Ichthyophthirius multifiliis

Last updated

Ichthyophthirius multifiliis
Ichthyophthiriasis.jpg
Cichlid showing the white spots characteristic of Ich
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Alveolata
Phylum: Ciliophora
Class: Oligohymenophorea
Order: Hymenostomatida
Family: Ichthyophthiriidae
Genus: Ichthyophthirius
Species:
I. multifiliis
Binomial name
Ichthyophthirius multifiliis
Fouquet, 1876

Ichthyophthirius multifiliis, often termed "Ich", [1] [2] is a parasitic ciliate described by the French parasitologist Fouquet[ who? ] in 1876. Only one species is found in the genus which also gave name to the family. The name literally translates as "the fish louse with many children". The parasite can infect most freshwater fish species and, in contrast to many other parasites, shows low host specificity. It penetrates gill epithelia, skin and fins of the fish host and resides as a feeding stage (the trophont) inside the epidermis. It is visible as a white spot on the surface of the fish but, due to its internal microhabitat, it is a true endoparasite and not an ectoparasite. [3]

Contents

It causes a disease commonly referred to as white spot disease due to the macroscopically visible trophonts (up to 1 mm in diameter) in the skin and fins. The trophont, continuously rotating, is surrounded by host cells (epidermal cells and leukocytes), producing a minute elevation of the skin. These light-reflecting nodules are recognized as white spots. [4] [5]

If strict bio-security rules are violated, the parasite may be introduced into a fish rearing unit by transfer of fish or equipment from infected systems. When the organism gets into a large fish culture facility, it is difficult to control due to its fast-reproductive cycle. If not controlled, the infection may lead to 100% mortality in the tank.

Strict management measures including mechanical and chemical methods are generally applied and can keep the infection at an acceptable level at farms. However, these measures are costly in terms of labour, chemicals and lost fish. [6]

Research within the Horizon2020 project ParaFishControl pointed to a range of new approaches for control. For example, the fish immune system has an ability to combat invading parasites and a vaccine may be developed in the future. [7] [8] In addition, novel bacterial products (surfactants from Pseudomonas ) can directly kill the external stages of the parasite without harming the host. [9]

Ichthyophthirius multifiliis inflicts considerable damage to gills and skin in two ways. Firstly, the theronts penetrate the host epithelia and, when the number of parasites is high in relation to the fish size, the penetration may directly kill the fish by destroying the integrity of the fish surface. Secondly, if the invasion is successful, the invading theronts transform into the trophont stage in the fish epidermis where they develop and expand their volume manifold. [10] [11] When the trophonts burst out from their epidermal residence, severe ulceration follows, leading to high host mortality. The osmoregulation of the fish is challenged both by penetration and by trophont escape. Damage to the host's gills also reduces the respiratory efficiency of the fish, reducing its oxygen intake from the water.

Life cycle

The life cycle of the parasite is direct, which means that no intermediate hosts are included in transmission. It includes a trophont stage residing in the fish surface (gill epithelia, skin and fin epidermis). This stage is the feeding stage which continuously ingests cellular debris and live host cells in its epidermal location, making the parasite able to grow rapidly over a short time - depending on temperature.

When the trophont has reached a certain size (100-1000 μm), it breaks out of the host epidermis and swim freely as a tomont (also covered by cilia). After minutes to hours, the tomont attaches to any surface in the fishpond or fish tank and produces a thick, gelatinous cyst wall. This is termed the tomocyst stage.

Within the tomocyst, a series of mitotic cell divisions take place and, depending on temperature, up to 1000 resulting daughter cells (tomites) are produced. These escape the tomocyst by penetrating the cyst wall, whereafter they swim in the fish tank water searching for a fish host, which they penetrate fast and efficiently if it is naïve and non-immunized. [4]

This life cycle is highly dependent on water temperature, and the entire life cycle takes from approximately 7 days at 25 °C to 8 weeks at 5-6 °C. [12]

Pathology and clinical signs

Signs and symptoms

The infection challenges hosts’ osmoregulation and respiration. Secondary bacterial and fungal infections are common due to the disturbance of epithelial linings. When trophonts burst out of the epidermis, non-protected (non-mucous cell lined) cells become accessible to other pathogens.

