Hydrolysis constant

Last updated

The word hydrolysis is applied to chemical reactions in which a substance reacts with water. In organic chemistry, the products of the reaction are usually molecular, being formed by combination with H and OH groups (e.g., hydrolysis of an ester to an alcohol and a carboxylic acid). In inorganic chemistry, the word most often applies to cations forming soluble hydroxide or oxide complexes with, in some cases, the formation of hydroxide and oxide precipitates.

Contents

Metal hydrolysis and associated equilibrium constant values

The hydrolysis reaction for a hydrated metal ion in aqueous solution can be written as:

p Mz+ + q H2O ⇌ Mp(OH)q(pz–q) + q H+

and the corresponding formation constant as:

and associated equilibria can be written as:

MOx(OH)z–2x(s) + z H+ ⇌ Mz+ + (z–x) H2O
MOx(OH)z–2x(s) + x H2O ⇌ Mz+ + z OH
p MOx(OH)z–2x(s) + (pz–q) H+ ⇌ Mp(OH)q(pz–q) + (pz–px–q) H2O

Aluminium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [1] Brown and Ekberg, 2016 [2] Hummel and Thoenen, 2023 [3]
Al3+ + H2O ⇌ AlOH2+ + H+–4.97−4.98 ± 0.02−4.98 ± 0.02
Al3+ + 2 H2O ⇌ Al(OH)2+ + 2 H+–9.3−10.63 ± 0.09−10.63 ± 0.09
Al3+ + 3 H2O ⇌ Al(OH)3 + 3 H+–15.0−15.66 ± 0.23−15.99 ± 0.23
Al3+ + 4 H2O ⇌ Al(OH)4 + 4 H+–23.0−22.91 ± 0.10−22.91 ± 0.10
2 Al3+ + 2 H2O ⇌ Al2(OH)24+ + 2 H+–7.7−7.62 ± 0.11−7.62 ± 0.11
3 Al3+ + 4 H2O ⇌ Al3(OH)45+ + 4 H+–13.94−14.06 ± 0.22−13.90 ± 0.12
13 Al3+ + 28 H2O ⇌ Al13O4(OH)247+ + 32 H+–98.73−100.03 ± 0.09−100.03 ± 0.09
α-Al(OH)3(s) + 3 H+ ⇌ Al3+ + 3 H2O8.57.75 ± 0.087.75 ± 0.08
γ-AlOOH(s) + 3 H+ ⇌ Al3+ + 2 H2O7.69 ± 0.159.4 ± 0.4

Americium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionNIST46 [4] Brown and Ekberg, 2016 [5] Grenthe et al, 2020 [6]
Am3+ + H2O ⇌ Am(OH)2+ + H+–6.5 ± 0.1–7.22 ± 0.03–7.2 ± 0.5
Am3+ + 2 H2O ⇌ Am(OH)2+ + 2 H+–14.1 ± 0.3–14.9 ± 0.2–15.1 ± 0.7
Am3+ + 3 H2O ⇌ Am(OH)3 + 3 H+–25.7–26.0 ± 0.2–26.2 ± 0.5
Am3+ + 3 H2O ⇌ Am(OH)3(am) + 3 H+–16.9 ± 0.1–16.9 ± 0.8–16.9 ± 0.8
Am3+ + 3 H2O ⇌ Am(OH)3(cr) + 3 H+–15.2–15.62 ± 0.04–15.6 ± 0.6

Americium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBrown and Ekberg, 2016 [7] Grenthe et al, 2020 [6]
AmO2+ + H2O ⇌ AmO2(OH) + H+–10.7 ± 0.2
AmO2+ + 2 H2O ⇌ AmO2(OH)2 + 2 H+–22.9 ± 0.7
AmO2+ + H2O ⇌ AmO2(OH)(am) + H+–5.4 ± 0.4–5.3 ± 0.5

Antimony(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [8] Lothenbach et al., 1999; [9]

Kitamura et al., 2010 [10]

Filella and May, 2003 [11]
Sb(OH)3 + H+ ⇌ Sb(OH)2+ + H2O1.411.301.371
Sb(OH)3 + H2O ⇌ Sb(OH)4 + H+‒11.82‒11.93‒11.70
0.5 Sb2O3(s) + 1.5 H2O ⇌ Sb(OH)3‒4.24
Sb2O3(rhombic,s) + 3 H2O ⇌ 2 Sb(OH)3‒8.72‒10.00
Sb2O3(cubic,s) + 3 H2O ⇌ 2 Sb(OH)3‒11.40

Antimony(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [8] Lothenbach et al., 1999; [9] Kitamura et al., 2010 [10]
Sb(OH)5 + H2O ⇌ Sb(OH)6 + H+‒2.72‒2.72
12 Sb(OH)5 + 4 H2O ⇌ Sb12(OH)644‒ + 4 H+20.3420.34
12 Sb(OH)5 + 5 H2O ⇌ Sb12(OH)655‒ + 5 H+16.7216.72
12 Sb(OH)5 + 6 H2O ⇌ Sb12(OH)666‒ + 6 H+11.8911.89
12 Sb(OH)5 + 7 H2O ⇌ Sb12(OH)677‒ + 7 H+6.076.07
0.5 Sb2O5(s) + 2.5 H2O ⇌ Sb(OH)5‒3.7
Sb2O5(am) + 5 H2O ⇌ 2 Sb(OH)5‒7.400

Arsenic(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [12] Nordstrom and Archer, 2003 [13] Nordstrom et al., 2014 [14]
As(OH)4 + H+ ⇌ As(OH)3 + H2O9.299.179.24 ± 0.02

Arsenic(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer [12] Khodakovsky et al. (1968) [15] Nordstrom and Archer, 2003 [13] Nordstrom et al., 2014 [14]
H2AsO4 + H+ ⇌ H3AsO42.242.212.26 ± 0.0782.25 ± 0.04
HAsO42‒ + H+ ⇌ H2AsO46.936.99 ± 0.16.98 ± 0.11
AsO43‒ + H+ ⇌ HAsO42‒11.5111.80 ± 0.111.58 ± 0.05
HAsO42‒ + 2 H+ ⇌H3AsO49.20
AsO43‒ + 3 H+ ⇌ H3AsO420.70

Barium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [16] Nordstrom et al., 1990 [17] Brown and Ekberg, 2016 [18]
Ba2+ + H2O ⇌ BaOH+ + H+–13.47–13.47–13.32 ± 0.07

Berkelium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBrown and Ekberg, 2016 [19]
Bk3+ + 3 H2O ⇌ Bk(OH)3(s) + 3 H+–13.5 ± 1.0

Beryllium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [20]
Be2+ + H2O ⇌ BeOH+ + H+–5.10
Be2+ + 2 H2O ⇌ Be(OH)2 + 2 H+–23.65
Be2+ + 3 H2O ⇌ Be(OH)3 + 3 H+–23.25
Be2+ + 4 H2O ⇌ Be(OH)42– + 4 H+–37.42
2 Be2+ + H2O ⇌ Be2OH3+ + H+–3.97
3 Be2+ + 3 H2O ⇌ Be3(OH)33+ + 3 H+–8.92
6 Be2+ + 8 H2O ⇌ Be6(OH)84+ + 8 H+–27.2
α-Be(OH)2(cr) + 2 H+ ⇌ Be2+ + 2 H2O6.69

Bismuth

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [21] Lothenbach et

al., 1999 [9]

NIST46 [4] Kitamura et

al., 2010 [10]

Brown and

Ekberg, 2016 [22]

Bi3+ + H2O ⇌ BiOH2+ + H+–1.0–0.92–1.1–0.920–0.92 ± 0.15
Bi3+ + 2 H2O ⇌ Bi(OH)2+ + 2 H+(–4)–2.56–4.5–2.560 ± 1.000–2.59 ± 0.26
Bi3+ + 3 H2O ⇌ Bi(OH)3 + 3 H+–8.86–5.31–9.0–8.940 ± 0.500–8.78 ± 0.20
Bi3+ + 4 H2O ⇌ Bi(OH)4 + 4 H+–21.8–18.71–21.2–21.660 ± 0.870–22.06 ± 0.14
3 Bi3+ + 4 H2O ⇌ Bi3(OH)45+ + 4 H+–0.80–0.800
6 Bi3+ + 12 H2O ⇌ Bi6(OH)126+ + 12 H+1.341.3400.98 ± 0.13
9 Bi3+ + 20 H2O = Bi9(OH)207+ + 20 H+–1.36–1.360
9 Bi3+ + 21 H2O = Bi9(OH)216+ + 21 H+–3.25–3.250
9 Bi3+ + 22 H2O = Bi9(OH)225+ + 22 H+–4.86–4.860
Bi(OH)3(am) + 3 H+ = Bi3+ + 3 H2O31.501 ± 0.927
α-Bi2O3(cr) + 6 H+ = 2 Bi3+ + 3 H2O0.76
BiO1.5(s, α) + 3 H+ = Bi3+ + 1.5 H2O3.4631.501 ± 0.9272.88 ± 0.64

Boron

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [23] NIST46 [4]
B(OH)3 + H2O ⇌ Be(OH)4+ + H+–9.236–9.236 ± 0.002
2 B(OH)3 ⇌ B2(OH)5 + H+–9.36–9.306
3 B(OH)3 ⇌ B3O3(OH)4 + H+ + 2 H2O–7.03–7.306
4 B(OH)3 ⇌ B4O5(OH)42– + 2 H+ + 3 H2O–16.3–15.032

Cadmium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [24] Powell et al., 2011 [25] Brown and Ekberg, 2016 [26]
Cd2+ + H2O ⇌ CdOH+ + H+−10.08–9.80 ± 0.10−9.81 ± 0.10
Cd2+ + 2 H2O ⇌ Cd(OH)2 + 2 H+–20.35–20.19 ± 0.13−20.6 ± 0.4
Cd2+ + 3 H2O ⇌ Cd(OH)3 + 3 H+<–33.3–33.5 ± 0.5−33.5 ± 0.5
Cd2+ + 4 H2O ⇌ Cd(OH)42– + 4 H+–47.35–47.28 ± 0.15−47.25 ± 0.15
2 Cd2+ + H2O ⇌ Cd2OH3+ + H+–9.390–8.73 ± 0.01−8.74 ± 0.10
4 Cd2+ + 4 H2O ⇌ Cd4(OH)44+ + H+–32.85
Cd(OH)2(s) ⇌ Cd2+ + 2 OH–14.28 ± 0.12
Cd(OH)2(s) + 2 H+ ⇌ Cd2+ + 2 H2O13.6513.72 ± 0.1213.71 ± 0.12

Calcium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [16] Nordstrom et al., 1990 [17] Brown and Ekberg, 2016 [27]
Ca2+ + H2O ⇌ CaOH+ + H+–12.85–12.78–12.57 ± 0.03
Ca(OH)2(cr) + 2 H+ ⇌ Ca2+ + 2 H2O22.8022.822.75 ± 0.02

Californium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBrown and Ekberg, 2016 [19]
Cf3+ + 3 H2O ⇌ Bk(OH)3(s) + 3 H+–13.0 ± 1.0

Cerium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [28] NIST46 [4] Brown and Ekberg, 2016 [29]
Ce3+ + H2O ⇌ CeOH2+ + H+–8.3–8.3–8.31 ± 0.03
2 Ce3+ + 2 H2O ⇌ Ce2(OH)24+ + 2 H+–16.0 ± 0.2
3 Ce3+ + 5 H2O ⇌ Ce3(OH)54+ + 5 H+–34.6 ± 0.3
Ce(OH)3(s) + 3 H+ ⇌ Ce3+ + 3 H2O18.5 ± 0.5
Ce(OH)3(s) ⇌ Ce3+ + 3 OH–22.1 ± 0.9

