IEEE 854-1987

Last updated

The IEEE Standard for Radix-Independent Floating-Point Arithmetic (IEEE 854), was the first Institute of Electrical and Electronics Engineers (IEEE) international standard for floating-point arithmetic with radices other than 2, including radix 10. [1] IEEE 854 did not specify any data formats, whereas IEEE 754-1985 did specify formats for binary (radix 2) floating point. IEEE 754-1985 and IEEE 854-1987 were both superseded in 2008 by IEEE 754-2008, [2] which specifies floating-point arithmetic for both radix 2 (binary) and radix 10 (decimal), and specifies two alternative formats for radix 10 floating-point values, and even more so with IEEE 754-2019. [3] IEEE 754-2008 also had many other updates to the IEEE floating-point standardisation.

IEEE 854 arithmetic was first commercially implemented in the HP-71B handheld computer, which used decimal floating point with 12 digits of significand, and an exponent range of ±499, with a 15 digit significand used for intermediate results.

Related Research Articles

<span class="mw-page-title-main">Floating-point arithmetic</span> Computer approximation for real numbers

In computing, floating-point arithmetic (FP) is arithmetic that represents subsets of real numbers using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. Numbers of this form are called floating-point numbers. For example, 12.345 is a floating-point number in base ten with five digits of precision:

IEEE 754-1985 is a historic industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. During its 23 years, it was the most widely used format for floating-point computation. It was implemented in software, in the form of floating-point libraries, and in hardware, in the instructions of many CPUs and FPUs. The first integrated circuit to implement the draft of what was to become IEEE 754-1985 was the Intel 8087.

In computing, NaN, standing for Not a Number, is a particular value of a numeric data type which is undefined as a number, such as the result of 0/0. Systematic use of NaNs was introduced by the IEEE 754 floating-point standard in 1985, along with the representation of other non-finite quantities such as infinities.

Double-precision floating-point format is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point.

In computer science, subnormal numbers are the subset of denormalized numbers that fill the underflow gap around zero in floating-point arithmetic. Any non-zero number with magnitude smaller than the smallest positive normal number is subnormal, while denormal can also refer to numbers outside that range.

The IEEE Standard for Floating-Point Arithmetic is a technical standard for floating-point arithmetic originally established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and portably. Many hardware floating-point units use the IEEE 754 standard.

The significand is the first (left) part of a number in scientific notation or related concepts in floating-point representation, consisting of its significant digits. Depending on the interpretation of the exponent, the significand may represent an integer or a fractional number.

Hexadecimal floating point is a format for encoding floating-point numbers first introduced on the IBM System/360 computers, and supported on subsequent machines based on that architecture, as well as machines which were intended to be application-compatible with System/360.

In computing, a normal number is a non-zero number in a floating-point representation which is within the balanced range supported by a given floating-point format: it is a floating point number that can be represented without leading zeros in its significand.

Extended precision refers to floating-point number formats that provide greater precision than the basic floating-point formats. Extended precision formats support a basic format by minimizing roundoff and overflow errors in intermediate values of expressions on the base format. In contrast to extended precision, arbitrary-precision arithmetic refers to implementations of much larger numeric types using special software.

Decimal floating-point (DFP) arithmetic refers to both a representation and operations on decimal floating-point numbers. Working directly with decimal (base-10) fractions can avoid the rounding errors that otherwise typically occur when converting between decimal fractions and binary (base-2) fractions.

The IEEE 754-2008 standard includes decimal floating-point number formats in which the significand and the exponent can be encoded in two ways, referred to as binary encoding and decimal encoding.

IEEE 754-2008 is a revision of the IEEE 754 standard for floating-point arithmetic. It was published in August 2008 and is a significant revision to, and replaces, the IEEE 754-1985 standard. The 2008 revision extended the previous standard where it was necessary, added decimal arithmetic and formats, tightened up certain areas of the original standard which were left undefined, and merged in IEEE 854 . In a few cases, where stricter definitions of binary floating-point arithmetic might be performance-incompatible with some existing implementation, they were made optional. In 2019, it was updated with a minor revision IEEE 754-2019.

In computing, half precision is a binary floating-point computer number format that occupies 16 bits in computer memory. It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks.

In computing, quadruple precision is a binary floating-point–based computer number format that occupies 16 bytes with precision at least twice the 53-bit double precision.

Single-precision floating-point format is a computer number format, usually occupying 32 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point.

In computing, decimal32 is a decimal floating-point computer numbering format that occupies 4 bytes in computer memory. Like the binary16 and binary32 formats, it is intended for memory saving storage.

In computing, decimal64 is a decimal floating-point computer numbering format that occupies 8 bytes in computer memory. It is intended for applications where it is necessary to emulate decimal rounding exactly, such as financial and tax computations.

In computing, decimal128 is a decimal floating-point number format that occupies 128 bits in memory. Formally introduced in IEEE 754-2008, it is intended for applications where it is necessary to emulate decimal rounding exactly, such as financial and tax computations.

In computing, octuple precision is a binary floating-point-based computer number format that occupies 32 bytes in computer memory. This 256-bit octuple precision is for applications requiring results in higher than quadruple precision.

References

  1. IEEE Standards Association (1987). 854-1987: IEEE Standard for Radix-Independent Floating-Point Arithmetic. doi:10.1109/IEEESTD.1987.81037. ISBN   0-7381-1167-8.
  2. "IEEE 754: Standard for Binary Floating-Point Arithmetic". IEEE Standards Association Working Group Site & Liaison Index. Archived from the original on 19 April 2018. Retrieved 21 September 2011.
  3. "ANSI/IEEE Std 754-2019". 754r.ucbtest.org. Retrieved 6 August 2019.