Clinical signs

Typical behaviour of clinically infected fish includes:

Trophonts of Ichthyophthirius multifiliis (diameter 300 mm) in the epidermis of a rainbow trout tail fin (light microscopy with subillumination). The horseshoe-shaped macronucleus is visible. (photo: Kurt Buchman, University of Copenhagen) Trophonts of Ichthyophthirius multifiliis.png
Trophonts of Ichthyophthirius multifiliis (diameter 300 μm) in the epidermis of a rainbow trout tail fin (light microscopy with subillumination). The horseshoe-shaped macronucleus is visible. (photo: Kurt Buchman, University of Copenhagen)

Theront penetration may elicit erratic swimming and movements reflecting irritation of fish surfaces. The trophont is not visible to the naked eye until it has fed on the fish and grown to a diameter of about 0.3-0.5 millimetres. The white spots may reach more than 1 mm in diameter and are easily recognized on skin and fins whereas trophonts attached to the gills are hard to see due to the gill cover (operculum).

Skin: Ich infections are usually visible as one or several characteristic white spots on the body or fins of the fish. The white spots are single cells called trophonts, which feed on host cells (epidermal cells and leukocytes attracted to the site) and may grow to 1 mm in diameter. [3] [10] Heavy infections with subsequent lesions following trophont escape leave the skin irregular, fluffy and greyish.

Gills: Gill infection may cause breathing at the surface and increased ventilation movements of operculae.

Impact

Due to the low host specificity of the parasite, Ich infection is known from all freshwater fish systems examined. However, the susceptibility and the impact differ between host species. Rainbow trout, catfish and eels are highly susceptible fish species and uncontrolled infections lead to almost 100% mortality. Some cyprinids, such as zebrafish, have a higher innate protection and may clear the infection faster than other species.

Diagnosis

Ichspotonforehead.jpg
Siamese fighting fish with a spot of Ich between the eyes
ClownLoachesWithIch.JPG
Two juvenile clown loaches with Ich
Scanning electron microscope image of Ichthyophthirius multifiliis theront (photo: Ole S. Moller, University of Copenhagen) Ichthyophthirius multifiliis theront.tif
Scanning electron microscope image of Ichthyophthirius multifiliis theront (photo: Ole S. Møller, University of Copenhagen)

Macroscopically visible trophonts (white spots) on skin or fins is often the basis for a tentative diagnosis of I. multifiliis infection. The diagnosis can be confirmed by microscopic examination of skin and gill smears. Scrapings of skin, fins or gill surfaces (using a cover slip or scalpel) and subsequent mounting on a microscope slide with a few drops of water under a cover slip should be examined under the light microscope (20-400 x magnification). The trophont is slowly rotating, covered by rapidly beating cilia and has a prominent, horseshoe-shaped macro-nucleus. Molecular diagnosis can be based on knowledge of genes encoding the parasite's i-antigen [13] and is performed by PCR and quantitative real-time PCR.

Treatments

Ichthyophthirius multifiliis Ichthyophthirius multifiliis.jpg
Ichthyophthirius multifiliis

Chemicals and medicines

Various chemotherapeutants can be applied for the treatment of infected fish and infected fish farm systems but caution should always be observed during any treatment. Some drugs are toxic to certain fish species and any treatment method must take into account the species of fish (some do not tolerate certain medications). Malachite green was previously the drug of choice but, due to its carcinogenicity, this organic dye is now banned in some countries.[ citation needed ] Formalin when applied repeatedly (30–50 mg/L) kills infective theronts and tomonts but, due to its carcinogenicity, other chemotherapeutants should be used. Copper-sulphate, methylene blue and potassium permanganate are effective but questionable from an environmental point of view. Copper may still be applied in some countries, but it is easy to overdose with copper. The recommended dosage is 0.15-0.3 mg/L and the concentration should never exceed 0.4 mg/L. Copper is noticeably more toxic to fish in soft water than in hard water. Drugs such as metronidazole and quinine hydrochloride are effective as well, but require prescription from a veterinary authority.

Environmentally friendly products include hydrogen peroxide and hydrogen peroxide releasing products such as sodium percarbonate and peracetic acid. [6] These compounds can be added to the fish tank water and eliminate theronts and tomonts but do not affect the trophont stage in the fish skin. The toxicity of hydrogen peroxide is increased at higher temperatures. Sodium chloride when applied in a concentration of at least 7.5 g/L inhibits production of infective theronts in tomocysts. [12] When used in a concentration of 10 g/L over 14 days, the parasite can be eliminated from a recirculated fish farm system.