Chromium(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K (The divalent state is unstable in water, producing hydrogen whilst being oxidised to a higher valency state (Baes and Mesmer, 1976). The reliability of the data is in doubt.):

ReactionNIST46 [4] Ball and Nordstrom, 1988 [30]
Cr2+ + H2O ⇌ CrOH+ + H+–5.5
Cr(OH)2(s) ⇌ Cr2+ + 2 OH–17 ± 0.02

Chromium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [31] Rai et al., 1987 [32] Ball and Nordstrom, 1988 [30] Brown and Ekberg, 2016 [33]
Cr3+ + H2O ⇌ CrOH2+ + H+–4.0–3.57 ± 0.08–3.60 ± 0.07
Cr3+ + 2 H2O ⇌ Cr(OH)2+ + 2 H+–9.7–9.84–9.65 ± 0.20
Cr3+ + 3 H2O ⇌ Cr(OH)3 + 3 H+–18–16.19–16.25 ± 0.19
Cr3+ + 4 H2O ⇌ Cr(OH)4- + 4 H+–27.4–27.65 ± 0.12–27.56 ± 0.21
2 Cr3+ + 2 H2O ⇌ Cr2(OH)24+ + 2 H+–5.06–5.0–5.29 ± 0.16
3 Cr3+ + 4 H2O ⇌ Cr3(OH)45+ + 4 H+–8.15–10.75 ± 0.15–9.10 ± 0.14
Cr(OH)3(s) + 3 H+ ⇌ Cr3+ + 3 H2O129.359.41 ± 0.17
Cr2O3(s) + 6 H+ ⇌ 2 Cr3+ + 3 H2O8.52
CrO1.5(s) + 3 H+ ⇌ Cr3+ + 1.5 H2O7.83 ± 0.10

Chromium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [34] Ball and Nordstrom, 1998 [30]
CrO42– + H+ ⇌ HCrO46.516.55 ± 0.04
HCrO4 + H+ ⇌ H2CrO4–0.20
CrO42– + 2 H+ ⇌ H2CrO46.31
2 HCrO4 ⇌ Cr2O72– + H2O1.523
2 CrO42– + 2 H+ ⇌ Cr2O72– + H2O14.7 ± 0.1

Cobalt(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [35] Brown and Ekberg, 2016 [36]
Co2+ + H2O ⇌ CoOH+ + H+–9.65−9.61 ± 0.17
Co2+ + 2 H2O ⇌ Co(OH)2 + 2 H+–18.8−19.77 ± 0.11
Co2+ + 3 H2O ⇌ Co(OH)3 + 3 H+–31.5−32.01 ± 0.33
Co2+ + 4 H2O ⇌ Co(OH)42– + 4 H+–46.3
2 Co2+ + H2O ⇌ Co2(OH)3+ + H+–11.2
4 Co2+ + 4 H2O ⇌ Co4(OH)44+ + 4H+–30.53
Co(OH)2(s) + 2 H+ ⇌ Co2+ + 2 H2O12.313.24 ± 0.12
CoO(s) + 2 H+ ⇌ Co2+ + H2O13.71 ± 0.10

Cobalt(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBrown and Ekberg, 2016 [37]
Co3+ + H2O ⇌ CoOH2+ + H+−1.07 ± 0.11

Copper(I)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBrown and Ekberg, 2016 [38]
Cu+ + H2O ⇌ CuOH + H+–7.8 ± 0.4
Cu+ + 2 H2O ⇌ Cu(OH)2 + 2 H+–18.6 ± 0.6

Copper(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [39] NIST46 [4] Plyasunova et al., 1997 [40] Powell et al., 2007 [41] Brown and Ekberg, 2016 [38]
Cu2+ + H2O ⇌ CuOH+ + H+< –8–7.7–7.97 ± 0.09–7.95 ± 0.16–7.64 ± 0.17
Cu2+ + 2 H2O ⇌ Cu(OH)2 + 2 H+(< –17.3)–17.3–16.23 ± 0.15–16.2 ± 0.2–16.24 ± 0.03
Cu2+ + 3 H2O ⇌ Cu(OH)3 + 3 H+(< –27.8)–27.8–26.63 ± 0.40–26.60 ± 0.09–26.65 ± 0.13
Cu2+ + 4 H2O ⇌ Cu(OH)42– + 4 H+–39.6–39.6–39.73 ± 0.17–39.74 ± 0.18–39.70 ± 0.19
2 Cu2+ + H2O ⇌ Cu2(OH)3+ + H+–6.71 ± 0.30–6.40 ± 0.12–6.41 ± 0.17
2 Cu2+ + 2 H2O ⇌ Cu2(OH)22+ + 2 H+–10.36–10.3–10.55 ± 0.17–10.43 ± 0.07–10.55 ± 0.02
3 Cu2+ + 4 H2O ⇌ Cu3(OH)42+ + 4 H+–20.95 ± 0.30–21.1 ± 0.2–21.2 ± 0.4
CuO(s) + 2 H+ ⇌ Cu2+ + H2O7.627.64 ± 0.067.64 ± 0.067.63 ± 0.05
Cu(OH)2(s) + 2 H+ ⇌ Cu2+ + 2 H2O8.67 ± 0.058.68 ± 0.10

Curium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBrown and Ekberg, 2016 [42]
Cm3+ + H2O ⇌ Cm(OH)2+ + H+−7.66 ± 0.07
Cm3+ + 2 H2O ⇌ Cm(OH)2+ + 2 H+−15.9 ± 0.1
Cm3+ + 3 H2O ⇌ Cm(OH)3(s) + 3 H+−13.9 ± 0.4

Dysprosium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [28] Brown and Ekberg, 2016 [43]
Dy3+ + H2O ⇌ DyOH2+ + H+−8.0−7.53 ± 0.14
Dy3+ + 2 H2O ⇌ Dy(OH)2+ + 2 H+(–16.2)
Dy3+ + 3 H2O ⇌ Dy(OH)3 + 3 H+(–24.7)
Dy3+ + 4 H2O ⇌ Dy(OH)4 + 4 H+–33.5
2 Dy3+ + 2 H2O ⇌ Dy2(OH)24+ + 2 H+−13.76 ± 0.20
3 Dy3+ + 5 H2O ⇌ Dy3(OH)54+ + 5 H+−30.6 ± 0.3
Dy(OH)3(s) + 3 H+ ⇌ Dy3+ + 3 H2O15.916.26 ± 0.30
Dy(OH)3(c) + OH ⇌ Dy(OH)4−3.6
Dy(OH)3(c) ⇌ Dy(OH)3−8.8

Erbium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [28] Brown and Ekberg, 2016 [44]
Er3+ + H2O ⇌ ErOH2+ + H+−7.9−7.46 ± 0.09
Er3+ + 2 H2O ⇌ Er(OH)2+ + 2 H+(−15.9)
Er3+ + 3 H2O ⇌ Er(OH)3 + 3 H+(−24.2)
Er3+ + 4 H2O ⇌ Er(OH)4 + 4 H+−32.6
2 Er3+ + 2 H2O ⇌ Er2(OH)24+ + 2 H+−13.65−13.50 ± 0.20
3 Er3+ + 5 H2O ⇌ Er3(OH)54+ + 5 H+<−29.3−31.0 ± 0.3
Er(OH)3(s) + 3 H+ ⇌ Er3+ + 3 H2O15.015.79 ± 0.30
Er(OH)3(c) + OH ⇌ Er(OH)4−3.6
Er(OH)3(c) ⇌ Er(OH)3~ −9.2

Europium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [28] NIST46 [4] Hummel et al., 2002 [45] Brown and Ekberg, 2016 [29]
Eu3+ + H2O ⇌ EuOH2+ + H+–7.8–7.64 ± 0.04–7.66 ± 0.05
Eu3+ + 2 H2O ⇌ Eu(OH)2+ + 2 H+–15.1 ± 0.2
Eu3+ + 3 H2O ⇌ Eu(OH)3 + 3 H+–23.7 ± 0.1
Eu3+ + 4 H2O ⇌ Eu(OH)4 + 4 H+–36.2 ± 0.5
2 Eu3+ + 2 H2O ⇌ Eu2(OH)24+ + 2 H+-–14.1 ± 0.2
3 Eu3+ + 5 H2O ⇌ Eu3(OH)54+ + 5 H+-–32.0 ± 0.3
Eu(OH)3(s) + 3 H+ ⇌ Eu3+ + 3 H2O17.517.6 ± 0.8 (am)

14.9 ± 0.3 (cr)

16.48 ± 0.30
Eu(OH)3(s) ⇌ Eu3+ + 3 OH–24.5 ± 0.7 (am)

–26.5 (cr)

Gadolinium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [46] Brown and Ekberg, 2016 [47]
Gd3+ + H2O ⇌ GdOH2+ + H+–8.0–7.87 ± 0.05
Gd3+ + 2 H2O ⇌ Gd(OH)2+ + 2 H+(–16.4)
Gd3+ + 3 H2O ⇌ Gd(OH)3 + 3 H+(–25.2)
Gd3+ + 4 H2O ⇌ Gd(OH)4 + 4 H+–34.4
2 Gd3+ + 2 H2O ⇌ Gd2(OH)24+ + 2 H+–14.16 ± 0.20
3 Gd3+ + 5 H2O ⇌ Gd3(OH)54+ + 5 H+–33.0 ± 0.3
Gd(OH)3(s) + 3 H+ ⇌ Gd3+ + 3 H2O15.617.20 ± 0.48
Gd(OH)3(c) + OH ⇌ Gd(OH)4–4.8
Gd(OH)3(c) ⇌ Gd(OH)3–9.6

Gallium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [48] Smith et al., 2003 [49] Brown and Ekberg, 2016 [50]
Ga3+ + H2O ⇌ GaOH2+ + H+–2.6–2.897–2.74
Ga3+ + 2 H2O ⇌ Ga(OH)2+ + 2 H+–5.9–6.694–7.0
Ga3+ + 3 H2O ⇌ Ga(OH)3 + 3 H+–10.3–11.96
Ga3+ + 4 H2O ⇌ Ga(OH)4 + 4 H+–16.6–16.588–15.52
Ga(OH)3(s) ⇌ Ga3+ + 3 OH–37–37.0
GaO(OH)(s) + H2O ⇌ Ga3+ + 3 OH–39.06–39.1–40.51

Germanium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [51] Wood and Samson, 2006 [52] Filella and May, 2023 [53]
Ge(OH)4 ⇌ GeO(OH)3- + H+–9.31–9.32 ± 0.05–9.099
Ge(OH)4 ⇌ GeO2(OH)22+ + 2 H+–21.9
GeO2(OH)22– + H+ ⇌ GeO(OH)312.76
8 Ge(OH)4 ⇌ Ge8O16(OH)33- + 13 H2O + 3 H+–14.24
8 Ge(OH)4 + 3 OH ⇌ Ge8(OH)353–28.33
GeO2(s, hexa) + 2 H2O ⇌ Ge(OH)4–1.35–1.373
GeO2(s, tetra) + 2 H2O ⇌ Ge(OH)4-4.37–5.02–4.999

Gold(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [54]
Au(OH)3 +2 H+ ⇌ AuOH2+ + 2 H2O1.51
Au(OH)3 + H+ ⇌ Au(OH)2+ + H2O< 1.0
Au(OH)3 + H2O ⇌ Au(OH)4 + H+–11.77
Au(OH)3 + 2 H2O ⇌ Au(OH)52– + 2 H+–25.13
Au(OH)52– + 3 H2O ⇌ Au(OH)63– + 3 H+< –41.1
Au(OH)3(c) ⇌ Au(OH)3–5.51

Hafnium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [55] Brown and Ekberg, 2016 [56]
Hf4+ + H2O ⇌ HfOH3+ + H+–0.25−0.26 ± 0.10
Hf4+ + 2 H2O ⇌ Hf(OH)22+ + 2 H+(–2.4)
Hf4+ + 3 H2O ⇌ Hf(OH)3+ + 3 H+(–6.0)
Hf4+ + 4 H2O ⇌ Hf(OH)4 + 4 H+–10.7*−3.75 ± 0.34*
Hf4+ + 5 H2O ⇌ Hf(OH)5 + 5 H+–17.2
3 Hf4+ + 4 H2O ⇌ Hf3(OH)48+ + 4 H+0.55 ± 0.30
4 Hf4+ + 8 H2O ⇌ Hf4(OH)88+ + 8 H+6.00 ± 0.30
HfO2(s) + 4 H+ ⇌ Hf4+ + 2 H2O–1.2*–5.56 ± 0.15*
HfO2(am) + 4 H+ ⇌ Hf4+ + 2 H2O–3.11 ± 0.20

*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. Strongly suggested to refer to the original papers.

