2020-107-rc2 . S2CID   241597573.
  238. Stone, Edward. Edward C. Stone Collection. OCLC   733102101.
  239. Lientz, B (2002). "Develop Your Improvement Implementation Plan". Achieve Lasting Process Improvement. Elsevier. pp. 151–171. doi:10.1016/b978-0-12-449984-3.50011-8. ISBN   978-0-12-449984-3 . Retrieved June 5, 2021.
  240. Smeets, Peter (2009). Expeditie agroparken : ontwerpend onderzoek naar metropolitane landbouw en duurzame ontwikkeling. s.n.] ISBN   978-90-8585-515-6. OCLC   441821141.
  241. "Figure 1.3. About 50 percent of the Going for Growth recommendations have been implemented or are in process of implementation". doi:10.1787/888933323735 . Retrieved June 5, 2021.
  242. Kekes, John (February 21, 2019), "Must Justice Be Done at All Costs?", Hard Questions, Oxford University Press, pp. 98–126, doi:10.1093/oso/9780190919986.003.0005, ISBN   978-0-19-091998-6 , retrieved June 5, 2021
  243. Forrester, Kellie (2014). Macroeconomic implications of changes in the composition of the labor force. University of California, Santa Barbara. ISBN   978-1-321-34938-2. OCLC   974418780.
  244. Choudhury, Gagan L.; Rappaport, Stephen S. (October 1981). "Demand assigned multiple access systems using collision type request channels". ACM SIGCOMM Computer Communication Review. 11 (4): 136–148. doi:10.1145/1013879.802667. ISSN   0146-4833.
  245. Crinson, Mark (2013). ""Certain Old and Lovely Things, Whose Signified Is Abstract, Out of Date": James Stirling and Nostalgia". Change over Time. 3 (1): 116–135. doi:10.1353/cot.2013.0000. ISSN   2153-0548. S2CID   144451363.
  246. Ahwidy, Mansour; Pemberton, Lyn (2016). "What Changes Need to be Made within the LNHS for Ehealth Systems to be Successfully Implemented?". Proceedings of the International Conference on Information and Communication Technologies for Ageing Well and e-Health. Scitepress. pp. 71–79. doi:10.5220/0005620400710079. ISBN   978-989-758-180-9.
  247. Mortimer, John (April 2010). Paradise postponed. Penguin Adult. ISBN   978-0-14-104952-6. OCLC   495596392.
  248. 1 2 Cobey, Sarah; Larremore, Daniel B.; Grad, Yonatan H.; Lipsitch, Marc (2021). "Concerns about SARS-CoV-2 evolution should not hold back efforts to expand vaccination". Nature Reviews Immunology. 21 (5): 330–335. doi:10.1038/s41577-021-00544-9. PMC   8014893 . PMID   33795856.
  249. Frampton, Michael (December 26, 2014), "Processing Data with Map Reduce", Big Data Made Easy, Berkeley, CA: Apress, pp. 85–120, doi:10.1007/978-1-4842-0094-0_4, ISBN   978-1-4842-0095-7 , retrieved June 5, 2021
  250. "Good study overall, but several procedures need fixing" (PDF). Hydrology and Earth System Sciences Discussions. February 23, 2016. doi: 10.5194/hess-2015-520-rc2 . Retrieved January 18, 2022.
  251. Harrison, Kent; Craft, Walter M.; Hiller, Jack; McCluskey, Michael R.; BDM Federal Inc Seaside CA (July 1996). "Peer Review Coordinating Draft. Task Analysis for Conduct Intelligence Planning (Critical Combat Function 1): As Accomplished by a Battalion Task Force". DTIC ADA313949.
  252. itpi.org Archived December 10, 2013, at the Wayback Machine
  253. "book summary of The Visible Ops Handbook: Implementing ITIL in 4 Practical and Auditable Steps". wikisummaries.org. Retrieved June 22, 2016.