Recently, a wide series of herbal extracts have been shown as effective, including garlic juice, which has a toxic effect on theronts and trophonts. [14] Biological control has also demonstrated its potential. A lipopeptide secreted as a surfactant from the bacterium Pseudomonas H6 has been shown to kill theronts, tomonts and tomocysts. [9] It is not toxic to fish, which suggests that future control can be based on environmentally friendly, natural products.

Management

Total fish removal and repeated transfer to clean tanks may be applied. Theronts, the motile and fish-infecting stage of the Ich life cycle, exit from the tomocyst at the bottom of the tank. However, without fish to re-attach to, theronts die within 48 hours (at higher temperatures). An effective way to clear Ich from a fish population is to transfer all of the fish carrying trophonts in their skin, fins or gills to a non-infected tank every 24 hours. Then the fish do not get re-infected and after a number of days (dependent on temperature) the fish have cleared the infection because trophonts exit within this period. They do not have sufficient time to produce theronts as 24 h is too short time for released tomonts to develop via tomocysts releasing the infective stage. Under colder water conditions, these management procedures should be continued over a longer time. Another method is to use mechanical filtration of water using mesh sizes of 80 microns. This removes the tomonts from the water before they settle and transform to the tomocyst stage (the multiplication step). [6]

Other control strategies

Prevention

Priority should be given to avoid introducing the parasite in the first place. New warm-water fish should be quarantined for at least four weeks and cold-water fish for eight weeks. Recognition of biosecurity measures for fish farm personnel including using a biocide foot bath, separate dress for the unit, using separate equipment and disinfecting hands before and after maintenance of each tank, reduces the risk of spreading the parasite between units. [11]

The host response may provide some protection. Fish recovering from an infection are partly protected against reinfection and can resist a new infection. [4] Prevention of the disease by vaccination is, at present, not possible due to the lack of a commercially available vaccine. However, several studies have identified potential vaccine candidate proteins, e.g. i-antigens and others, of the parasite, which suggests that a vaccine can be produced in the future. [7] [8]

Research

Due to the occurrence and impact of I. multifiliis in freshwater fish farm systems worldwide, considerable research efforts are being conducted in laboratories worldwide. New drugs and herbal extracts are being tested for their impact on various stages of the parasite.

In the European H2020 supported research project ParaFishControl, a series of control methods have been explored. The parasite can be propagated in the laboratory - most successfully in the hosts (in vivo), but also cell cultures can support part of the life cycle (in vitro) [15] . Experimental vaccines are being tested for future control purposes. [8] Surfactants (with a high parasiticidal effect) from naturally occurring bacteria, such as Pseudomonas , are being explored and prepared for marketing. [9] Herbal extracts have been demonstrated to stimulate immune responses of fish (and thereby partly inhibit development of the trophont), such as rainbow trout. Management procedures, based on a basic understanding of the life cycle, can reduce the infection pressure considerably. All together, these approaches can be applied for integrated control of I. multifiliis infections in aquacultured fish. Due to the development of aquaculture systems – affecting the life cycle and pathogenicity of the parasites - continued research is needed in order to secure control of this parasitosis also in the future.

See also

Related Research Articles

<i>Pterophyllum</i> Genus of fish

Pterophyllum is a small genus of freshwater fish from the family Cichlidae known to most aquarists as angelfish. All Pterophyllum species originate from the Amazon Basin, Orinoco Basin and various rivers in the Guiana Shield in tropical South America. The three species of Pterophyllum are unusually shaped for cichlids being greatly laterally compressed, with round bodies and elongated triangular dorsal and anal fins. This body shape allows them to hide among roots and plants, often on a vertical surface. Naturally occurring angelfish are frequently striped transversely, colouration which provides additional camouflage. Angelfish are ambush predators and prey on small fish and macroinvertebrates. All Pterophyllum species form monogamous pairs. Eggs are generally laid on a submerged log or a flattened leaf. As is the case for other cichlids, brood care is highly developed.