Holmium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [28] Brown and Ekberg, 2016 [57]
Ho3+ + H2O ⇌ HoOH2+ + H+−8.0−7.43 ± 0.05
2 Ho3+ + 2 H2O ⇌ Ho2(OH)24+ + 2 H+−13.5 ± 0.2
3 Ho3+ + 5 H2O ⇌ Ho3(OH)54+ + 5 H+−30.9 ± 0.3
Ho(OH)3(s) + 3 H+ ⇌ Ho3+ + 3 H2O15.415.60 ± 0.30

Indium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [58] NIST46 [4] Brown and Ekberg, 2016 [59]
In3+ + H2O ⇌ InOH2+ + H+–4.00–3.927–3.96
In3+ + 2 H2O ⇌ In(OH)2+ + 2 H+–7.82–7.794–9.16
In3+ + 3 H2O ⇌ In(OH)3 + 3 H+–12.4–12.391
In3+ + 4 H2O ⇌ In(OH)4 + 4 H+–22.07–22.088–22.05
In(OH)3(s) ⇌ In3+ + 3 OH–36.92–36.9–36.92
1/2 In2O3(s) + 3/2 H2O ⇌ In3+ + 3 OH–35.24

Iridium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBrown and Ekberg, 2016 [60]
Ir3+ + H2O ⇌ IrOH2+ + H+‒3.77 ± 0.10
Ir3+ + 2 H2O ⇌ Ir(OH)2+ + 2 H+‒8.46 ± 0.20
Ir(OH)3(s) + 3 H+ ⇌ Ir3+ + 3 H2O8.88 ± 0.20

Iron(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [61] Nordstrom et al., 1990 [17] Hummel et al., 2002 [45] Lemire et al., 2013 [62] Brown and Ekberg, 2016 [63]
Fe2+ + H2O ⇌ FeOH+ + H+–9.3–9.5–9.5–9.1 ± 0.4−9.43 ± 0.10
Fe2+ + 2 H2O ⇌ Fe(OH)2 + 2 H+–20.5−20.52 ± 0.08
Fe2+ + 3 H2O ⇌ Fe(OH)3- + 3 H+–29.4−32.68 ± 0.15
Fe(OH)2(s) +2 H+ ⇌ Fe2+ + 2 H2O12.27 ± 0.88

Iron(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [61] Lemire et al., 2013 [62] Brown and Ekberg, 2016 [64]
Fe3+ + H2O ⇌ FeOH2+ + H+–2.19−2.15 ± 0.07–2.20 ± 0.02
Fe3+ + 2 H2O ⇌ Fe(OH)2+ + 2 H+–5.67−4.8 ± 0.4–5.71 ± 0.10
Fe3+ + 3 H2O ⇌ Fe(OH)3 + 3 H+<–12<–14–12.42 ± 0.20
Fe3+ + 4 H2O ⇌ Fe(OH)4 + 4 H+–21.6−21.5 ± 0.5–21.60 ± 0.23
2 Fe3+ + 2 H2O ⇌ Fe2(OH)24+ + 2 H+–2.95–2.91 ± 0.07–2.91 ± 0.07
3 Fe3+ + 4 H2O ⇌ Fe3(OH)45+ + 4 H+–6.3−6.3 ± 0.1
Fe(OH)3(s) +3 H+ ⇌ Fe3+ + 3 H2O

2-line ferrihydrite

2.53.53.50 ± 0.20
Fe(OH)3(s) ⇌ Fe3+ + 3 OH

6-line ferrihydrite

−38.97 ± 0.64
α-FeOOH(s)+ 3 H+ ⇌ Fe3+ + 2 H2O

goethite

0.50.33 ± 0.10
α-FeOOH + H2O ⇌ Fe3+ + 3 OH

goethite

−41.83 ± 0.37
0.5 α-Fe2O3(s)+ 3 H+ ⇌ Fe3+ + 1.5 H2O

hematite

0.36 ± 0.40
0.5 α-Fe2O3 + 1.5 H2O ⇌ Fe3+ + 3 OH

hematite

−42.05 ± 0.26
0.5 γ-Fe2O3(s) + 3 H+ ⇌ Fe3+ + 1.5 H2O

maghemite

1.61 ± 0.61
0.5 γ-Fe2O3 + 1.5 H2O ⇌ Fe3+ + 3 OH

maghemite

−40.59 ± 0.29
α-FeOOH(s)+ 3 H+ ⇌ Fe3+ + 2 H2O

lepidocrocite

1.85 ± 0.37
γ-FeOOH + H2O ⇌ Fe3+ + 3 OH

lepidocrocite

−40.13 ± 0.37
Fe(OH)3(s) + 3 H+ ⇌ Fe3+ + 3 H2O

magnetite

−12.26 ± 0.26

Lanthanum

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [65] Brown and Ekberg, 2016 [66]
La3+ + H2O ⇌ LaOH2+ + H+–8.5–8.89 ± 0.10
2 La3+ + 2 H2O ⇌ La2(OH)24+ + 2 H+≤ –17.5–17.57 ± 0.20
3 La3+ + 5 H2O ⇌ La3(OH)54+ + 5 H+≤ –38.3–37.8 ± 0.3
5 La3+ + 9 H2O ⇌ La5(OH)96+ + 9 H+–71.2
La(OH)3(s) + 3 H+ ⇌ La3+ + 3 H2O20.319.72 ± 0.34

Lead(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [67] NIST46 [4] Powell et al, 2009 [68] Brown and Ekberg, 2016 [69] Cataldo et al., 2018 [70]
Pb2+ + H2O ⇌ PbOH+ + H+–7.71–7.6–7.46 ± 0.06–7.49 ± 0.13–6.47± 0.03
Pb2+ + 2 H2O ⇌ Pb(OH)2 + 2 H+–17.12–17.1–16.94 ± 0.09–16.99 ± 0.06–16.12 ± 0.01
Pb2+ + 3 H2O ⇌ Pb(OH)3- + 3 H+–28.06–28.1–28.03± 0.06–27.94 ± 0.21–28.4 ± 0.1
Pb2+ + 4 H2O ⇌ Pb(OH)42- + 4 H+–40.8
2 Pb2+ + H2O ⇌ Pb2(OH)3+ + H+–6.36–6.4–7.28± 0.09–6.73 ± 0.31
3 Pb2+ + 4 H2O ⇌ Pb3(OH)42+ + 4 H+–23.88–23.9–23.01 ± 0.07–23.43 ± 0.10
3 Pb2+ + 5 H2O ⇌ Pb3(OH)5+ + 5 H+–31.11 ± 0.10
4 Pb2+ + 4 H2O ⇌ Pb4(OH)44+ + 4 H+–20.88–20.9–20.57± 0.06–20.71 ± 0.18
6 Pb2+ + 8 H2O ⇌ Pb6(OH)84+ + 8 H+–43.61–43.6–42.89± 0.07–43.27 ± 0.47
PbO(s) + 2 H+ ⇌ Pb2+ + H2O12.62 (red)

12.90 (yellow)

PbO(s) +H2O ⇌ Pb2+ + 2 OH–15.28 (red)-15.3–15.3 (red)

–15.1 (yellow)

–15.37 ± 0.04 (red)

–15.1 ± 0.08 (yellow)

Pb2O(OH)2(s) +H2O ⇌ 2 Pb2+ + 4 OH–14.9
PbO(s) +H2O ⇌ Pb(OH)2–4.4 (red)

–4.2 (yellow)

Pb2O(OH)2(s) +H2O ⇌ 2 Pb(OH)2–4.0
PbO(s) + 2 H2O ⇌ Pb(OH)3 + H+–1.4 (red)

–1.2 (yellow)

Pb2O(OH)2(s) + 2 H2O ⇌ 2 Pb(OH)3 + 2 H+–1.0

Lead(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionFeitknecht and Schindler, 1963 [71]
β-PbO2 + 2 H2O ⇌ Pb4+ + 4 OH–64
β-PbO2 + 2 H2O + 2 OH ⇌ Pb(OH)62––4.5

Lithium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [72] Nordstrom et al., 1990 [17] Brown and Ekberg, 2016 [73]
Li+ + H2O ⇌ LiOH + H+–13.64–13.64–13.84 ± 0.14

Magnesium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [74] Nordstrom et al., 1990 [17] Brown and Ekberg, 2016 [75]
Mg2+ + H2O ⇌ MgOH+ + H+–11.44–11.44–11.70 ± 0.04
4 Mg2+ + 4 H2O ⇌ Mg4(OH)44+ + 4 H+–39.71
Mg(OH)2(cr) + 2 H+ ⇌ Mg2+ + 2 H2O16.8416.8417.11 ± 0.04

Manganese(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionPerrin et al., 1969 [76] Baes and Mesmer, 1976 [77] Nordstrom et al., 1990 [17] Hummel et al., 2002 [45] Brown and Ekberg, 2016 [78]
Mn2+ + H2O ⇌ MnOH+ + H+–10.59–10.59–10.59–10.59−10.58 ± 0.04
Mn2+ + 2 H2O ⇌ Mn(OH)2 + 2 H+–22.2−22.18 ± 0.20
Mn2+ + 3 H2O ⇌ Mn(OH)3 + 3 H+–34.8−34.34 ± 0.45
Mn2+ + 4 H2O ⇌ Mn(OH)42– + 4 H+–48.3−48.28 ± 0.40
2 Mn2+ + H2O ⇌ Mn2OH3+ + H+–10.56
2 Mn2+ + 3 H2O ⇌ Mn2(OH)3+ + 6 H+–23.90
Mn(OH)2(s) + 2 H+ ⇌ Mn2+ + 2 H2O15.215.215.215.19 ± 0.10
MnO(s) + 2 H+ ⇌ Mn2+ + H2O17.94 ± 0.12

Manganese(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBrown and Ekberg, 2016 [79]
Mn3+ + H2O ⇌ MnOH2+ + H+–11.70 ± 0.04

Mercury(I)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [80] Brown and Ekberg, 2016 [81]
Hg22+ + H2O ⇌ Hg2OH+ + H+−5.0a−4.45 ± 0.10

(a) 0.5 M HClO4

Mercury(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [82] Powell et all, 2005 [83] Brown and Ekberg, 2016 [79]
Hg2+ + H2O ⇌ HgOH+ + H+−3.40–3.40 ± 0.08–3.40 ± 0.08
Hg2+ + 2 H2O ⇌ Hg(OH)2 + 2 H+-6.17–5.98 ± 0.06−5.96 ± 0.07
Hg2+ + 3 H2O ⇌ Hg(OH)3 + 3 H+–21.1–21.1 ± 0.3
HgO(s) + 2 H+ ⇌ Hg2+ + H2O2.562.37 ± 0.082.37 ± 0.08

Molybdenum(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution, T = 298.15 K and I = 3 M NaClO4 (a) or 0.1 M Na+ medium, Data at I = 0 are not available (b):

