HAT-P-12 is a magnitude 13 low-metallicity K dwarf star approximately 463 light years away in the constellation Canes Venatici, which hosts one known exoplanet. [3] [2]
The designation HAT-P-12 indicates that this was the 12th star found to have a planet by the HATNet Project.
In August 2022, this planetary system was included among 20 systems to be named by the third NameExoWorlds project. [7] The approved names, proposed by a team from Hungary, were announced in June 2023. HAT-P-12 is named Komondor and its planet is named Puli, after the Hungarian Komondor and Puli dog breeds. [8]
In 2009 an exoplanet, HAT-P-12b, was discovered by the HATNet Project orbiting this star. The planet was discovered using the transit method and confirmed by follow up radial velocity measurements. [3] Transit-timing variations suggest the possible presence of additional non-transiting planets in the system. [9]
Companion (in order from star) | Mass | Semimajor axis (AU) | Orbital period (days) | Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b / Puli | 0.211 ± 0.012 MJ | 0.0384 ± 0.0003 | 3.2130598 ± 0.000006 | 0 | — | 0.95+2.85 −0.02 RJ |
c [9] (unconfirmed) | 0.218 MJ | — | 8.853 | 0.15499 | 73.5° | — |
HD 147506, also known as HAT-P-2 and formally named Hunor, is a magnitude 8.7 F8 dwarf star that is somewhat larger and hotter than the Sun. The star is approximately 419 light-years from Earth and is positioned near the keystone of Hercules. It is estimated to be 2 to 3 billion years old, towards the end of its main sequence life. There is one known transiting exoplanet, and a second planet not observed to transit.
HAT-P-3b, also named Teberda, is an extrasolar planet that orbits the star HAT-P-3 approximately 450 light-years away in the constellation of Ursa Major. It was discovered by the HATNet Project via the transit method and confirmed with Doppler spectroscopy, so both its mass and radius are known quite precisely. Based on these figures it is predicted that the planet has about 75 Earth masses' worth of heavy elements in its core, making it similar to the planet HD 149026 b.
ADS 16402 is a binary star system, composed of two sun-like stars located approximately 525 light-years away in the constellation Lacerta. It was first identified as a binary star by John Herschel in 1831. The two stars are separated by 11.26 arcseconds which leads to a projected separation of roughly 1500 astronomical units at the distance of ADS 16402. The star system is estimated to be 1.9 ± 0.6 billion years old. The secondary star ADS 16402 B is also designated HAT-P-1.
HD 45652 is a star with an exoplanetary companion in the equatorial constellation of Monoceros. It was officially named Lusitânia on 17 December 2019, after the IAU100 press conference in Paris by the IAU. This star has an apparent visual magnitude of 8.10, making it an 8th magnitude star that is too dim to be visible to the naked eye. The system is located at a distance of 114 light-years from the Sun based on parallax measurements, but is drifting closer with a radial velocity of −5 km/s. It shows a high proper motion, traversing the celestial sphere at an angular rate of 0.188 arcsec yr−1.
HAT-P-9 is a magnitude 12 F star approximately 1500 light years away in the constellation Auriga. A search for a binary companion star using adaptive optics at the MMT Observatory was negative.
HAT-P-4 is a wide binary star consisting of a pair of G-type main-sequence stars in the constellation of Boötes. It is also designated BD+36°2593.
HAT-P-11, also designated GSC 03561-02092 and Kepler-3, is an orange dwarf metal rich star about 123 light-years away in the constellation Cygnus. This star is notable for its relatively large rate of proper motion. The magnitude of this star is about 9, which means it is not visible to the naked eye but can be seen with a medium-sized amateur telescope on a clear dark night. The age of this star is about 6.5 billion years.
HAT-P-8 is a magnitude 10 star located 700 light-years away in Pegasus. It is a F-type star about 28% more massive than the Sun. Two red dwarf companions have been detected around HAT-P-8. The first has a spectral type of M5V and has a mass of 0.22 M☉. The second is even less massive, at 0.18 M☉, and its spectral type is M6V.