<span class="mw-page-title-main">Monogenea</span> Class of ectoparasitic flatworms

Monogeneans, members of the class Monogenea, are a group of ectoparasitic flatworms commonly found on the skin, gills, or fins of fish. They have a direct lifecycle and do not require an intermediate host. Adults are hermaphrodites, meaning they have both male and female reproductive structures.

<span class="mw-page-title-main">Sailfin molly</span> Species of fish

The sailfin molly is a livebearer fish typically found in both freshwater and brackish waterways along the East Coast of the United States, from North Carolina south to Florida, and around the Gulf of Mexico to Texas, and south to the Yucatán Peninsula of México. Given their preference for more brackish water conditions, mollies are often found within just a few yards or miles of the ocean, inhabiting coastal estuaries, lagoons, river deltas and swamps, as well as tidal areas with a regular inflow of oceanic minerals and nutrients mixing with inland freshwater sources.

<i>Myxobolus cerebralis</i> Species of parasite

Myxobolus cerebralis is a myxosporean parasite of salmonids that causes whirling disease in farmed salmon and trout and also in wild fish populations. It was first described in rainbow trout in Germany in 1893, but its range has spread and it has appeared in most of Europe, the United States, South Africa, Canada and other countries from shipments of cultured and wild fish. In the 1980s, M. cerebralis was found to require a tubificid oligochaete to complete its life cycle. The parasite infects its hosts with its cells after piercing them with polar filaments ejected from nematocyst-like capsules. This infects the cartilage and possibly the nervous tissue of salmonids, causing a potentially lethal infection in which the host develops a black tail, spinal deformities, and possibly more deformities in the anterior part of the fish.

<i>Ceratonova shasta</i> Species of marine parasite

Ceratonova shasta is a myxosporean parasite that infects salmonid fish on the Pacific coast of North America. It was first observed at the Crystal Lake Hatchery, Shasta County, California, and has now been reported from Idaho, Oregon, Washington, British Columbia and Alaska.

<span class="mw-page-title-main">Velvet (fish disease)</span> Parasitic disease of fish

Velvet disease is a fish disease caused by dinoflagellate parasites of the genera Amyloodinium in marine fish, and Oodinium in freshwater fish. The disease gives infected organisms a dusty, brownish-gold color. The disease occurs most commonly in tropical fish, and to a lesser extent, marine aquaria. Periodic use of preventive treatments like aquarium salt can further deter parasites. Regular monitoring, attentive care, and preventive measures collectively contribute to keeping fish healthy and velvet-free.

<span class="mw-page-title-main">Congo tetra</span> Species of fish

The Congo tetra is a species of fish in the African tetra family, found in the central Congo River Basin in Africa. It is commonly kept in aquaria.

<span class="mw-page-title-main">Common goldfish</span> Breed of goldfish

The common goldfish is a breed of goldfish and a family of Cyprinidae in the order cypriniformes. Goldfish are descendants of wild carp from East Asia. Most varieties of fancy goldfish were derived from this simple breed. Common goldfish come in a variety of colors including red, orange, red/white, white/black, yellow/white, blue, grey/brown, olive green, yellow, white, and black, with the most common variation being orange, hence the name. The brightness, duration, and vividness of the color may be an indication of the fish's health status, but not always, as water conditions and quality of care affect the fish's appearance.

Lymphocystis is a common viral disease of freshwater and saltwater fish. The virus that causes this disease belongs to the genus Lymphocystivirus of the family Iridoviridae.

<span class="mw-page-title-main">Xenoma</span> Growth caused by various species of protists and fungi

A xenoma is a growth caused by various protists and fungi, most notably microsporidia. It can occur on numerous organisms; however is predominantly found on fish.

<i>Cryptocaryon</i> Genus of single-celled organisms

Cryptocaryon irritans is a species of ciliates that parasitizes marine fish, causing marine white spot disease or marine ich. It is one of the most common causes of disease in marine aquaria.

<i>Oodinium</i> Genus of single-celled organisms

Oodinium is a genus of parasitic dinoflagellates. Their hosts are salt- and fresh-water fish, causing a type of fish velvet disease. One species has also been recorded on various cnidarians.

<span class="mw-page-title-main">Disease in ornamental fish</span>

Ornamental fish kept in aquariums are susceptible to numerous diseases. Due to their generally small size and the low cost of replacing diseased or dead fish, the cost of testing and treating diseases is often seen as more trouble than the value of the fish.