ReactionBaes and Mesmer, 1976 [84] Jolivet, 2000 [85] NIST46 [4] Crea et al., 2017 [86]
MoO42– + H+ ⇌ HMoO43.89a4.244.47 ± 0.02
MoO42– + 2 H+ ⇌ H2MoO47.50a8.12 ± 0.03
HMoO4 + H+ ⇌ H2MoO44.0
Mo7O246– + H+ ⇌ HMo7O245–4.4
HMo7O245– + H+ ⇌ H2Mo7O244–3.5
H2Mo7O244– + H+ ⇌ H3Mo7O243–2.5
7 MoO42-+ 8 H+ ⇌ Mo7O246– + 4 H2O57.74a52.99b51.93 ± 0.04
7 MoO42– + 9 H+ ⇌ Mo7O23(OH)5– + 4 H2O62.14a58.90 ± 0.02
7 MoO42– + 10 H+ ⇌ Mo7O22(OH)24– + 4 H2O65.68a64.63 ± 0.05
7 MoO42– + 11 H+ ⇌ Mo7O21(OH)33– + 4 H2O68.21a68.68 ± 0.06
19 MoO42- + 34 H+ ⇌ Mo19O594– + 17 H2O196.3a196a
MoO3(s) + H2O ⇌ MoO42– + 2 H+–12.06a

Neodymium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [28] NIST46 [4] Neck et al., 2009 [87] Brown and Ekberg, 2016 [29]
Nd3+ + H2O ⇌ NdOH2+ + H+–8.0–8.0–7.4 ± 0.4–8.13 ± 0.05
Nd3+ + 2 H2O ⇌ Nd(OH)2+ + 2 H+(–16.9)–15.7 ± 0.7
Nd3+ + 3 H2O ⇌ Nd(OH)3(aq) + 3 H+(–26.5)–26.2 ± 0.5
Nd3+ + 4 H2O ⇌ Nd(OH)4 + 4 H+(–37.1)–37.4–40.7 ± 0.7
2 Nd3+ + 2 H2O ⇌ Nd2(OH)24+ + 2 H+–13.86–13.9–15.56 ± 0.20
3 Nd3+ + 5 H2O ⇌ Nd3(OH)54+ + 5 H+< –28.5–34.2 ± 0.3
Nd(OH)3(s) + 3 H+ ⇌ Nd3+ + 3 H2O18.617.2 ± 0.417.89 ± 0.09
Nd(OH)3(s) ⇌ Nd3+ + 3 OH–23.2 ± 0.9–21.5 (act)

–23.1(inact)

Neptunium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBrown and Ekberg, 2016 [88] Grenthe et al, 2020 [6]
Np3+ + H2O ⇌ NpOH2+ + H+-7.3 ± 0.5–6.8 ± 0.3

Neptunium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [89] NIST46 [4] Brown and Ekberg, 2016 [90] Grenthe et al, 2020 [6]
Np4+ + H2O ⇌ NpOH3+ + H+–1.49–1.5–1.31 ± 0.050.5 ± 0.2
Np4+ + 2 H2O ⇌ Np(OH)22+ + 2 H+–3.7 ± 0.30.3 ± 0.3
Np4+ + 4 H2O ⇌ Np(OH)4 + 4 H+–10.0 ± 0.9–8 ± 1
Np4+ + 4 OH- ⇌ NpO2(am, hyd) + 2 H2O5254.9 ± 0.457.5 ± 0.356.7 ± 0.5

Neptunium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [89] Brown and Ekberg, 2016 [91] Grenthe et al, 2020 [6]
NpO2+ + + H2O ⇌ NpO2(OH) + H+–8.85–10.7 ± 0.5–11.3 ± 0.7
NpO2+ + 2 H2O ⇌ NpO2(OH)2- + 2 H+–22.8 ± 0.7–23.6 ± 0.5
NpO2+ + H2O ⇌ NpO2(OH)(am, fresh) + H+≤ –4.7–5.21 ± 0.05–5.3 ± 0.2
NpO2+ + H2O ⇌ NpO2(OH)(am, aged) + H+–4.53 ± 0.06–4.7 ± 0.5

Neptunium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer,

1976 [92]

NIST46 [4] Brown and Ekberg,

2016 [93]

Grenthe et

al, 2020 [6]

NpO22+ + H2O ⇌ NpO2(OH)+ + H+–5.15–5.12–5.1 ± 0.2–5.1 ± 0.4
NpO22+ + 3 H2O ⇌ NpO2(OH)3- + 3 H+–21 ± 1
NpO22+ + 4 H2O ⇌ NpO2(OH)42- + 4 H+–32 ± 1
2 NpO22+ + 2 H2O ⇌ (NpO2)2(OH)22+ + 2 H+–6.39–6.39–6.2 ± 0.2–6.2 ± 0.2
3 NpO22+ + 5 H2O ⇌ (NpO2)3(OH)5+ + 5 H+–17.49–17.49–17.0 ± 0.2–17.1 ± 0.2
NpO22+ + 2 H2O ⇌ NpO3.H2O(cr) + 2 H+≥-6.6–5.4 ± 0.4–5.4 ± 0.4

Nickel(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionFeitknecht and Schindler, 1963 [71] Baes and Messmer, 1976 [94] NIST46 [4] Gamsjäger et al., 2005 [95] Thoenen et al., 2014 [96] Brown and Ekberg, 2016 [97]
Ni2+ + H2O ⇌ NiOH+ + H+–9.86–9.9–9.54 ± 0.14–9.54 ± 0.14–9.90 ± 0.03
Ni2+ + 2 H2O ⇌ Ni(OH)2 + 2 H+–19–19< –18–21.15 ± 0.0
Ni2+ + 3 H2O ⇌ Ni(OH)3 + 3 H+–30–30–29.2 ± 1.7–29.2 ± 1.7
Ni2+ + 4 H2O ⇌ Ni(OH)42– + 4 H+< –44
2 Ni2+ + H2O ⇌ Ni2(OH)3+ + H+–10.7–10.6 ± 1.0–10.6 ± 1.0–10.6 ± 1.0
4 Ni2+ + 4 H2O ⇌ Ni4(OH)44+ + 4 H+–27.74–27.7–27.52 ± 0.15–27.52 ± 0.15–27.9 ± 0.6
β-Ni(OH)2(s) + 2 H+ ⇌ Ni2+ + 2 H2O10.811.02 ± 0.2010.96 ± 0.20

11.75 ± 0.13 (microcr)

Ni(OH)2(s) ⇌ Ni2+ + 2 OH–17.2 (inactive)–17.2–16.97± 0.20 (β)

–17.2 ± 1.3 (cr)

Ni(OH)2(s) + OH ⇌ Ni(OH)3–4.2 (inactive)
NiO(cr) + 2 H+ ⇌ Ni2+ + H2O12.38 ± 0.0612.48 ± 0.15

Niobium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [72] Filella and May, 2020 [98]
Nb(OH)5 + H+ ⇌ Nb(OH)4+ + H2O~ –0.61.603
Nb(OH)5 + H2O ⇌ Nb(OH)6 + H+~ –4.8–4.951
Nb6O198– + H+ ⇌ HNb6O197–14.95
HNb6O197– + H+ ⇌ H2Nb6O196–13.23
H2Nb6O196– + H+ ⇌ H3Nb6O195–11.73
1/2 Nb2O5(act) + 5/2 H2O ⇌ Nb(OH)5~ –7.4
Nb(OH)5(am,s) ⇌ Nb(OH)5–7.510
Nb2O5(s) + 5 H2O ⇌ 2 Nb(OH)5–18.31

Osmium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution, I = 0.1 M and T = 298.15 K:

ReactionGalbács et al., 1983 [99]
OsO2(OH)42– + H+ ⇌ HOsO2(OH)410.4
HOsO2(OH)4 + H+ ⇌ H2OsO2(OH)48.5

Osmium(VIII)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionGalbács et al., 1983 [99]
OsO2(OH)3(O-)aq + H+ ⇌ OsO2(OH)4aq12.2a
OsO2(OH)2(O-)2aq + H+ ⇌ OsO2(OH)3(O-)aq14.4b

(a) At I = 0.1 M (b) At I = 2.5 M

Palladium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionPerrin et al., 1969 [100] Hummel et al., 2002 [45] Kitamura and Yul, 2010 [101] Brown and Ekberg, 2016 [102]
Pd2+ + H2O ⇌ PdOH+ + H+−0.96−0.65 ± 0.64−1.16 ± 0.30
Pd2+ + 2 H2O ⇌ Pd(OH)2 + 2 H+−2.6−4 ± 1−3.11 ± 0.63−3.07 ± 0.16
Pd2+ + 3 H2O ⇌ Pd(OH)3 + 3 H+−15.5 ± 1−14.20 ± 0.63
Pd(OH)2(am) + 2 H+ ⇌ Pd2+ + 2 H2O−3.3 ± 1−3.4 ± 0.2

Plutonium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [103] NIST46 [4] Brown and Ekberg, 2016 [104] Grenthe et al, 2020 [6]
Pu3+ + H2O ⇌ PuOH2+ + H+–7.0–6.9 ± 0.2–6.9 ± 0.3
Pu3+ + 3 H2O ⇌ Pu(OH)3(cr) + 3 H+–19.65–15.8 ± 0.8–15 ± 1

Plutonium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [105] NIST46 [4] Brown and Ekberg, 2016 [106] Grenthe et al, 2020 [6]
Pu4+ + H2O ⇌ PuOH 3+ + H+–0.5–0.5–0.7 ± 0.10.6 ± 0.2
Pu4+ + 2 H2O ⇌ Pu(OH)22+ + 2 H+(–2.3)0.6 ± 0.3
Pu4+ + 3 H2O ⇌ Pu(OH)3+ + 3 H+(–5.3)–2.3 ± 0.4
Pu4+ + 4 H2O ⇌ Pu(OH)4 + 4 H+–9.5–12.5 ± 0.7–8.5 ± 0.5
Pu4+ + 4 OH- ⇌ PuO2(am, hyd) + 2 H2O49.547.9 ± 0.4 (0w)

53.8 ± 0.5 (1w)

58.3 ± 0.5

Plutonium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [107] NIST46 [4] Brown and Ekberg, 2016 [108] Grenthe et al, 2020 [6]
PuO2+ + H2O ⇌ PuO2(OH) + H+–1.49–1.5–1.31 ± 0.050.5 ± 0.2
PuO2+ + H2O ⇌ PuO2(OH)(am) + H+–3.7 ± 0.30.3 ± 0.3

Plutonium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer,

1976 [109]

NIST46 [4] Brown and Ekberg,

2016 [110]

Grenthe et

al, 2020 [6]

PuO22+ + H2O ⇌ PuO2(OH)+ + H+–5.6–5.6–5.36 ± 0.09–5.5 ± 0.5
PuO22+ + 2 H2O ⇌ PuO2(OH)2 + 2 H+–12.9 ± 0.2–13 ± 1
PuO22+ + 3 H2O ⇌ PuO2(OH)3- + 3 H+–24 ± 1
2 PuO22+ + 2 H2O ⇌ (PuO2)2(OH)22+ + 2 H+–8.36–8.36–7.8 ± 0.5–7 ± 1
3 PuO22+ + 5 H2O ⇌ (PuO2)3(OH)5+ + 5 H+–21.65–21.65
PuO22+ + 2 OH- ⇌ PuO2(OH)2(am, hyd)22.8 ± 0.6

Potassium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [72] Nordstrom et al., 1990 [17] Brown and Ekberg, 2016 [111]
K+ + H2O ⇌ KOH + H+–14.46–14.46–14.5 ± 0.4