  254. Bigelow, Michelle (September 23, 2020), "Change Control and Change Management", Implementing Information Security in Healthcare, HIMSS Publishing, pp. 203–214, doi:10.4324/9781003126294-17, ISBN   978-1-003-12629-4, S2CID   224866307 , retrieved June 5, 2021
  255. Business continuity management. Guidance on organization recovery following disruptive incidents, BSI British Standards, doi:10.3403/30194308 , retrieved June 5, 2021
  256. Hoanh, Chu Thai (1996). Development of a computerized aid to integrated land use planning (cailup) at regional level in irrigated areas : a case study for the Quan Lo Phung Hiep region in the Mekong Delta, Vietnam. ITC. ISBN   90-6164-120-9. OCLC   906763535.
  257. 1Hibberd, Gary (September 11, 2015), "Developing a BCM Strategy in Line with Business Strategy", The Definitive Handbook of Business Continuity Management, Hoboken, NJ, US: John Wiley & Sons, Inc., pp. 23–30, doi:10.1002/9781119205883.ch2, ISBN   978-1-119-20588-3 , retrieved June 5, 2021
  258. Hotchkiss, Stuart (2010). Business Continuity Management: In Practice. BCS Learning & Development Limited. ISBN   978-1-906124-72-4.[ page needed ]
  259. "Identifying Potential Failure Causes", Systems Failure Analysis, ASM International, pp. 25–33, 2009, doi:10.31399/asm.tb.sfa.t52780025, ISBN   978-1-62708-268-6 , retrieved June 5, 2021
  260. Clemens, Jeffrey. Risks to the returns to medical innovation : the case of myriad genetics. OCLC   919958196.
  261. Goatcher, Genevieve (2013), "Maximum Acceptable Outage", Encyclopedia of Crisis Management, Thousand Oaks, CA: SAGE Publications, Inc., doi:10.4135/9781452275956.n204, ISBN   978-1-4522-2612-5 , retrieved June 5, 2021
  262. "Segment Design Tradeoffs", Software Radio Architecture, New York, US: John Wiley & Sons, Inc., pp. 236–243, January 17, 2002, doi:10.1002/047121664x.ch6, ISBN   978-0-471-21664-3 , retrieved June 5, 2021
  263. Blundell, S. (1998). "IN-EMERGENCY - integrated incident management, emergency healthcare and environmental monitoring in road networks". IEE Seminar Using ITS in Public Transport and in Emergency Services. Vol. 1998. IEE. p. 9. doi:10.1049/ic:19981090.
  264. King, Jonathan R. (January 1993). "Contingency Plans and Business Recovery". Information Systems Management. 10 (4): 56–59. doi:10.1080/10580539308906959. ISSN   1058-0530.
  265. Phillips, Brenda D.; Landahl, Mark (2021), "Strengthening and testing your business continuity plan", Business Continuity Planning, Elsevier, pp. 131–153, doi:10.1016/b978-0-12-813844-1.00001-4, ISBN   978-0-12-813844-1, S2CID   230582246 , retrieved June 5, 2021
  266. Schnurr, Stephanie (2009), "The 'Other' Side of Leadership Discourse: Humour and the Performance of Relational Leadership Activities", Leadership Discourse at Work, London: Palgrave Macmillan UK, pp. 42–60, doi:10.1057/9780230594692_3, ISBN   978-1-349-30001-3 , retrieved June 5, 2021
  267. Specified time relays for industrial use, BSI British Standards, doi:10.3403/02011580u , retrieved June 5, 2021
  268. "Sample Generic Plan and Procedure: Disaster Recovery Plan (DRP) for Operations/Data Center". Workplace Violence. Elsevier. 2010. pp. 253–270. doi:10.1016/b978-1-85617-698-9.00025-4. ISBN   978-1-85617-698-9 . Retrieved June 5, 2021.
  269. "Information Technology Disaster Recovery Plan". Disaster Planning for Libraries. Chandos Information Professional Series. Elsevier. 2015. pp. 187–197. doi:10.1016/b978-1-84334-730-9.00019-3. ISBN   978-1-84334-730-9 . Retrieved June 5, 2021.