Dactylogyrus is a genus of monogeneans in the Dactylogyridae family.

<span class="mw-page-title-main">Guppy</span> Species of tropical fish

The guppy, also known as millionfish or the rainbow fish, is one of the world's most widely distributed tropical fish and one of the most popular freshwater aquarium fish species. It is a member of the family Poeciliidae and, like almost all American members of the family, is live-bearing. Guppies originate from northeast South America, but have been introduced to many environments and are now found all over the world. They are highly adaptable and thrive in many different environmental and ecological conditions. Male guppies, which are smaller than females, have ornamental caudal and dorsal fins. Wild guppies generally feed on a variety of food sources, including benthic algae and aquatic insect larvae. Guppies are used as a model organism in the fields of ecology, evolution, and behavioural studies.

<span class="mw-page-title-main">Fish diseases and parasites</span> Disease that affects fish

Like humans and other animals, fish suffer from diseases and parasites. Fish defences against disease are specific and non-specific. Non-specific defences include skin and scales, as well as the mucus layer secreted by the epidermis that traps microorganisms and inhibits their growth. If pathogens breach these defences, fish can develop inflammatory responses that increase the flow of blood to infected areas and deliver white blood cells that attempt to destroy the pathogens.

Hematodinium is a genus of dinoflagellates. Species in this genus, such as Hematodinium perezi, the type species, are internal parasites of the hemolymph of crustaceans such as the Atlantic blue crab and Norway lobster. Species in the genus are economically damaging to commercial crab fisheries, including causing bitter crab disease in the large Tanner or snow crab fisheries of the Bering Sea.

<span class="mw-page-title-main">Diseases and parasites in salmon</span>

Diseases and parasites in salmon, trout and other salmon-like fishes of the family Salmonidae are also found in other fish species. The life cycle of many salmonids is anadromous, so such fish are exposed to parasites in fresh water, brackish water and saline water.

Amyloodinium ocellatum is a cosmopolitan ectoparasite dinoflagellate of numerous aquatic organisms living in brackish and seawater environments. The dinoflagellate is endemic in temperate and tropical areas, and is capable of successfully adapting to a variety of different environments and to a great number of hosts, having been identified in four phyla of aquatic organisms: Chordata, Arthropoda, Mollusca and Platyhelminthes. Moreover, it is the only dinoflagellate capable of infecting teleosts and elasmobranchs.

<i>Sphaerospora molnari</i> Species of marine parasite

Sphaerospora molnari is a microscopic endoparasite of carp in pond cultures and natural freshwater habitats in Central and Eastern Europe. In natural infections, S. molnari invades the epithelia of gills and surrounding skin regions. It then forms spores in between epithelial cells, causing sphaerosporosis, a pathological condition of the skin and gill tissues. Affected tissues show marked dystrophic changes and necrosis, causing secondary bacterial infections and resulting in osmoregulatory and respiratory failure. Mortalities can reach 100% but little is known about the overall distribution of the parasite species in European carp ponds or its economic impact on carp aquaculture.