Praseodymium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [28] NIST46 [4] Brown and Ekberg, 2016 [29]
Pr3+ + H2O ⇌ PrOH2+ + H+–8.1–8.30 ± 0.03
2 Pr3+ + 2 H2O ⇌ Pr2(OH)24+ + 2 H+–16.31 ± 0.20
3 Pr3+ + 5 H2O ⇌ Pr3(OH)54+ + 5 H+–35.0 ± 0.3
Pr(OH)3(s) + 3 H+ ⇌ Pr3+ + 3 H2O19.518.57 ± 0.20
Pr(OH)3(s) ⇌ Pr3+ + 3 OH–22.3 ± 1.0

Radium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionNordstrom et al., 1990 [17]
Ra2+ + H2O ⇌ RaOH+ + H+–13.49

Rhodium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionPerrin et al., 1969 [112] Baes and Mesmer, 1976 [113] Brown and Ekberg [114]
Rh3+ + H2O ⇌ RhOH2+ + H+‒3.43‒3.4‒3.09 ± 0.1
Rh(OH)3(c) + OH ⇌ Rh(OH)4‒3.9

Samarium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [28] NIST46 [4] Brown and Ekberg [29]
Sm3+ + H2O ⇌ SmOH2+ + H+–7.9–7.9–7.84 ± 0.11
2 Sm3+ + 2 H2O ⇌ Sm2(OH)24+ + 2 H+–14.75 ± 0.20
3 Sm3+ + 5 H2O ⇌ Sm3(OH)54+ + 5 H+–33.9 ± 0.3
Sm(OH)3(s) + 3H+ ⇌ Sm3+ + 3H2O16.517.19 ± 0.30
Sm(OH)3(s) ⇌ Sm3+ + 3 OH-–23.9 ± 0.9 (am)

–25.9 (cr)

Scandium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [115] Brown and Ekberg, 2016 [116]
Sc3+ + H2O ⇌ ScOH2+ + H+–4.3–4.16 ± 0.05
Sc3+ + 2 H2O ⇌ Sc(OH)2+ + 2 H+–9.7–9.71 ± 0.30
Sc3+ + 3 H2O ⇌ Sc(OH)3 + 3 H+–16.1–16.08 ± 0.30
Sc3+ + 4 H2O ⇌ Sc(OH)4+ 4 H+–26–26.7 ± 0.3
2 Sc3+ + 2 H2O ⇌ Sc2(OH)24+ + 2 H+–6.0–6.02 ± 0.10
3 Sc3+ + 5 H2O ⇌ Sc3(OH)54+ + 5 H+–16.34–16.33 ± 0.10
Sc(OH)3(s) + 3 H+ ⇌ Sc3+ + 3 H2O9.17 ± 0.30
ScO1.5(s) + 3 H+ ⇌ Sc3+ + 1.5 H2O5.53 ± 0.30
ScO(OH)(c) + 3 H+ ⇌ Sc3+ + 2 H2O9.4
Sc(OH)3(c) + OH ⇌ Sc(OH)4–3.5 ± 0.2

Selenium(–II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionOlin et al., 2015 [117] Thoenen et al., 2014 [96]
H2Se(g) ⇌ H2Se(aq)–1.10 ± 0.01–1.10 ± 0.01
H2Se ⇌ HSe + H+–3.85 ± 0.05–3.85 ± 0.05
HSe ⇌ Se2– + H+–14.91 ± 0.20

Selenium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [118] Olin et al., 2005 [117] Thoenen et al., 2014 [96]
SeO32– + H+ ⇌ HSeO38.508.36 ± 0.238.36 ± 0.23
HSeO3 + H+ ⇌ H2SeO32.752.64 ± 0.142.64 ± 0.14

Selenium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [119] Olin et al., 2005 [117] Thoenen et al., 2014 [96]
SeO42‒ + H+ ⇌ HSeO41.3601.75 ± 0.101.75 ± 0.10

Silicon

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [120] Thoenen et al., 2014 [96]
Si(OH)4 ⇌ SiO(OH)3 + H+–9.86–9.81 ± 0.02
Si(OH)4 ⇌ SiO2(OH)22– + 2 H+–22.92–23.14 ± 0.09
4 Si(OH)4 ⇌ Si4O6(OH)64– + 2 H+ + 4 H2O–13.44
4 Si(OH)4 ⇌ Si4O8(OH)44– + 4 H+ + 4 H2O–35.80–36.3 ± 0.2
SiO2(quartz) + 2 H2O ⇌ Si(OH)4–4.0–3.739 ± 0.087
SiO2(am) + 2 H2O ⇌ Si(OH)4–2.714

Silver

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [121] Brown and Ekberg, 2016 [122]
Ag+ + H2O ⇌ AgOH + H+−12.0−11.75 ± 0.14
Ag+ + 2 H2O ⇌ Ag(OH)2 + 2 H+−24.0−24.34 ± 0.14
0.5 Ag2O(am) + H+ ⇌ Ag+ + 0.5 H2O6.296.27 ± 0.05

Sodium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [72] Nordstrom et al., 1990 [17] Brown and Ekberg, 2016 [123]
Na+ + H2O ⇌ NaOH + H+–14.18–14.18–14.4 ± 0.2

Strontium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [16] Nordstrom et al., 1990 [17] Brown and Ekberg, 2016 [124]
Sr2+ + H2O ⇌ SrOH+ + H+–13.29–13.29–13.15 ± 0.05

Tantalum

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [125] Filella and May, 2019a [126]
Ta(OH)5 + H+ ⇌ Ta(OH)4+ + H2O~10.7007
Ta(OH)5 + H2O ⇌ Ta(OH)6 + H+~ –9.6
Ta6O198– + H+ ⇌ HTa6O197–16.35
HTa6O197– + H+ ⇌ H2Ta6O196–14.00
1/2 Ta2O5(act) + 5/2 H2O ⇌ Ta(OH)5~ –5.2
Ta(OH)5(s) ⇌ Ta(OH)5–5.295
Ta2O5(s) + 5 H2O ⇌ 2 Ta(OH)5–20.00

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Tellurium(-II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionFilella and May, 2019a [127]
Te2‒ + H+ ⇌ HTe11.81
HTe + H+ ⇌ H2Te2.476

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Tellurium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [128] Filella and May, 2019a [127]
TeO32‒ + H+ ⇌ HTeO39.928
HTeO3 + H+ ⇌ H2TeO36.445
H2TeO3 ⇌ HTeO3 + H+‒2.68
H2TeO3 ⇌ TeO32‒ + 2 H+‒12.5
H2TeO3 + H+ ⇌ Te(OH)3+3.132.415
TeO2(s) + H2O ⇌ H2TeO3‒4.709

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Tellurium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [128] Filella and May, 2019a [127]
TeO2(OH)42‒ + H+ ⇌ TeO(OH)510.83
TeO(OH)5 + H+ ⇌ Te(OH)67.687.696
TeO2(OH)42‒ + 2 H+ ⇌ Te(OH)618.68
TeO3(OH)33‒ + 3 H+ ⇌ Te(OH)634.3
2 Te(OH)6 ⇌ Te2O(OH)11 + H+‒6.929

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Terbium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [28] Brown and Ekberg, 2016 [129]
Tb3+ + H2O ⇌ TbOH2+ + H+−7.9−7.60 ± 0.09
2 Tb3+ + 2 H2O ⇌ Tb2(OH)24+ + 2 H+−13.9 ± 0.2
3 Tb3+ + 5 H2O ⇌ Tb3(OH)54+ + 5 H+−31.7 ± 0.3
Tb(OH)3(s) + 3 H+ ⇌ Tb3+ + 3 H2O16.516.33 ± 0.30

Thallium(I)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [130] Brown and Ekberg, 2016 [131]
Tl+ + H2O ⇌ TlOH + H+–13.21
Tl+ + OH ⇌ TlOH0.64 ± 0.05
Tl+ + 2 OH ⇌ Tl(OH)2–0.7 ± 0.7
½ Tl2O(s) + H+ ⇌ Tl+ + ½ H2O13.55 ± 0.20

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Thallium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [130] Brown and Ekberg, 2016 [131]
Tl3+ + H2O ⇌ TlOH2+ + H+–0.62–0.22 ± 0.19
Tl3+ + 2 H2O ⇌ Tl(OH)2+ + 2 H+–1.57
Tl3+ + 3 H2O ⇌ Tl(OH)3 + 3 H+–3.3
Tl3+ + 4 H2O ⇌ Tl(OH)4 + 4 H+–15.0
½ Tl2O3(s) + 3 H+ ⇌ Tl3+ + ³⁄₂ H2O–3.90–3.90 ± 0.10

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Thorium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer,

1976 [132]

Rand et

al., 2008 [133]

Thoenen et

al, 014 [134]

Brown and Ekberg,

2016 [135]

Th4+ + H2O ⇌ ThOH3+ + H+–3.20–2.5 ± 0.5–2.5 ± 0.5–2.5 ± 0.5
Th4+ + 2 H2O ⇌ Th(OH)22+ + 2 H+–6.93–6.2 ± 0.5–6.2 ± 0.5–6.2 ± 0.5
Th4+ + 3 H2O ⇌ Th(OH)3+ + 3 H+< –11.7
Th4+ + 4 H2O ⇌ Th(OH)4 + 4 H+–15.9–17.4 ± 0.7–17.4 ± 0.7–17.4 ± 0.7
2Th4+ + 2 H2O ⇌ Th2(OH)26+ + 2 H+–6.14–5.9 ± 0.5–5.9 ± 0.5–5.9 ± 0.5
2Th4+ + 3 H2O ⇌ Th2(OH)35+ + 3 H+–6.8 ± 0.2–6.8 ± 0.2–6.8 ± 0.2
4Th4+ + 8 H2O ⇌ Th4(OH)88+ + 8 H+–21.1–20.4 ± 0.4–20.4 ± 0.4–20.4 ± 0.4
4Th4+ + 12 H2O ⇌ Th4(OH)124+ + 12 H+–26.6 ± 0.2–26.6 ± 0.2–26.6 ± 0.2
6Th4+ + 15 H2O(l) ⇌ Th6(OH)159+ + 15 H+–36.76–36.8 ± 1.5–36.8 ± 1.5–36.8 ± 1.5
6Th4+ + 14 H2O(l) ⇌ Th6(OH)1410+ + 14 H+–36.8 ± 1.2–36.8 ± 1.2–36.8 ± 1.2
ThO2(c) + 4 H+ ⇌ Th4+ + 2 H2O6.3
ThO2(am) + 4 H+ ⇌ Th4+ + 2 H2O8.8 ± 1.0
ThO2(am,hyd,fresh) + 4 H+ ⇌ Th4+ + 2 H2O9.3 ± 0.9
ThO2(am,hyd,aged) + 4 H+ ⇌ Th4+ + 2 H2O8.5 ± 0.9
Th4+ + 4 OH- ⇌ ThO2(am,hyd,fresh) + 2 H2O46.7 ± 0.9
Th4+ + 4 OH- ⇌ ThO2(am,hyd,aged) + 2 H2O47.5 ± 0.9

Thulium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [28] Brown and Ekberg, 2016 [136]
Tm3+ + H2O ⇌ TmOH2+ + H+−7.7−7.34 ± 0.09
2 Tm3+ + 2 H2O ⇌ Tm2(OH)24+ + 2 H+−13.2 ± 0.2
3 Tm3+ + 5 H2O ⇌ Tm3(OH)54+ + 5 H+−30.5 ± 0.3
Tm(OH)3(s) + 3 H+ ⇌ Tm3+ + 3 H2O15.015.56 ± 0.40