  270. "The Disaster Recovery Plan". Sans Institute. Retrieved February 7, 2012.
  271. 1 2 OECD (2016). "Figure 1.10. Regulations in non-manufacturing sector have significant impact on the manufacturing sector". Economic Policy Reforms 2016: Going for Growth Interim Report. Economic Policy Reforms. Paris: OECD Publishing. doi:10.1787/growth-2016-en. ISBN   9789264250079 . Retrieved June 5, 2021.
  272. Ahupuaʻa [electronic resource] : World Environmental and Water Resources Congress 2008, May 12-16, 2008, Honolulu, Hawaiʻi. American Society of Civil Engineers. 2008. ISBN   978-0-7844-0976-3. OCLC   233033926.
  273. Great Britain. Parliament. House of Commons (2007). Data protection [H.L.] A bill [as amended in standing committee d] intituled an act to make new provision for the regulation of the processing of information relating to individuals, including the obtaining, holding, use or disclosure of such information. Proquest LLC. OCLC   877574826.
  274. "Data protection, access to personal information and privacy protection", Government and Information Rights: The Law Relating to Access, Disclosure and their Regulation, Bloomsbury Professional, 2019, doi:10.5040/9781784518998.chapter-002, ISBN   978-1-78451-896-7, S2CID   239376648 , retrieved June 5, 2021
  275. Lehtonen, Lasse A. (July 5, 2017). "Genetic Information and the Data Protection Directive of the European Union". The Data Protection Directive and Medical Research Across Europe. Routledge. pp. 103–112. doi:10.4324/9781315240350-8. ISBN   978-1-315-24035-0 . Retrieved June 5, 2021.
  276. "Data Protection Act 1998". legislation.gov.uk. The National Archives. Retrieved January 25, 2018.
  277. "Computer Misuse Act 1990". Criminal Law Statutes 2011-2012. Routledge. June 17, 2013. pp. 114–118. doi:10.4324/9780203722763-42. ISBN   978-0-203-72276-3 . Retrieved June 5, 2021.
  278. Dharmapala, Dhammika; Hines, James (December 2006). "Which Countries Become Tax Havens?". Working Paper Series. Cambridge, MA. doi:10.3386/w12802.
  279. "Figure 1.14. Participation rates have risen but labour force growth has slowed in several countries". doi:10.1787/888933367391 . Retrieved June 5, 2021.
  280. "Computer Misuse Act 1990". legislation.gov.uk. The National Archives. Retrieved January 25, 2018.
  281. "Directive 2006/24/EC of the European Parliament and of the Council of 15 March 2006". EUR-Lex. European Union. March 15, 2006. Retrieved January 25, 2018.
  282. "Defamation, Student Records, and the Federal Family Education Rights and Privacy Act". Higher Education Law. Routledge. December 14, 2010. pp. 361–394. doi:10.4324/9780203846940-22. ISBN   978-0-203-84694-0 . Retrieved June 5, 2021.
  283. 1 2 "Alabama Schools Receive NCLB Grant To Improve Student Achievement". PsycEXTRA Dataset. 2004. doi:10.1037/e486682006-001 . Retrieved June 5, 2021.
  284. Turner-Gottschang, Karen (1987). China bound : a guide to academic life and work in the PRC : for the Committee on Scholarly Communication with the People's Republic of China, National Academy of Sciences, American Council of Learned Societies, Social Science Research Council. National Academy Press. ISBN   0-309-56739-4. OCLC   326709779.
  285. Codified at 20 U.S.C.   § 1232g, with implementing regulations in title 34, part 99 of the Code of Federal Regulations
  286. "Audit Booklet". Information Technology Examination Handbook. FFIEC. Retrieved January 25, 2018.
  287. Ray, Amy W. (2004). "Health Insurance Portability and Accountability Act (HIPAA)". Encyclopedia of Health Care Management. Thousand Oaks, CA: SAGE Publications, Inc. doi:10.4135/9781412950602.n369. ISBN   978-0-7619-2674-0 . Retrieved June 5, 2021.
