Inflection point

Last updated
Plot of y = x with an inflection point at (0,0), which is also a stationary point. X cubed plot.svg
Plot of y = x with an inflection point at (0,0), which is also a stationary point.
The roots, stationary points, inflection point and concavity of a cubic polynomial x - 6x + 9x - 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. Cubic graph special points repeated.svg
The roots, stationary points, inflection point and concavity of a cubic polynomial x − 6x + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives.

In differential calculus and differential geometry, an inflection point, point of inflection, flex, or inflection (rarely inflexion) is a point on a smooth plane curve at which the curvature changes sign. In particular, in the case of the graph of a function, it is a point where the function changes from being concave (concave downward) to convex (concave upward), or vice versa.

Contents

For the graph of a function f of differentiability class C2 (its first derivative f', and its second derivative f'', exist and are continuous), the condition f'' = 0 can also be used to find an inflection point since a point of f'' = 0 must be passed to change f'' from a positive value (concave upward) to a negative value (concave downward) or vice versa as f'' is continuous; an inflection point of the curve is where f'' = 0 and changes its sign at the point (from positive to negative or from negative to positive). [1] A point where the second derivative vanishes but does not change its sign is sometimes called a point of undulation or undulation point.

In algebraic geometry an inflection point is defined slightly more generally, as a regular point where the tangent meets the curve to order at least 3, and an undulation point or hyperflex is defined as a point where the tangent meets the curve to order at least 4.

Definition

Inflection points in differential geometry are the points of the curve where the curvature changes its sign. [2] [3]

For example, the graph of the differentiable function has an inflection point at (x, f(x)) if and only if its first derivative f' has an isolated extremum at x. (this is not the same as saying that f has an extremum). That is, in some neighborhood, x is the one and only point at which f' has a (local) minimum or maximum. If all extrema of f' are isolated, then an inflection point is a point on the graph of f at which the tangent crosses the curve.

A falling point of inflection is an inflection point where the derivative is negative on both sides of the point; in other words, it is an inflection point near which the function is decreasing. A rising point of inflection is a point where the derivative is positive on both sides of the point; in other words, it is an inflection point near which the function is increasing.

For a smooth curve given by parametric equations, a point is an inflection point if its signed curvature changes from plus to minus or from minus to plus, i.e., changes sign.

For a smooth curve which is a graph of a twice differentiable function, an inflection point is a point on the graph at which the second derivative has an isolated zero and changes sign.

In algebraic geometry, a non singular point of an algebraic curve is an inflection point if and only if the intersection number of the tangent line and the curve (at the point of tangency) is greater than 2. The main motivation of this different definition, is that otherwise the set of the inflection points of a curve would not be an algebraic set. In fact, the set of the inflection points of a plane algebraic curve are exactly its non-singular points that are zeros of the Hessian determinant of its projective completion.

Plot of f(x) = sin(2x) from -p/4 to 5p/4; the second derivative is f''(x) = -4sin(2x), and its sign is thus the opposite of the sign of f. Tangent is blue where the curve is convex (above its own tangent), green where concave (below its tangent), and red at inflection points: 0, p/2 and p Animated illustration of inflection point.gif
Plot of f(x) = sin(2x) from −π/4 to 5π/4; the second derivative is f(x) = –4sin(2x), and its sign is thus the opposite of the sign of f. Tangent is blue where the curve is convex (above its own tangent), green where concave (below its tangent), and red at inflection points: 0, π/2 and π

Conditions

A necessary but not sufficient condition

For a function f, if its second derivative f(x) exists at x0 and x0 is an inflection point for f, then f(x0) = 0, but this condition is not sufficient for having a point of inflection, even if derivatives of any order exist. In this case, one also needs the lowest-order (above the second) non-zero derivative to be of odd order (third, fifth, etc.). If the lowest-order non-zero derivative is of even order, the point is not a point of inflection, but an undulation point. However, in algebraic geometry, both inflection points and undulation points are usually called inflection points. An example of an undulation point is x = 0 for the function f given by f(x) = x4.