Tin(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionFeitknecht, 1963 [71] Baes and Mesmer, 1976 [137] Hummel et al., 2002 [45] NIST46 [4] Cigala et al, 2012 [138] Gamsjäger et al, 2012 [139] Brown and Ekberg, 2016 [140]
Sn2+ + H2O ⇌ SnOH+ + H+–3.40–3.8 ± 0.2–3.4–3.52 ± 0.05–3.53 ± 0.40–3.53 ± 0.40
Sn2+ + 2 H2O ⇌ Sn(OH)2 + 2 H+–7.06–7.7 ± 0.2–7.1–6.26 ± 0.06–7.68 ± 0.40–7.68 ± 0.40
Sn2+ + 3 H2O ⇌ Sn(OH)3 + 3 H+–16.61–17.5 ± 0.2–16.6–16.97 ± 0.17–17.00 ± 0.60–17.56 ± 0.40
2 Sn2+ + 2 H2O ⇌ Sn2(OH)22+ + 2 H+–4.77–4.8–4.79 ± 0.05
3 Sn2+ + 4 H2O ⇌ Sn3(OH)42+ + 4 H+–6.88–5.6 ± 1.6–6.88–5.88 ± 0.05–5.60 ± 0.47−5.60 ± 0.47
Sn(OH)2(s) ⇌ Sn2+ + 2 OH–25.8–26.28 ± 0.08
SnO(s) + 2 H+ ⇌ Sn2+ + H2O1.762.5± 0.51.60 ± 0.15
SnO(s) + H2O ⇌ Sn2+ + 2 OH–26.2
SnO(s) + H2O ⇌ Sn(OH)2–5.3
SnO(s) + 2 H2O ⇌ Sn(OH)3 + H+–0.9

Tin(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionHummel et al., 2002 [45] Gamsjäger et al, 2012 [139] Brown and Ekberg, 2016 [140]
Sn4+ + 4 H2O ⇌ Sn(OH)4 + 4 H+7.53 ± 0.12
Sn4+ + 5 H2O ⇌ Sn(OH)5 + 5 H+–1.07 ± 0.42
Sn4+ + 6 H2O ⇌ Sn(OH)62– + 6 H+–1.07 ± 0.42
Sn(OH)4 + H2O ⇌ Sn(OH)5 + H+–8.0 ± 0.3–8.60 ± 0.40
Sn(OH)4 + 2 H2O ⇌ Sn(OH)62– + 2 H+–18.4 ± 0.3–18.67 ± 0.30
SnO2(cr) + 2 H2O ⇌ Sn(OH)4–8.0 ± 0.2–8.06 ± 0.11
SnO2(am) + 2 H2O ⇌ Sn(OH)4–7.3 ± 0.3–7.22 ± 0.08
SnO2(s) + 4 H+ ⇌ Sn4+ + 2 H2O–15.59 ± 0.04

Tungsten

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionNIST46 [4]
WO42– + H+ ⇌ HWO43.6
WO42– + 2 H+ ⇌ H2WO45.8
6 WO42– + 7 H+ ⇌ HW6O215– + 3 H2O63.83

Titanium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionPerrin et al., 1969 [141] Baes and Mesmer, 1976 [142] Brown and Ekberg, 2016 [143]
Ti3+ + H2O ⇌ TiOH2+ + H+–1.29–2.2–1.65 ± 0.11
2 Ti3+ + 2 H2O ⇌ Ti2(OH)24+ + 2 H+–3.6–2.64 ± 0.10

Titanium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [142] Brown and Ekberg, 2016 [143]
Ti(OH)22+ + H2O ⇌ Ti(OH)3+ + H+⩽–2.3
Ti(OH)22+ + 2 H2O ⇌ Ti(OH)4 + 2 H+–4.8
TiO2+ + H2O ⇌ TiOOH+ + H+–2.48 ± 0.10
TiO2+ + 2 H2O ⇌ TiO(OH)2 + 2 H+–5.49 ± 0.14
TiO2+ + 3 H2O ⇌ TiO(OH)3 + 3 H+–17.4 ± 0.5
TiO(OH)2 + H2O ⇌ TiO(OH)3 + H+–11.9 ±0.5
TiO2(c) +2 H2O ⇌ Ti(OH)4~ –4.8
TiO2(s) + H+ ⇌ TiOOH+–6.06 ± 0.30
TiO2(s) + H2O ⇌ TiO(OH)2–9.02 ± 0.02
TiO2 x H2O ⇌ Ti(OH)22+[OH]
TiO2(s) + 4 H+ ⇌ Ti4+ + 2 H2O–3.56 ± 0.10

Uranium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer,

1976 [144]

Thoenen et

al., 2014 [145]

Brown and Ekberg,

2016 [146]

Grenthe et al.,

2020 [6]

U4+ + H2O ⇌ UOH3+ + H+–0.65– 0.54 ± 0.06–0.58 ± 0.08– 0.54 ± 0.06
U4+ + 2 H2O ⇌ U(OH)22+ + 2 H+(–2.6)–1.1 ± 1.0–1.4 ± 0.2–1.9 ± 0.2
U4+ + 3 H2O ⇌ U(OH)3+ + 3 H+(–5.8)–4.7 ± 1.0–5.1 ± 0.3–5.2 ± 0.4
U4+ + 4 H2O ⇌ U(OH)4 + 4 H+(–10.3)–10.0 ± 1.4–10.4 ± 0.5–10.0 ± 1.4
U4+ + 5 H2O ⇌ U(OH)5- + 5 H+–16.0
UO2(am, hyd) + 4 H+ ⇌ U4+ + 2 H2O1.5 ± 1.0
UO2(am,hyd) + 2 H2O ⇌ U4+ + 4 OH–54.500 ± 1.000–54.500 ± 1.000
UO2(c) + 4 H+ ⇌ U4+ + 2 H2O–1.8
UO2(c) + 2 H2O ⇌ U4+ + 4 OH–60.860 ± 1.000

Uranium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer,

1976 [147]

Grenthe et

al., 1992 [148]

NIST46 [4] Brown and Ekberg,

2016 [149]

Grenthe et al.,

2020 [6]

UO22+ + H2O ⇌ UO2(OH)+ + H+–5.8–5.2 ± 0.3–5.9 ± 0.1–5.13 ± 0.04–5.25 ± 0.24
UO22+ + 2 H2O ⇌ UO2(OH)2 + 2 H+≤-10.3–12.15 ± 0.20–12.15 ± 0.07
UO22+ + 3 H2O ⇌ UO2(OH)3 + 3 H+–19.2 ± 0.4–20.25 ± 0.42–20.25 ± 0.42
UO22+ + 4 H2O ⇌ UO2(OH)42– + 4 H+–33 ± 2–32.40 ± 0.68–32.40 ± 0.68
2 UO22+ + 2 H2O ⇌ (UO2)2(OH)22+ + 2 H+–5.62–5.62 ± 0.04–5.58 ± 0.04–5.68 ± 0.05–5.62 ± 0.08
3 UO22+ + 5 H2O ⇌ (UO2)3(OH)5+ + 5 H+–15.63–15.55 ± 0.12–15.6–15.75 ± 0.12–15.55 ± 0.12
3 UO22+ + 4 H2O ⇌ (UO2)3(OH)42+ + 4 H+(–11.75)–11.9 ± 0.3–11.78 ± 0.05–11.9 ± 0.3
3 UO22+ + 7 H2O ⇌ (UO2)3(OH)7 + 7 H+–31 ± 2.0–32.2 ± 0.8–32.2 ± 0.8
4 UO22+ + 7 H2O ⇌ (UO2)4(OH)7+ + 7 H+–21.9 ± 1.0–22.1 ± 0.2–21.9 ± 1.0
2 UO22+ + H2O ⇌ (UO2)2(OH)3+ + H+–2.7 ± 1.0–2.7 ± 1.0
UO2(OH)2(s) + 2H+ ⇌ UO22+ + 2 H2O5.66.04.81 ± 0.20
UO3·2H2O(cr) + 2H+ ⇌ UO22+ + 3 H2O5.350 ± 0.130

Vanadium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBrown and Ekberg, 2016 [79]
VO2+ + H2O ⇌ VO(OH)+ + H+–5.30 ± 0.13
2 VO2+ + 2 H2O ⇌ (VO)2(OH)22+ + 2 H+–6.71 ± 0.10

Vanadium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [150] Brown and Ekberg, 2016 [151]
VO2+ + 2 H2O ⇌ VO(OH)3 + H+–3.3
VO2+ + 2 H2O ⇌ VO2(OH)2 + 2 H+–7.3–7.18 ± 0.12
10 VO2+ + 8 H2O ⇌ V10O26(OH)24– + 14 H+–10.7
VO2(OH)2 ⇌ VO3(OH)2– + H+–8.55
2 VO2(OH)2 ⇌ V2O6(OH)23– + H+ + H2O–6.53
VO3(OH)2– ⇌ VO43– + H+–14.26
2 VO3(OH)2– ⇌ V2O74– + H2O0.56
3 VO3(OH)2– + 3 H+⇌ V3O93– + 3 H2O31.81
V10O26(OH)24– ⇌ V10O27(OH)5– + 3 H+–3.6
V10O27(OH)5– ⇌ V10O286– + H+–6.15
VO2+ + H2O ⇌ VO2OH + H+–3.25 ± 0.1
VO2+ + 3 H2O ⇌ VO2(OH)32- + 3 H+–15.74 ± 0.19
VO2+ + 4 H2O ⇌ VO2(OH)43- + 4 H+–30.03 ± 0.24
2 VO2+ + 4 H2O ⇌ (VO2)2(OH)42- + 4 H+–11.66 ± 0.53
2 VO2+ + 5 H2O ⇌ (VO2)2(OH)53- + 5 H+–20.91 ± 0.22
2 VO2+ + 6 H2O ⇌ (VO2)2(OH)64- + 6 H+–32.43 ± 0.30
4 VO2+ + 8 H2O ⇌ (VO2)4(OH)84- + 8 H+–20.78 ± 0.33
4 VO2+ + 9 H2O ⇌ (VO2)4(OH)95- + 9 H+–31.85 ± 0.26
4 VO2+ + 10 H2O ⇌ (VO2)4(OH)106- + 10 H+–45.85 ± 0.26
5 VO2+ + 10 H2O ⇌ (VO2)5(OH)105- + 10 H+–27.02 ± 0.34
10 VO2+ + 14 H2O ⇌ (VO2)10(OH)144- + 14 H+–10.5 ± 0.3
10 VO2+ + 15 H2O ⇌ (VO2)10(OH)155- + 15 H+–15.73 ± 0.33
10 VO2+ + 16 H2O ⇌ (VO2)10(OH)166- + 16 H+–23.90 ± 0.35
½ V2O5(c) + H+ ⇌ VO2+ + ½ H2O–0.66
V2O5(s) + 2 H+ ⇌ 2 VO2+ + H2O–0.64 ± 0.09

Ytterbium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [28] Brown and Ekberg, 2016 [152]
Yb3+ + H2O ⇌ YbOH2+ + H+−7.7−7.31 ± 0.18
Yb3+ + 2 H2O ⇌ Yb(OH)2+ + 2 H+(−15.8)
Yb3+ + 3 H2O ⇌ Yb(OH)3 + 3 H+(−24.1)
Yb3+ + 4 H2O ⇌ Yb(OH)4 + 4 H+−32.7
2 Yb3+ + 2 H2O ⇌ Yb2(OH)24+ + 2 H+−13.76 ± 0.20
3 Yb3+ + 5 H2O ⇌ Yb3(OH)54+ + 5 H+−30.6 ± 0.3
Yb(OH)3(s) + 3 H+ ⇌ Yb3+ + 3 H2O14.715.35 ± 0.20

Yttrium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [46] Brown and Ekberg, 2016 [66]
Y3+ + H2O ⇌ YOH2+ + H+–7.7–7.77 ± 0.06
Y3+ + 2 H2O ⇌ Y(OH)2+ + 2 H+(–16.4) [Estimation]
Y3+ + 3 H2O ⇌ Y(OH)3 + 3 H+(–26.0) [Estimation]
Y3+ + 4 H2O ⇌ Y(OH)4-+ 4 H+–36.5
2 Y3+ + 2 H2O ⇌ Y2(OH)24+ + 2 H+–14.23–14.1 ± 0.2
3 Y3+ + 5 H2O ⇌ Y3(OH)54+ + 5 H+–31.6–32.7 ± 0.3
Y(OH)3(s) + 3 H+ ⇌ Y3+ + 3 H2O17.517.32 ± 0.30