  288. "Public Law 104 - 191 - Health Insurance Portability and Accountability Act of 1996". U.S. Government Publishing Office. Retrieved January 25, 2018.
  289. "Public Law 106 - 102 - Gramm–Leach–Bliley Act of 1999" (PDF). U.S. Government Publishing Office. Retrieved January 25, 2018.
  290. Alase, Abayomi Oluwatosin (2016). The impact of the Sarbanes-Oxley Act (SOX) on small-sized publicly traded companies and their communities (Thesis). Northeastern University Library. doi:10.17760/d20204801.
  291. Solis, Lupita (2019). Educational and Professional Trends of Chief Financial Officers (Thesis). Portland State University Library. doi:10.15760/honors.763.
  292. "Public Law 107 - 204 - Sarbanes-Oxley Act of 2002". U.S. Government Publishing Office. Retrieved January 25, 2018.
  293. "Pci Dss Glossary, Abbreviations, and Acronyms", Payment Card Industry Data Security Standard Handbook, Hoboken, NJ, US: John Wiley & Sons, Inc., pp. 185–199, September 18, 2015, doi:10.1002/9781119197218.gloss, ISBN   978-1-119-19721-8 , retrieved June 5, 2021
  294. "PCI Breakdown (Control Objectives and Associated Standards)", Payment Card Industry Data Security Standard Handbook, Hoboken, NJ, US: John Wiley & Sons, Inc., p. 61, September 18, 2015, doi:10.1002/9781119197218.part2, ISBN   978-1-119-19721-8 , retrieved June 5, 2021
  295. Ravallion, Martin; Chen, Shaohua (August 2017). "Welfare-Consistent Global Poverty Measures". Working Paper Series. doi:10.3386/w23739 . Retrieved January 18, 2022.
  296. "Payment Card Industry (PCI) Data Security Standard: Requirements and Security Assessment Procedures - Version 3.2" (PDF). Security Standards Council. April 2016. Retrieved January 25, 2018.
  297. "Security Breach Notification Laws". National Conference of State Legislatures. April 12, 2017. Retrieved January 25, 2018.
  298. Stein, Stuart G.; Schaberg, Richard A.; Biddle, Laura R., eds. (June 23, 2015). Financial institutions answer book, 2015 : law, governance, compliance. Practising Law Institute. ISBN   978-1-4024-2405-2. OCLC   911952833.
  299. "Personal Information and Data Protection", Protecting Personal Information, Hart Publishing, 2019, doi:10.5040/9781509924882.ch-002, ISBN   978-1-5099-2485-1, S2CID   239275871 , retrieved June 5, 2021
  300. Chapter 5. An Act to support and promote electronic commerce by protecting personal information that is collected, used or disclosed in certain circumstances, by providing for the use of electronic means to communicate or record information or transactions and by amending the Canada Evidence Act, the Statutory Instruments Act and the Statute Revision Act. Queen's Printer for Canada. 2000. OCLC   61417862.
  301. "Comments". Statute Law Review. 5 (1): 184–188. 1984. doi:10.1093/slr/5.1.184. ISSN   0144-3593.
  302. "Personal Information Protection and Electronic Documents Act" (PDF). Canadian Minister of Justice. Retrieved January 25, 2018.
  303. Werner, Martin (May 11, 2011). "Privacy-protected communication for location-based services". Security and Communication Networks. 9 (2): 130–138. doi:10.1002/sec.330. ISSN   1939-0114.
  304. "Regulation for the Assurance of Confidentiality in Electronic Communications" (PDF). Government Gazette of the Hellenic Republic. Hellenic Authority for Communication Security and Privacy. November 17, 2011. Archived from the original (PDF) on June 25, 2013. Retrieved January 25, 2018.