In the preceding assertions, it is assumed that f has some higher-order non-zero derivative at x, which is not necessarily the case. If it is the case, the condition that the first nonzero derivative has an odd order implies that the sign of f'(x) is the same on either side of x in a neighborhood of x. If this sign is positive, the point is a rising point of inflection; if it is negative, the point is a falling point of inflection.

Sufficient conditions

  1. A sufficient existence condition for a point of inflection in the case that f(x) is k times continuously differentiable in a certain neighborhood of a point x0 with k odd and k ≥ 3, is that f(n)(x0) = 0 for n = 2, ..., k − 1 and f(k)(x0) ≠ 0. Then f(x) has a point of inflection at x0.
  2. Another more general sufficient existence condition requires f(x0 + ε) and f(x0ε) to have opposite signs in the neighborhood of x0 (Bronshtein and Semendyayev 2004, p. 231).

Categorization of points of inflection

y = x - x has a 2nd derivative of zero at point (0,0), but it is not an inflection point because the fourth derivative is the first higher order non-zero derivative (the third derivative is zero as well). X to the 4th minus x.svg
y = xx has a 2nd derivative of zero at point (0,0), but it is not an inflection point because the fourth derivative is the first higher order non-zero derivative (the third derivative is zero as well).

Points of inflection can also be categorized according to whether f'(x) is zero or nonzero.

A stationary point of inflection is not a local extremum. More generally, in the context of functions of several real variables, a stationary point that is not a local extremum is called a saddle point.

An example of a stationary point of inflection is the point (0, 0) on the graph of y = x3. The tangent is the x-axis, which cuts the graph at this point.

An example of a non-stationary point of inflection is the point (0, 0) on the graph of y = x3 + ax, for any nonzero a. The tangent at the origin is the line y = ax, which cuts the graph at this point.

Functions with discontinuities

Some functions change concavity without having points of inflection. Instead, they can change concavity around vertical asymptotes or discontinuities. For example, the function is concave for negative x and convex for positive x, but it has no points of inflection because 0 is not in the domain of the function.

Functions with inflection points whose second derivative does not vanish

Some continuous functions have an inflection point even though the second derivative is never 0. For example, the cube root function is concave upward when x is negative, and concave downward when x is positive, but has no derivatives of any order at the origin.

See also

Related Research Articles

In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

<span class="mw-page-title-main">Slope</span> Mathematical term

In mathematics, the slope or gradient of a line is a number that describes the direction and steepness of the line. Often denoted by the letter m, slope is calculated as the ratio of the vertical change to the horizontal change between two distinct points on the line, giving the same number for any choice of points. A line descending left-to-right has negative rise and negative slope. The line may be physical – as set by a road surveyor, pictorial as in a diagram of a road or roof, or abstract.

<span class="mw-page-title-main">Tangent</span> In mathematics, straight line touching a plane curve without crossing it

In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is tangent to the curve y = f(x) at a point x = c if the line passes through the point (c, f(c)) on the curve and has slope f'(c), where f' is the derivative of f. A similar definition applies to space curves and curves in n-dimensional Euclidean space.

<span class="mw-page-title-main">Differential calculus</span> Area of mathematics; subarea of calculus

In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve.

<span class="mw-page-title-main">Curvature</span> Mathematical measure of how much a curve or surface deviates from flatness

In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or surface is contained in a larger space, curvature can be defined extrinsically relative to the ambient space. Curvature of Riemannian manifolds of dimension at least two can be defined intrinsically without reference to a larger space.

<span class="mw-page-title-main">Cubic function</span> Polynomial function of degree 3

In mathematics, a cubic function is a function of the form that is, a polynomial function of degree three. In many texts, the coefficientsa, b, c, and d are supposed to be real numbers, and the function is considered as a real function that maps real numbers to real numbers or as a complex function that maps complex numbers to complex numbers. In other cases, the coefficients may be complex numbers, and the function is a complex function that has the set of the complex numbers as its codomain, even when the domain is restricted to the real numbers.