Zinc

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [153] Powell and Brown, 2013 [154] Brown and Ekberg, 2016 [155]
Zn2+ + H2O ⇌ ZnOH+ + H+−8.96−8.96 ± 0.05−8.94 ± 0.06
Zn2+ + 2 H2O ⇌ Zn(OH)2 + 2 H+−16.9–17.82 ± 0.08−17.89 ± 0.15
Zn2+ + 3 H2O ⇌ Zn(OH)3- + 3 H+−28.4–28.05 ± 0.05−27.98 ± 0.10
Zn2+ + 4 H2O ⇌ Zn(OH)42- + 4 H+−41.2–40.41 ± 0.12−40.35 ± 0.22
2 Zn2+ + H2O ⇌ Zn2OH3+ + H+−9.0–7.9 ± 0.2−7.89 ± 0.31
2 Zn2+ + 6 H2O ⇌ Zn2(OH)62- + 6 H+−57.8
ZnO(s) + 2 H+ ⇌ Zn2+ + H2O11.1411.12 ± 0.0511.11 ± 0.10
ε-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O11.38 ± 0.2011.38± 0.20
β1-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O11.72 ± 0.04
β2-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O11.76 ± 0.04
γ-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O11.70 ± 0.04
δ-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O11.81 ± 0.04

Zirconium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

ReactionBaes and Mesmer, 1976 [55] Thoenen et al., 2014 [96] Brown and Ekberg, 2016 [156]
Zr4+ + H2O ⇌ ZrOH3+ + H+0.320.32 ± 0.220.12 ± 0.12
Zr4+ + 2 H2O ⇌ Zr(OH)22+ + 2 H+(−1.7)*0.98 ± 1.06*−0.18 ± 0.17*
Zr4+ + 3 H2O ⇌ Zr(OH)3+ + 3 H+(−5.1)
Zr4+ + 4 H2O ⇌ Zr(OH)4 + 4 H+–9.7*–2.19 ± 0.70*−4.53 ± 0.37*
Zr4+ + 5 H2O ⇌ Zr(OH)5 + 5 H+–16.0
Zr4+ + 6 H2O ⇌ Zr(OH)62– + 6 H+–29± 0.70–30.5 ± 0.3
3 Zr4+ + 4 H2O ⇌ Zr3(OH)48+ + 4 H+–0.60.4 ± 0.30.90 ± 0.18
3 Zr4+ + 5 H2O ⇌ Zr3(OH)57+ + 5 H+3.70
3 Zr4+ + 9 H2O ⇌ Zr3(OH)93+ + 9 H+12.19 ± 0.2012.19 ± 0.20
4 Zr4+ + 8 H2O ⇌ Zr4(OH)88+ + 8 H+6.06.52 ± 0.056.52 ± 0.05
4 Zr4+ + 15 H2O ⇌ Zr4(OH)15+ + 15 H+12.58± 0.24
4 Zr4+ + 16 H2O ⇌ Zr4(OH)16 + 16 H+8.39± 0.80
ZrO2(s) + 4 H+ ⇌ Zr4+ + 2 H2O–1.9*–5.37 ± 0.42*
ZrO2(s, baddeleyite) + 4 H+ ⇌ Zr4+ + 2 H2O–7 ± 1.6
ZrO2(am) + 4 H+ ⇌ Zr4+ + 2 H2O–3.24± 0.10–2.97 ± 0.18

*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. It is strongly suggested to refer to the original papers.

Related Research Articles

<span class="mw-page-title-main">Hydroxide</span> Chemical compound

Hydroxide is a diatomic anion with chemical formula OH. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It functions as a base, a ligand, a nucleophile, and a catalyst. The hydroxide ion forms salts, some of which dissociate in aqueous solution, liberating solvated hydroxide ions. Sodium hydroxide is a multi-million-ton per annum commodity chemical. The corresponding electrically neutral compound HO is the hydroxyl radical. The corresponding covalently bound group –OH of atoms is the hydroxy group. Both the hydroxide ion and hydroxy group are nucleophiles and can act as catalysts in organic chemistry.

Hydrolysis is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile.

In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they are Lewis bases.

In chemistry, an acid dissociation constant is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction

Solubility equilibrium is a type of dynamic equilibrium that exists when a chemical compound in the solid state is in chemical equilibrium with a solution of that compound. The solid may dissolve unchanged, with dissociation, or with chemical reaction with another constituent of the solution, such as acid or alkali. Each solubility equilibrium is characterized by a temperature-dependent solubility product which functions like an equilibrium constant. Solubility equilibria are important in pharmaceutical, environmental and many other scenarios.

A polyphosphate is a salt or ester of polymeric oxyanions formed from tetrahedral PO4 (phosphate) structural units linked together by sharing oxygen atoms. Polyphosphates can adopt linear or a cyclic (also called, ring) structures. In biology, the polyphosphate esters ADP and ATP are involved in energy storage. A variety of polyphosphates find application in mineral sequestration in municipal waters, generally being present at 1 to 5 ppm. GTP, CTP, and UTP are also nucleotides important in the protein synthesis, lipid synthesis, and carbohydrate metabolism, respectively. Polyphosphates are also used as food additives, marked E452.

<span class="mw-page-title-main">Galvanic cell</span> Electrochemical device

A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous oxidation–reduction reactions. A common apparatus generally consists of two different metals, each immersed in separate beakers containing their respective metal ions in solution that are connected by a salt bridge or separated by a porous membrane.

In electrochemistry, the standard hydrogen electrode, is a redox electrode which forms the basis of the thermodynamic scale of oxidation-reduction potentials. Its absolute electrode potential is estimated to be 4.44 ± 0.02 V at 25 °C, but to form a basis for comparison with all other electrochemical reactions, hydrogen's standard electrode potential is declared to be zero volts at any temperature. Potentials of all other electrodes are compared with that of the standard hydrogen electrode at the same temperature.

The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant.

In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. In an ideal mixture, the microscopic interactions between each pair of chemical species are the same and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g. Raoult's law. Deviations from ideality are accommodated by modifying the concentration by an activity coefficient. Analogously, expressions involving gases can be adjusted for non-ideality by scaling partial pressures by a fugacity coefficient.

In chemistry, the lattice energy is the energy change upon formation of one mole of a crystalline ionic compound from its constituent ions, which are assumed to initially be in the gaseous state. It is a measure of the cohesive forces that bind ionic solids. The size of the lattice energy is connected to many other physical properties including solubility, hardness, and volatility. Since it generally cannot be measured directly, the lattice energy is usually deduced from experimental data via the Born–Haber cycle.

The molar conductivity of an electrolyte solution is defined as its conductivity divided by its molar concentration.

In coordination chemistry, a stability constant is an equilibrium constant for the formation of a complex in solution. It is a measure of the strength of the interaction between the reagents that come together to form the complex. There are two main kinds of complex: compounds formed by the interaction of a metal ion with a ligand and supramolecular complexes, such as host–guest complexes and complexes of anions. The stability constant(s) provide(s) the information required to calculate the concentration(s) of the complex(es) in solution. There are many areas of application in chemistry, biology and medicine.

Zinc compounds are chemical compounds containing the element zinc which is a member of the group 12 of the periodic table. The oxidation state of zinc in most compounds is the group oxidation state of +2. Zinc may be classified as a post-transition main group element with zinc(II). Zinc compounds are noteworthy for their nondescript appearance and behavior: they are generally colorless, do not readily engage in redox reactions, and generally adopt symmetrical structures.

<span class="mw-page-title-main">Conductivity (electrolytic)</span> Measure of the ability of a solution containing electrolytes to conduct electricity

Conductivity of an electrolyte solution is a measure of its ability to conduct electricity. The SI unit of conductivity is siemens per meter (S/m).

In theoretical chemistry, Specific ion Interaction Theory is a theory used to estimate single-ion activity coefficients in electrolyte solutions at relatively high concentrations. It does so by taking into consideration interaction coefficients between the various ions present in solution. Interaction coefficients are determined from equilibrium constant values obtained with solutions at various ionic strengths. The determination of SIT interaction coefficients also yields the value of the equilibrium constant at infinite dilution.

In chemistry, metal aquo complexes are coordination compounds containing metal ions with only water as a ligand. These complexes are the predominant species in aqueous solutions of many metal salts, such as metal nitrates, sulfates, and perchlorates. They have the general stoichiometry [M(H2O)n]z+. Their behavior underpins many aspects of environmental, biological, and industrial chemistry. This article focuses on complexes where water is the only ligand, but of course many complexes are known to consist of a mix of aquo and other ligands.

A metal ion in aqueous solution or aqua ion is a cation, dissolved in water, of chemical formula [M(H2O)n]z+. The solvation number, n, determined by a variety of experimental methods is 4 for Li+ and Be2+ and 6 for most elements in periods 3 and 4 of the periodic table. Lanthanide and actinide aqua ions have higher solvation numbers (often 8 to 9), with the highest known being 11 for Ac3+. The strength of the bonds between the metal ion and water molecules in the primary solvation shell increases with the electrical charge, z, on the metal ion and decreases as its ionic radius, r, increases. Aqua ions are subject to hydrolysis. The logarithm of the first hydrolysis constant is proportional to z2/r for most aqua ions.

Reed McNeil Izatt was an American chemist who was emeritus Charles E. Maw Professor of Chemistry at Brigham Young University in Provo, Utah. His field of research was macrocyclic chemistry and metal separation technologies.