References

  1. "'Ich' discovery could yield new ways to treat devastating freshwater fish parasite". ScienceDaily. Retrieved 2021-10-23.
  2. "Ich | fish disease". Encyclopedia Britannica. Retrieved 2021-10-23.
  3. 1 2 Noga, Edward (2000). Fish disease: diagnosis and treatment. Wiley-Blackwell. pp. 95–97. ISBN   978-0-8138-2558-8.
  4. 1 2 3 Buchmann, Kurt (2019). "Immune response to Ichthyophthirius multifiliis and role of IgT". Parasite Immunology. 42 (8): e12675. doi: 10.1111/pim.12675 . ISSN   1365-3024. PMC   7507210 . PMID   31587318.
  5. Olsen, Moonika M.; Kania, Per W.; Heinecke, Rasmus D.; Skjoedt, Karsten; Rasmussen, Karina J.; Buchmann, Kurt (2011-03-01). "Cellular and humoral factors involved in the response of rainbow trout gills to Ichthyophthirius multifiliis infections: Molecular and immunohistochemical studies". Fish & Shellfish Immunology. 30 (3): 859–869. Bibcode:2011FSI....30..859O. doi:10.1016/j.fsi.2011.01.010. ISSN   1050-4648. PMID   21272651.
  6. 1 2 3 Heinecke, Rasmus D.; Buchmann, Kurt (2009-03-02). "Control of Ichthyophthirius multifiliis using a combination of water filtration and sodium percarbonate: Dose-response studies". Aquaculture. 288 (1): 32–35. Bibcode:2009Aquac.288...32H. doi:10.1016/j.aquaculture.2008.11.017. ISSN   0044-8486.
  7. 1 2 von Gersdorff Jørgensen, Louise; Sigh, Jens; Kania, Per Walter; Holten-Andersen, Lars; Buchmann, Kurt; Clark, Theodore; Rasmussen, Jesper Skou; Einer-Jensen, Katja; Lorenzen, Niels (2012-11-07). "Approaches towards DNA Vaccination against a Skin Ciliate Parasite in Fish". PLOS ONE. 7 (11): e48129. Bibcode:2012PLoSO...748129V. doi: 10.1371/journal.pone.0048129 . ISSN   1932-6203. PMC   3492342 . PMID   23144852.
  8. 1 2 3 Jørgensen, L. von Gersdorff; Kania, P. W.; Rasmussen, K. J.; Mattsson, A. H.; Schmidt, J.; Al-Jubury, A.; Sander, A.; Salanti, A.; Buchmann, K. (2017). "Rainbow trout (Oncorhynchus mykiss) immune response towards a recombinant vaccine targeting the parasitic ciliate Ichthyophthirius multifiliis". Journal of Fish Diseases. 40 (12): 1815–1821. Bibcode:2017JFDis..40.1815V. doi:10.1111/jfd.12653. hdl: 10261/177214 . ISSN   1365-2761. PMID   28548690. S2CID   29544998.
  9. 1 2 3 Al-Jubury, A; Lu, C; Kania, P W; von Gersdorff Jørgensen, L; Liu, Y; de Bruijn, I; Raaijmakers, J; Buchmann, K (July 2018). "Impact of Pseudomonas H6 surfactant on all external life cycle stages of the fish parasitic ciliate Ichthyophthirius multifiliis". Journal of Fish Diseases. 41 (7): 1147–1152. Bibcode:2018JFDis..41.1147A. doi: 10.1111/jfd.12810 . hdl: 20.500.11755/42488b43-5220-4527-be1b-e192631f991d . PMID   29671884.
  10. 1 2 Burgess, P (2016). "The essential guide to whitespot". Practical Fishkeeping. 7: 60–63.
  11. 1 2 Andrews, Chris, 1953- (2010). Manual of fish health : everything you need to know about aquarium fish, their environment and disease prevention. Carrington, Neville., Exell, Adrian. (Rev. 2nd ed.). Richmond Hill, Ont.: Firefly Books. ISBN   978-1-55407-691-8. OCLC   578105245.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  12. 1 2 Aihua, L.; Buchmann, K. (2001). "Temperature- and salinity-dependent development of a Nordic strain of Ichthyophthirius multifiliis from rainbow trout". Journal of Applied Ichthyology. 17 (6): 273–276. Bibcode:2001JApIc..17..273A. doi: 10.1046/j.1439-0426.2001.00279.x . ISSN   1439-0426.
  13. Lin, Yuankai; Lin, Tian Long; Wang, Chia-Cheng; Wang, Xuting; Stieger, Knut; Klopfleisch, Robert; Clark, Theodore G. (2002-03-01). "Variation in primary sequence and tandem repeat copy number among i-antigens of Ichthyophthirius multifiliis". Molecular and Biochemical Parasitology. 120 (1): 93–106. doi:10.1016/S0166-6851(01)00436-4. ISSN   0166-6851. PMID   11849709.
  14. Raissy, Mehdi; Keyhani, Khodakaram; Pirali, Khodadad (2020-12-21). "Comparison of the effects of geranium, lavender and garlic extracts on Ichthyophthirius multifiliis in naturally infected Capoeta damascina". Journal of Animal Environment. 12 (4): 307–310. doi:10.22034/aej.2020.121630. ISSN   2717-1388.
  15. Nielsen, CV; Buchmann, K (2000). "Prolonged in vitro cultivation of Ichthyophthirius multifiliis using an EPC cell line as substrate". Diseases of Aquatic Organisms. 42 (3): 215–219. doi: 10.3354/dao042215 . ISSN   0177-5103. PMID   11104073.