<span class="mw-page-title-main">Algebraic curve</span> Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

<span class="mw-page-title-main">Gaussian curvature</span> Product of the principal curvatures of a surface

In differential geometry, the Gaussian curvature or Gauss curvatureΚ of a smooth surface in three-dimensional space at a point is the product of the principal curvatures, κ1 and κ2, at the given point: For example, a sphere of radius r has Gaussian curvature 1/r2 everywhere, and a flat plane and a cylinder have Gaussian curvature zero everywhere. The Gaussian curvature can also be negative, as in the case of a hyperboloid or the inside of a torus.

In mathematics, two functions have a contact of order k if, at a point P, they have the same value and their first k derivatives are equal. This is an equivalence relation, whose equivalence classes are generally called jets. The point of osculation is also called the double cusp. Contact is a geometric notion; it can be defined algebraically as a valuation.

<span class="mw-page-title-main">Saddle point</span> Critical point on a surface graph which is not a local extremum

In mathematics, a saddle point or minimax point is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero, but which is not a local extremum of the function. An example of a saddle point is when there is a critical point with a relative minimum along one axial direction and at a relative maximum along the crossing axis. However, a saddle point need not be in this form. For example, the function has a critical point at that is a saddle point since it is neither a relative maximum nor relative minimum, but it does not have a relative maximum or relative minimum in the -direction.

In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function.

<span class="mw-page-title-main">Stationary point</span> Zero of the derivative of a function

In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero. Informally, it is a point where the function "stops" increasing or decreasing.

<span class="mw-page-title-main">Singular point of an algebraic variety</span>

In the mathematical field of algebraic geometry, a singular point of an algebraic varietyV is a point P that is 'special', in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety that is not singular is said to be regular. An algebraic variety that has no singular point is said to be non-singular or smooth.

<span class="mw-page-title-main">Critical point (mathematics)</span> Point where the derivative of a function is zero

In mathematics, a critical point is the argument of a function where the function derivative is zero . The value of the function at a critical point is a critical value.

<span class="mw-page-title-main">Second derivative</span> Mathematical operation

In calculus, the second derivative, or the second-order derivative, of a function f is the derivative of the derivative of f. Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the second derivative of the position of an object with respect to time is the instantaneous acceleration of the object, or the rate at which the velocity of the object is changing with respect to time. In Leibniz notation: where a is acceleration, v is velocity, t is time, x is position, and d is the instantaneous "delta" or change. The last expression is the second derivative of position with respect to time.

In mathematics, Fermat's theorem is a method to find local maxima and minima of differentiable functions on open sets by showing that every local extremum of the function is a stationary point. Fermat's theorem is a theorem in real analysis, named after Pierre de Fermat.

In geometry, a singular point on a curve is one where the curve is not given by a smooth embedding of a parameter. The precise definition of a singular point depends on the type of curve being studied.

<span class="mw-page-title-main">Surface (mathematics)</span> Mathematical idealization of the surface of a body

In mathematics, a surface is a mathematical model of the common concept of a surface. It is a generalization of a plane, but, unlike a plane, it may be curved; this is analogous to a curve generalizing a straight line.

<span class="mw-page-title-main">Convex curve</span> Type of plane curve

In geometry, a convex curve is a plane curve that has a supporting line through each of its points. There are many other equivalent definitions of these curves, going back to Archimedes. Examples of convex curves include the convex polygons, the boundaries of convex sets, and the graphs of convex functions. Important subclasses of convex curves include the closed convex curves, the smooth curves that are convex, and the strictly convex curves, which have the additional property that each supporting line passes through a unique point of the curve.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References

  1. Stewart, James (2015). Calculus (8 ed.). Boston: Cengage Learning. p. 281. ISBN   978-1-285-74062-1.
  2. Problems in mathematical analysis. Baranenkov, G. S. Moscow: Mir Publishers. 1976 [1964]. ISBN   5030009434. OCLC   21598952.{{cite book}}: CS1 maint: others (link)
  3. Bronshtein; Semendyayev (2004). Handbook of Mathematics (4th ed.). Berlin: Springer. p. 231. ISBN   3-540-43491-7.

Sources