References

  1. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 121.
  2. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 757–797.
  3. Hummel, W.; Thoenen, T. (2023). Technical Report 21-03. The PSI Chemical Thermodynamic Database 2020. Wettingen: NAGRA. pp. 252–259.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 NIST46. NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0.{{cite book}}: CS1 maint: numeric names: authors list (link)
  5. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 407–414.
  6. 1 2 3 4 5 6 7 8 9 10 11 12 Grenthe, I.; Gaona, X.; Plyasunov, A.V.; Rao, L.; Runde, W.H.; Grambow, B.; Konings, R.J.M.; Smith, A.L.; Moore, E.E. (2020). Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium (PDF). Paris: OECD Publishing.
  7. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. p. 414.
  8. 1 2 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 375.
  9. 1 2 3 Lothenbach, B.; Ochs, M.; Wanner, H.; Yui, M. (1999). Thermodynamic Data for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb and Bi in Aqueous Solution. TN8400 99-011. Japan Nuclear Cycle Development Institute (JNC).
  10. 1 2 3 Kitamura, A.; Fujiwara, K.; Doi, R.; Yoshida, Y.; Mihara, M.; Terashima, M.; Yui, M. (2010). JAEA Thermodynamic Database for Performance Assessment of Geological Disposal of High-Level Radioactive and TRU-Wastes. Report JAEA-Data/Code 2009-024. Japan Atomic Energy Agency.
  11. Filella, M.; May, P.M. (2003). "Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters". Geochim. Cosmochim. Acta. 67: 4013–4031. doi:10.1016/S0016-7037(03)00095-4.
  12. 1 2 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 370.
  13. 1 2 Nordstrom, D.K.; Archer, D. (2003). Welch, AH; Stollenwerk, KG (eds.). Arsenic thermodynamic data and environmental geochemistry. In: Arsenic in Ground Water. Amsterdam: Kluwer Academic Publishers. pp. 1‒25. doi:10.1007/0-306-47956-7_1.
  14. 1 2 Nordstrom, D.K.; Majzlan, J.; Königsberger, E. (2014). "Thermodynamic properties for As minerals & aqueous species". Reviews in Mineralogy & Geochemistry. 79: 217‒255. doi:10.2138/rmg.2014.79.4.
  15. Khodakovsky, I.L.; Ryzhenko, B.N.; Naumov, G.B. (1968). "Thermodynamics of aqueous electrolyte solutions at elevated temperatures (Temperature dependence of the heat capacities of ions in aqueous solution)". Geokhimiya. 12: 1486‒ 1503, 1968.
  16. 1 2 3 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 103.
  17. 1 2 3 4 5 6 7 8 9 10 Nordstrom, D.K.; Plummer, L.N.; Langmuir, D.; Busenberg, E.; May, H.M.; Jones, B.F.; Parkhurst, D.L. (1990). Melchior, D.C.; Basset, R.L. (eds.). Revised chemical equilibrium data for major water-mineral reactions and their limitations. In: Chemical Modeling of Aqueous Systems II. Washington, DC: ACS. pp. 398–446.
  18. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. New York: Wiley. pp. 213–217.
  19. 1 2 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 419–422.
  20. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 95.
  21. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 383.
  22. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 874–884.
  23. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 111.
  24. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 301.
  25. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Leuz, A.-K.; Sjöberg, S.; Wanner, H. (2011). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 4: The Cd2+ + OH, Cl, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)". Pure Appl. Chem. 83: 1163–1214. doi: 10.1351/PAC-REP-10-08-09 .
  26. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 730–738.
  27. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 195–210.
  28. 1 2 3 4 5 6 7 8 9 10 11 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 137.
  29. 1 2 3 4 5 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 135–145.
  30. 1 2 3 Ball, J.W.; Nordstrom, D.K. (1998). "Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides and hydroxides". J. Chem. Eng. Data. 43: 895–918.
  31. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 220.
  32. Rai, D.; Sass, B.M.; Moore, D.A. (1987). "Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide". Inorg. Chem. 26: 345–349.
  33. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 541–555.
  34. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 216.
  35. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 241.
  36. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 620–628.
  37. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 628−632.
  38. 1 2 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 650–702.
  39. Baes, C.F.; Messmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 274.
  40. Plyasunova, N.V.; Wang, M.; Zhang, Y.; Muhammed, M. (1997). "Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions II. Hydrolysis and hydroxo-complexes of Cu2+ at 298.15 K". Hydrometalurgy. 45: 37–51.
  41. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Sjöberg, S.; Wanne, H. "Chemical speciation of environmentally significant metals with inorganic ligands. Part 2: The Cu2+ + OH, Cl, CO32–, SO42–, and PO43– systems". Pure Appl. Chem. 79: 895–950 via 2007.
  42. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 415−420.
  43. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 290−292.
  44. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 295−297.
  45. 1 2 3 4 5 6 Hummel, W.; Berner, U.; Curti, E.; Pearson, F.J.; Thoenen, T. (2002). TECHNICAL REPORT 02-16. Nagra/ PSI Chemical Thermodynamic Data Base 01/01.
  46. 1 2 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 137.
  47. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 284–287.
  48. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 319.
  49. Smith, R.M.; Martell, A.E.; Motekaitis, R.J. (2003). NIST Critically Selected Stability Constants of Metal Complexes Database, Version 7.0, NIST Standard Reference Database 46. Gaithersburg, MD, USA: National Institute of Standards, U.S. Dept. of Commerce.
  50. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 797–812.
  51. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 349.
  52. Wood, S.A.; Samson, I.M. (2006). "The aqueous geochemistry of gallium, germanium, indium and scandium". Ore Geol. Rev. 28 via 57–102.
  53. Filella, M.; May, P.M. (2023). "The aqueous solution chemistry of germanium under conditions of environmental and biological interest: inorganic ligands". Applied Geochemistry. 155: 105631.
  54. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 279–285.
  55. 1 2 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 158.
  56. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 460–463.
  57. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 293−295.
  58. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. p. 327.
  59. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 812–817.
  60. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 736‒739.
  61. 1 2 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 235.
  62. 1 2 Lemire, R.J.; Berner, U.; Musikas, C.; Palmer, D.A.; Taylor, P.; Tochiyama, O. (2013). Chemical Thermodynamics of Iron, Part 1. Chemical Thermodynamics. Vol. 13a. OECD Nuclear Energy Agency (NEA).
  63. Brown, P.I.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 573−585.
  64. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 585–620.
  65. Baer, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 137.
  66. 1 2 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 135–145.
  67. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 365.
  68. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Leuz, A.K.; Sjöberg, S.; Wanner, H. (2009). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 3: The Pb2+ + OH, Cl, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)". Pure Appl. Chem. 81: 2425–2476. doi:10.1351/PAC-REP-09-03-05.
  69. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 135–145.
  70. Cataldo, S.; Lando, G.; Milea, D.; Orecchio, S.; Pettignano, A.; Sammartano, S. (2018). ", A novel thermodynamic approach for the complexation study of toxic metal cations by a landfill leachate". New J. Chem. 42: 7640–7648. doi:10.1039/C7NJ04456A. hdl: 10447/326779 .
  71. 1 2 3 Feitknecht, W.; Schindler, P. (1963). "Solubility constants of metal oxides, metal hydroxides and metal hydroxide salts in aqueous solution". Pure and Applied Chemistry. 6 (2): 125–206. doi:10.1351/pac196306020125.
  72. 1 2 3 4 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 86.
  73. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 136–141.
  74. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 89.
  75. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 178–195.
  76. Perrin, D.D (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 181.
  77. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 226.
  78. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 557−561.
  79. 1 2 3 Brown, P.L.; Ekberg, C (2016). Hydrolysis of Metal Ions. Wiley. pp. 568–570.
  80. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. p. 302.
  81. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 741–755.
  82. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 312.
  83. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Sjöberg, S.; Wanner, H. (2005). "Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: the Hg2+– Cl, OH, CO32−, SO42−, and PO43− aqueous systems (IUPAC technical report)". Pure Appl. Chem. 77: 739–80. doi:10.1515/iupac.77.0018.
  84. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 256.
  85. Jolivet, J.-P. (2000). "Metal Oxide Chemistry and Synthesis". Solution to Solid State. Wiley.
  86. Crea, F.; De Stefano, C.; Irto, A.; Milea, D.; Pettignano, A.; Sammartano, S. (2017). "Modeling the acid-base properties of molybdate(VI) in different ionic media, ionic strengths and temperatures, by EDH, SIT and Pitzer equations". Journal of Molecular Liquids. 229: 15–26. doi:10.1016/j.molliq.2016.12.041.
  87. Neck, V.; Altmaier, M.; Rabung, T.; Lützenkirchen, J.; Fanghänel, T. (2009). "Thermodynamics of trivalent actinides and neodymium in NaCl, MgCl2, and CaCl2 solutions: Solubility, hydrolysis, and ternary Ca-M(III)-OH complexes". Pure Appl. Chem. 81: 1555–1568. doi:10.1351/PAC-CON-08-09-05.
  88. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. p. 380.
  89. 1 2 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 183.
  90. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 380–384.
  91. Brownº, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 384–394.
  92. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 183–184.
  93. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 394–396.
  94. Baes, C.F.; Messmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 246.
  95. Gamsjäger, H.; Bugajski, J.; Gajda, T.; Lemire, R.J.; Prei, W. (2005). Chemical Thermodynamics of Nickel, Chemical Thermodynamics, Volume 6. Paris: OECD.
  96. 1 2 3 4 5 6 Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07. Villigen PSI, Switzerland: Paul Scherrer Institut. pp. 205–212.
  97. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 632–649.
  98. Filella, M.; May, P.M. (2020). "The aqueous solution thermodynamics of niobium under conditions of environmental and biological interest". Applied Geochemistry. 122. doi: 10.1016/j.apgeochem.2020.104729 .
  99. 1 2 Galbács, Z.M.; Zsednai, Á.; Csányi, L.J. (1983). "The acidic behaviour of osmium(VIII) and osmium(VI". Transition Met. Chem. 8: 328–332. doi:10.1007/BF00618563.
  100. Perrin, D.D. (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 186.
  101. Kitamura, A.; Yui, M. (2010). "Reevaluation of thermodynamic data for hydroxide and hydrolysis species of palladium(II) using the Brønsted-Guggenheim Scatchard model". J. Nuclear Sci. Technol. 47: 760−770. doi: 10.1080/18811248.2010.9711652 .
  102. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 723−725.
  103. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 186–187.
  104. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 396–397.
  105. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 187–189.
  106. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 397–401.
  107. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 189–190.
  108. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 401–403.
  109. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 190–191.
  110. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 403–405.
  111. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 148–150.
  112. Perrin, D.D. (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 191.
  113. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 263.
  114. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. p. 722.
  115. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 128.
  116. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 225–236.
  117. 1 2 3 Olin, Å; Noläng, B.; Öhman, L.-O.; Osadchii, E; Rosén, E. (2005). Chemical Thermodynamics of Selenium. OECD Pub.
  118. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 386.
  119. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 387.
  120. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 342.
  121. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 278.
  122. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 725−730.
  123. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 142–147.
  124. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 210–213.
  125. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 252.
  126. Filella, M.; May, P.M. (2019). "The aqueous solution thermodynamics of tantalum under conditions of environmental and biological interest". Applied Geochemistry. 109: 104402. doi:10.1016/j.apgeochem.2019.104402.
  127. 1 2 3 Filella, M.; May, P.M. (2019). "The aqueous chemistry of tellurium: critically-selected equilibrium constants for the low-molecular-weight inorganic species". Environ. Chem. 16: 289–295. doi:10.1071/EN19017.
  128. 1 2 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 395.
  129. Brwon, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 287−290.
  130. 1 2 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 335.
  131. 1 2 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 817–826.
  132. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 168.
  133. Rand, M.; Fuger, J.; Grenthe, I.; Neck, V.; Rai, D. (2008). Chemical Thermodynamics of Thorium (PDF). OECD Publishing.
  134. Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07. Villigen: Paul Scherrer Institut PSI. pp. 259–263.
  135. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 462–498.
  136. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 297−300.
  137. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 357.
  138. Cigala, R.M.; Crea, F.; De Stefan, C.; Lando, G.; Milea, D.; Sammartano, S. (2012). "The inorganic speciation of tin(II) in aqueous solution". Geochim. Cosmochim. Acta. 87: 1–20. doi:10.1016/j.gca.2012.03.029.
  139. 1 2 Gamsjäger, H.; Gajda, T.; Sangster, J.; Saxena, S.K.; Voigt, W. (2012). Chemical Thermodynamics of Tin. Chemical Thermodynamics Volume 12. Paris: OECD.
  140. 1 2 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 836–842.
  141. Perrin, D.D. (1969). Dissociation Constants of Inorganic Acids and Bases in Aqueous Solution. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 208.
  142. 1 2 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 151.
  143. 1 2 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 433–442.
  144. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 181.
  145. Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07 (PDF). Villigen: Paul Scherrer Institut PSI.
  146. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley (published 336–349).
  147. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. p. 182.
  148. Grenthe, I.; Fuger, J.; Konings, R.J.M.; Lemire, R.J.; Muller, A.B.; Nguyen-Trung, C.; Wanner, H. (1992). Chemical Thermodynamics of Uranium, Chemical Vol 1, (PDF). Paris: OECD Publishing.
  149. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 350–379.
  150. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 209.
  151. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 517–541.
  152. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 300−303.
  153. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 293.
  154. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Helfer, G.; Leuz, A.-K.; Sjöberg, S.; Wanner, H. (2013). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH, Cl, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)*". Pure and Applied Chemistry. 85: 2249–2311.
  155. Brown, P.L.; Ekberg, C (2016). Hydrolysis of Metal Ions. Wiley. pp. 676−700.
  156. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 442–460.