  305. de Guise, Preston (April 29, 2020), "Security, Privacy, Ethical, and Legal Considerations", Data Protection, Auerbach Publications, pp. 91–108, doi:10.1201/9780367463496-9, ISBN   978-0-367-46349-6, S2CID   219013948 , retrieved June 5, 2021
  306. "Αριθμ. απόφ. 205/2013" (PDF). Government Gazette of the Hellenic Republic. Hellenic Authority for Communication Security and Privacy. July 15, 2013. Archived from the original (PDF) on February 4, 2019. Retrieved January 25, 2018.
  307. Andersson and Reimers, 2019, CYBER SECURITY EMPLOYMENT POLICY AND WORKPLACE DEMAND IN THE U.S. GOVERNMENT, EDULEARN19 Proceedings, Publication year: 2019 Pages: 7858-7866 https://library.iated.org/view/ANDERSON2019CYB
  308. "Definition of Security Culture". The Security Culture Framework. April 9, 2014. Archived from the original on January 27, 2019. Retrieved January 27, 2019.
  309. Roer, Kai; Petric, Gregor (2017). The 2017 Security Culture Report - In depth insights into the human factor. CLTRe North America, Inc. pp. 42–43. ISBN   978-1544933948.
  310. Akhtar, Salman, ed. (March 21, 2018). Good Feelings. Routledge. doi:10.4324/9780429475313. ISBN   9780429475313.
  311. Anderson, D., Reimers, K. and Barretto, C. (March 2014). Post-Secondary Education Network Security: Results of Addressing the End-User Challenge.publication date Mar 11, 2014 publication description INTED2014 (International Technology, Education, and Development Conference)
  312. 1 2 Schlienger, Thomas; Teufel, Stephanie (December 2003). "Information security culture - from analysis to change". South African Computer Society (SAICSIT). 2003 (31): 46–52. hdl:10520/EJC27949.
  313. Cherdantseva Y. and Hilton J.: "Information Security and Information Assurance. The Discussion about the Meaning, Scope and Goals". In: Organizational, Legal, and Technological Dimensions of Information System Administrator. Almeida F., Portela, I. (eds.). IGI Global Publishing. (2013)
  314. ISO/IEC 27000:2018 (E). (2018). Information technology – Security techniques – Information security management systems – Overview and vocabulary. ISO/IEC.
  315. Committee on National Security Systems: National Information Assurance (IA) Glossary, CNSS Instruction No. 4009, 26 April 2010.
  316. ISACA. (2008). Glossary of terms, 2008. Retrieved from http://www.isaca.org/Knowledge-Center/Documents/Glossary/glossary.pdf
  317. Pipkin, D. (2000). Information security: Protecting the global enterprise. New York: Hewlett-Packard Company.
  318. B., McDermott, E., & Geer, D. (2001). Information security is information risk management. In Proceedings of the 2001 Workshop on New Security Paradigms NSPW ‘01, (pp. 97 – 104). ACM. doi : 10.1145/508171.508187
  319. Anderson, J. M. (2003). "Why we need a new definition of information security". Computers & Security. 22 (4): 308–313. doi:10.1016/S0167-4048(03)00407-3.
  320. Venter, H. S.; Eloff, J. H. P. (2003). "A taxonomy for information security technologies". Computers & Security. 22 (4): 299–307. doi:10.1016/S0167-4048(03)00406-1.
  321. Gold, S (December 2004). "Threats looming beyond the perimeter". Information Security Technical Report. 9 (4): 12–14. doi:10.1016/s1363-4127(04)00047-0 (inactive December 12, 2024). ISSN   1363-4127.{{cite journal}}: CS1 maint: DOI inactive as of December 2024 (link)
  322. Бучик, С. С.; Юдін, О. К.; Нетребко, Р. В. (December 21, 2016). "The analysis of methods of determination of functional types of security of the information-telecommunication system from an unauthorized access". Problems of Informatization and Management. 4 (56). doi: 10.18372/2073-4751.4.13135 . ISSN   2073-4751.

Bibliography

Further reading