HAT-P-3, is a metal-rich K5 dwarf star located about 441 light-years away in the constellation Ursa Major. At a magnitude of about 11.5 it is not visible to the naked eye but is visible in a small to medium-sized amateur telescope. It is believed to be a relatively young star and has a slightly enhanced level of chromospheric activity.
HAT-P-12b, formally named Puli, is an extrasolar planet approximately 468 light years away from Earth, orbiting the 13th magnitude K-type star HAT-P-12, which is located in Canes Venatici constellation. It is a transiting hot Jupiter that was discovered by the HATNet Project on April 29, 2009.
WASP-19, formally named Wattle, is a magnitude 12.3 star about 869 light-years away, located in the Vela constellation of the southern hemisphere. This star has been found to host a transiting hot Jupiter-type planet in tight orbit.
GJ 1214 is a dim M4.5 red dwarf star in the constellation Ophiuchus with an apparent magnitude of 14.7. It is located at a distance of 47.8 light-years from Earth. GJ 1214 hosts one known exoplanet.
HAT-P-14b, officially named Sissi also known as WASP-27b, is an extrasolar planet located approximately 224.2 ± 0.6 parsecs (731.2 ± 2.0 ly) away in the constellation of Hercules, orbiting the 10th magnitude F-type main-sequence star HAT-P-14. This planet was discovered in 2010 by the HATNet Project using the transit method. It was independently detected by the SuperWASP project.
WASP-43 is a K-type star about 284 light-years away in the Sextans constellation. It is about half the size of the Sun, and has approximately half the mass. WASP-43 has one known planet in orbit, a Hot Jupiter called WASP-43b. At the time of publishing of WASP-43b's discovery on April 15, 2011, the planet was the most closely orbiting Hot Jupiter discovered. The small orbit of WASP-43b is thought to be caused by WASP-43's unusually low mass. WASP-43 was first observed between January and May 2009 by the SuperWASP project, and was found to be cooler and slightly richer in metals than the Sun. WASP-43 has also been found to be an active star that rotates at a high velocity.
WASP-21 is a G-type star that is reaching the end of its main sequence lifetime approximately 850 light years from Earth in the constellation of Pegasus. The star is relatively metal-poor, having 40% of heavy elements compared to the Sun. Kinematically, WASP-21 belongs to the thick disk of the Milky Way. It has an exoplanet named WASP-21b.
HAT-P-26 is a K-type main-sequence star about 466 light-years away. A survey in 2015 did not find any stellar companions in orbit around it, although a red dwarf companion with a temperature 4000+100
−350 K is suspected on wide orbit.
HAT-P-21 is a G-type main-sequence star about 910 light-years away. The star has amount of metals similar to solar abundance. The survey in 2015 has failed to detect any stellar companions. The star is rotating rapidly, being spun up by the tides of giant planet on close orbit.
HAT-P-29, also known as Muspelheim since 2019, is a star about 1,040 light-years away. It is a G-type main-sequence star. The star's age of 2.2±1.0 billion years is less than half that of the Sun. HAT-P-29 is slightly enriched in heavy elements, having 35% more iron than the Sun.
WASP-62, formally named Naledi, is a single star about 573 light-years away. It is an F class main-sequence star, orbited by a planet, WASP-62b. The age of WASP-62 is much younger than the Sun at 0.8±0.6 billion years, and it has a metal abundance similar to the Sun.
WASP-69, also named Wouri, is a K-type main-sequence star 164 light-years away. Its surface temperature is 4782±15 K. WASP-69 is slightly enriched in heavy elements compared to the Sun, with a metallicity Fe/H index of 0.10±0.01, and is much younger than the Sun at 2 billion years. The data regarding starspot activity of WASP-69 are inconclusive, but spot coverage of the photosphere may be very high.